Scalable Segment Abstraction Method for Advertising Campaign Admission and
Inventory Allocation Optimization

Fei Peng and Tuomas Sandholm
Optimized Markets, Inc.
Pittsburgh, PA, USA
{fei.peng, sandholm} @optimizedmarkets.com

Abstract

As publishers gather more information about their
users, they can use that information to enable ad-
vertisers to create increasingly targeted campaigns.
This enables better usage of advertising inventory.
However, it also dramatically increases the com-
plexity that the publisher faces when optimizing
campaign admission decisions and inventory allo-
cation to campaigns. We develop an optimal any-
time algorithm for abstracting fine-grained audi-
ence segments into coarser abstract segments that
are not too numerous for use in such optimiza-
tion. Compared to the segment abstraction algo-
rithm by Walsh et al. [2010] for the same problem,
it yields two orders of magnitude improvement in
run time and significant improvement in abstraction
quality. These benefits hold both for guaranteed
and non-guaranteed campaigns. The performance
stems from three improvements: 1) a quadratic-
time (as opposed to doubly exponential or heuris-
tic) algorithm for finding an optimal split of an ab-
stract segment, 2) a better scoring function for eval-
uating splits, and 3) splitting time lossily like any
other targeting attribute (instead of losslessly seg-
menting time first).

1 Introduction

The business models of many Internet companies are based
on individualized advertising. Display (aka. banner) ads and
sponsored search ads are two prominent examples. When
users visit a website or search for certain keywords, they are
shown one or multiple ads based on the publisher’s knowl-
edge of them. Their browsing history, the device being used,
and information gleaned from their social media accounts all
feed into analysis that describes the socio-demographic char-
acteristics of the user, and models that predict the user’s be-
havior and response to certain ads. This allows the publish-
ers to generate more revenue by dividing their impressions,
or page views, into fine-grained segments, that is, classes of
page views defined based on attributes (which can be based
on user characteristics, time, URL, etc.).

Some companies sell impressions through auctions such
as the generalized second price (e.g., Google) or Vickrey-

Clarke-Groves auctions [Edelman er al., 2007] (most notably
Facebook). This allows each impression to be served only to
advertisers interested in bidding on it, and leverages the pub-
lishers’ knowledge about their users. However, the approach
of selling one impression at a time cannot support many
important types of constraints and preferences (aka. “ex-
pressiveness”) that advertisers have—especially campaign-
level constraints such as smoothness of delivery, reach, and
campaign-level exclusivities.

In contrast, on the other end of sales approaches, manual
sales of display ads support rich campaign execution con-
straints but very little targeting. The key planning problem
for the publisher is to optimize

1. campaign admission: which campaign request to accept
versus reject, and

2. inventory allocation: how to allocate heterogeneous in-
ventory to accepted campaigns with different targeting
and campaign-level constraints.

Typically, the publisher would like to optimize these so as to
maximize revenue. The optimization problem behind these
decisions becomes more complex with more campaigns, im-
pressions, and increased targeting and campaign constraints.

With non-guaranteed campaigns, the admission decision
can be left as a side effect of inventory allocation optimiza-
tion: if no inventory is allocated to a campaign, it is implicitly
rejected. With guaranteed campaigns, sometimes the admis-
sion decisions are made (e.g., manually) before the planning
optimization, in which case the optimization only addresses
part (2), but potentially with penalties for not fulfilling ac-
cepted campaigns.

The inventory allocation part of the planning problem has
been considered for display advertisements [Abrams et al.,
2007; Alaei et al., 2009; Yang et al., 2010; Turner, 2012] and
in-game advertisements [Turner et al., 2011]. Expectation-
and sample-based optimization approaches have been de-
veloped for stochastic supply and demand [Boutilier et al.,
2008]. Sample-based approaches have been proposed with
near-optimal solution quality for both a linear program (LP)
setting assuming randomly permuted queries [Devanur and
Hayes, 2009], and a problem with a quadratic goal that in-
cludes a representativeness criterion [Ghosh et al., 2009;
Vee et al., 2010; Bharadwaj et al., 2012]. Techniques have
also been proposed for planning under reach and frequency

constraints [Hojjat er al., 2014].

While forecasts on actual impressions can be used in the
planning phase, the uncertain and changing user arrivals,
among other factors, can make the realized impressions dur-
ing the dispatch phase different from the forecast. A popular
approach for handling this is the optimize-and-dispatch archi-
tecture [Parkes and Sandholm, 2005] where a planner plans
and replans offline, and gives the plan to a dispatch engine
(ad server) to execute as closely as possible in real time (typi-
cally with well less than 100 milliseconds to make a decision
for an incoming impression). Control-theoretic and model-
based bid-adjustment methods have also been proposed for
configuring the dispatcher and adjusting the bid values real-
time [Chen et al., 2011].

We focus on the planning problem in this paper, and dis-
cuss briefly in the conclusions how our algorithm and results
may be used in the dispatch phase. Our techniques can be
used for the campaign admission optimization, the inventory
allocation optimization, or for jointly optimizing both. Our
work covers guaranteed and non-guaranteed campaigns, as
well as a mixture of both. Our work tackles the same prob-
lem as Walsh er al. [2009; 2010], but with dramatically better
performance via three technique improvements.

2 Segment Abstraction and Optimization

As publishers/advertisers gain access to more user informa-
tion, the number of targeting attributes grows. The number of
segments grows exponentially with the number of attributes.
This creates insurmountable problems for the vanilla opti-
mization problem of deciding which campaign requests to ac-
cept and how to allocate inventory to accepted campaigns.

For this problem, Walsh er al. [2009; 2010] introduced
the idea of segment abstraction (which they originally called
channel abstraction). The idea is to first algorithmically
abstract the segments to larger abstract ones in a way that
does not significantly compromise the objective (typically
revenue). The problem is abstracted enough so that it can
then be solved by an optimizer for the campaign admission
and/or inventory allocation problem.

The approach has since then become popular in ad
inventory allocation and campaign admission problems
(e.g., [Turner et al., 2011; Turner, 2012; Hojjat et al., 2014]).
It has also been extended to dynamic segmentation in market-
ing optimization [Lu and Boutilier, 2015].

Sometimes abstraction can be lossless (although typically
one needs to abstract more than that to reach an optimization
problem size that is practical to solve). As an example of loss-
less abstraction, if bid b targets women residing in California,
as long as its ad is shown to a woman from California, it does
not matter whether she has children or not. Therefore, we can
combine concrete segments {Woman, California, Children}
and {Woman, California, No-Children} into an abstract seg-
ment {Woman, California}. This is lossless: considering
only the abstract segment preserves revenue optimality.

As in prior work, throughout this paper, we will assume
that bids quantitatively express preferences for campaigns.
Types of preferences include the following.

e Budget: maximum amount of money to spend over the
entire campaign flight, or on a per-day basis;

e Targeting: a campaign may specify a number of at-
tributes and a set of values for each that describe the
audience it is trying to reach. We can also treat time as
a attribute, and handle it the same way as the other at-
tributes. Section 3.4 will discuss the handling of time in
detail;

e Impression threshold: a campaign may have limits as
to how many impressions it will buy, or at least how
many it needs in order to pay;

While many such preferences can be modeled as an LP, some
will require the solution of a Mixed Integer Linear Program
(MIP). The size of the LP/MIP becomes prohibitive already
at moderate numbers of attributes; this is the very motivation
of segment abstraction. In our experiments, we will conduct
tests both with LP expressiveness and with MIP expressive-
ness (specifically guaranteed campaigns, where campaign ad-
mission becomes a meaningful decision).

Optimization Model without Segment Abstraction

We define the set of attributes to be F, and the domain of
an attribute in F as a finite set of attribute values. A concrete
segment is defined as an instance over the universe of attribute
instantiations dom(F).

Let C be the set of all possible concrete segments, and let
s(c) be the supply of impressions in segment ¢ € C. Let
B be the set of bids, each of which can be described by its
budget ¢, a bid value v” for each impression, and a targeting
criterion ¥, which is a logical proposition over dom(F). For
ease of presentation, let v2 = v° if bid b targets segment c,
and 0 otherwise. Finally, let 2% be the number of impressions
we assign to bid b from segment c. The optimization model
is

(MC) maximize,, Z Z VT,
b c
s.t. Z xz < S¢
b
D v <y’
(&

xﬁeZ,OSxi’Ssc.

ceC

be B

The possible number of segments in set C' grows expo-
nentially with the number of attributes, creating the problem
of segment explosion that renders the direct solution of this
problem impossible. As pointed out in Walsh ez al. [2010],
a naive but lossless (i.e., revenue-maximal) way of abstract-
ing concrete segments is to consider all sensible abstract seg-
ments of the form Ayep £ wb. Howeyver, the number of those
segments is still exponential in the number of bids.

3 Ouwur Optimal Abstraction Algorithm

Our optimal anytime segment abstraction algorithm is for
the same problem as the one tackled by Walsh er al. [2009;
2010]. As we will show, ours yields two orders of magni-
tude improvement in run time and significant improvement in

abstraction quality. This performance gain stems from three
improvements: 1) a quadratic-time (as opposed to doubly ex-
ponential or heuristic) algorithm for finding an optimal split
of an abstract segment, 2) a better scoring function for evalu-
ating splits, and 3) splitting time lossily like any other target-
ing attribute (instead of losslessly segmenting time first).

The segment abstraction starts with an initial set of abstract
segments (for example, one channel with the entire set of im-
pressions), and iteratively splits existing segments into finer-
grained ones. Given the set of abstract segments A, we con-
sider the following master problem:

. . b b
(M) maximize, Z Z VT,
b a
S.t. Zmz < Sq
b
2 vara <4’
a

foEZ,ngzgsa.

acA (1)

be B (2

Following standard practice, we will treat variables 2 as con-
tinuous since the effects of fractionality are negligible when
the number of impressions is large.

Although Model (M) treats all concrete segments inside
an abstract segment uniformly, we need to properly handle
the fact that not all impressions in an abstract segment can be
used to satisfy a given campaign. This is captured in the value
parameter v_:

ob = P{y® Aala} - o,

where P{1)® Aa|a} is the probability that a randomly assigned
impression from a will satisfy campaign b:

S b a
P{y® A ala) = (‘i(aA))

By using v? in the model, we are essentially discounting the
value of an assigned impression by the proportion of impres-
sions in a that b targets. !

3.1 Splitting an Abstract Segment

By splitting some abstract segments, one may often be able
to improve the solution quality. We present an approach akin
to column generation [Barnhart er al., 1998; Liibbecke and
Desrosiers, 2005], but different in that we are not generat-
ing one column but rather generating two and removing one.
We consider a split of, say o € A that is part of the current
coarse abstraction, into two segments 5 and 3, with which
we associate variables %, 5 and 2¥ 5 for b € B. Define

dual variables 7, for constraints (1) and ¢° for constraints
(2). The reduced cost, or the change in the objective function

!This leads to the correct estimation of objective value if a
straightforward dispatcher is used that simply assigns impressions
randomly according to the planned probabilities .. If a smarter
dispatcher is used that determines before dispatching whether there
is a fit between the impression and the bid targeting criteria, this
model can underestimate the objective value.

for bringing the value of one such variable from O to a tiny
amount, is

Tc(xfx/\ﬁ) = U(bx/\ﬁ(l - 5b) — T

TC(IZAB) = UZ/\B(I — 6% — 7.

We define the score of the split into 3 and §3 as:
o b '
score(a, 8, 8) =max{re(ah) - s(a A B)}
b _
+ rgleaé({rc(xa/\g) cs(anB)} (B)

Theorem 1. If an abstract segment o* is split into B* and B*
in each iteration, where

(a*, B*, B*) = arg max{score(a, 3, B)},

the abstraction algorithm will terminate in a finite number of
iterations at an optimal solution.

Proof. Essentially, the scoring function (3) assumes that af-
ter the split, the entire supply of segment 3 will be as-
signed to the bid with the highest discounted (by a factor
of Pr(p® A (a A B)|a A B)) value of a 3 impression, and
all of the supply of 3 assigned to the bid with the highest
discounted value of a § impression. When campaigns have
enough budgets to buy all of a segment, this produces exactly
the objective improvement. However, most of the time, this
score is an overestimate of the true score from the split. If the
maximum score is negative, we already know that no more
improving splits can be found. Because the score is an over-
estimate of the true score, using this score can unnecessarily
split a segment without improving the objective, or prolong
the solution process without recognizing that the solution is
already optimal. However, since we can only split a segment
a finite number of times, the algorithm will at worst split all
abstract segments into concrete segments, which provides an
optimal solution. O

This result may not seem attractive at first, since in the
worst case we may end up solving Problem (MC) in addi-
tion to spending effort in the abstraction process. However,
this algorithm can be stopped at any time and provide a solu-
tion to (MC), while solving or even writing down (MC) is not
possible. In reality, the splitting process can be terminated
as soon as solution quality is good enough, and, as we will
show in the experiments, this scoring function works well in
finding high-quality solutions quickly in practice. Note that
Theorem 1 is also true under the scoring function in Walsh
et al. [2010], although by incorporating the dual variables for
budget, our scoring function (3) can identify better splits than
the scoring function in Walsh ez al. [2010], as the experiments
will show.

3.2 Finding a Split with the Maximum Score

In this section, we describe a procedure for finding a split,
given the current set of abstract segments A, that has the
maximum score (3). As pointed out in Walsh er al. [2010],
the possible number of splits for each segment « is 28" or
doubly exponential in the number of attributes and the do-
main size of each attribute. Therefore, trying to find the best

split by enumerating all possibilities is unrealistic. Walsh et
al. [2010] used heuristics for curtailing that search. We now
show that one can find an optimal split in quadratic time in
the number of bids! ~

Examining the scoring function, and letting 6° = 1 — 6°,
we have

score(a, 3, B)
=max {(v55 8" = 7a) s(c A B)}

+ max {(v),,56" = 7a) s(a A)}
—max {vh ;8" s(a A B) = ma 5(a) Pr(a A Bla)}

+ max {0838 5(a A B) = ma 5(a) Pr(a A Bla) |

—max {vl,5 " s(a A)} + max {ngB 5 s(a A 5)}
)

=max {o" Pr(y’ o A) 6" s(a A B) }
+ max {v Pr(y’]a A B) 8" s(a A B)} = ma s(a)

= max {v°6"s (V" A (anB))}
+ max {0"8"s (WP A (a A B))} — ma s(a).

Theorem 2. For any given abstract segment, a split with

2_
maximum score (3) can be found by evaluating L2IB\

splits.

Proof. Consider abstract segment «. Because we know
that max(score(c, 8, 3)) will happen for some pair of bids
(b*, ™), if we can find the split 8 that maximizes

"8 s (PP A (a A B)) + o 5 s (’L/)bl A (a A B))
2
for each pair of bids b and ¥/, the largest of all w such
scores will be the maximum score (7, () is a constant for a
given «).
Consider Figure 1 as an illustrative example with two bid-
ders b and b'. Bid b targets all concrete segments in regions 1

Figure 1: Illustration of the targeting criteria of two bids.

and 3, while b’ targets 2 and 3. The rectangle represents the
entire segment «v. If region 3 is empty, the maximum-score
split with regard to only b and ¥’ is to include 1 in 3, include
2in 3, and arbitrarily assign the rest of the segment to either
B or . On the other hand, when region 3 is not empty, the
split that achieves the maximum score for b and b’ should as-
sign 1 to 5, and 2 to B (since b pays 0 for any impression in
2 and &’ pays 0 for any impression in 1). Moreover, 3 should

be assigned to b only if v?5° > v’ 5", and vice versa. Eval-
uating all such assignments will produce a maximum-score
split. O

We describe in Algorithm 1 the pseudocode for finding the
split with the maximum score for a segment «.

Algorithm 1 MaxScore(a)

Let mazscore = 0
for eachi € {1,...,|B|},letb = b’ do
for each j € {i,...,|B|},letd = b’ do
if)* A ¥ = () then
score = vP6Ps(a A 9P) 4 0P 6% s(a\p?)
else if v*6” > ¥’ 6" then
score = vP6bs (a A 1/1b) + 0?6 s (a\¢b)
else
score = v¥' 6% s(ae A ") 4+ 0P8Ps(\)
if score > maxscore then
maxscore <— score
Return mazxscore — mys(a)

The same procedure can be applied to the scoring function
proposed in Walsh et al. [2010].

3.3 Our Entire Abstraction Algorithm

Now we are ready to present our algorithm for generating the
set of abstract segments that yields optimal revenue.

1. Initialize the set A with some initial abstract segments.
For example, A can include only one segment with the
entire set of impressions.

2. Solve the master problem to get the dual solution.

3. For each abstract segment in A, run MaxScore(«) to
find the split with the maximum score.

4. If MaxScore(a) < 0 for all @ € A, declare optimal-
ity and terminate; otherwise split the segment with the
highest score and go to Step 2.

3.4 Time As an Attribute

There are at least three possible ways that time could be han-
dled in our segment abstraction approach:

1. No time abstraction. Time is first discretized as finely as
needed into non-overlapping units, and the abstraction is
only applied to other attributes.

2. First abstract the discretized time units into intervals
while making sure that each campaign is indifferent to
individual time units inside an interval. Then run the ab-
straction algorithm on other attributes. Compared to the
first approach, this can reduce the size of the optimiza-
tion problem when the number of bids is small, but tends
to lead to the same time abstraction as the first approach
when the number of bids is large because there tend
to then be no two time units that no bid distinguishes
among.

Approaches 1 and 2 handle time in a lossless way.

3. The most versatile of these approaches is to handle time
abstraction together with the abstraction of other at-
tributes in the unified abstraction framework that we de-
scribed. We let the algorithm determine the most benefi-
cial splitting of time and/or other attributes. This is lossy
time abstraction.

4 Experiments

For the experiments, we built an instance generator for dif-
ferent problem types and sizes, and configured it to behave
identically to that of Walsh et al. [2010]. We then compared
results on test cases that are the same size as theirs. We now
describe the settings of the generator.

Consider a time horizon of 30 days, where a day is the
finest unit of time targeting allowed. The total supply of im-
pressions is 1,000,000 per day. An impression has, indepen-
dently for each attribute i € F, value f! with probability
Pr(f!) = U[0,1], and Pr(f?) =1 — Pr(fli). To model com-
monality in bids’ targeting, the popularity of attribute ¢ € F
follows a Zipf distribution P; = (1/4)/(‘Zill 1/¢). Each
bid cares about a set of attributes I, where |I| ~ U|[0, 10],
with each attribute sampled from the Zipf distribution without
replacement. A bid has uniform preferences U|[0, 1] over val-
ues for each attribute it targets. The value bid b places on each
matching impression is v, = oy(1 4+ 10, F;), where
is a base value sampled from U[0.1, 1]. In other words, highly
targeted campaigns pay more for each impression, as is typi-
cal in practice. Moreover, we sample two time points £, to ~
U[—10, 40] for each bid, use [min(ty, t2), max(t1, t2)] as the
bid’s time window, and truncate it to [1, 30], our time hori-
zon of interest. Bid b’s budget is set to cover a fraction
7y ~ U[0.1, 1] of the matching impressions, o}, over its time
window: ¢® = 7, 0}, v. Finally, to capture opportunity cost
of impressions, which may be the value of an impression on
an external advertising network, an additional bid is intro-
duced with per-impression value 0.1, unlimited budget and
no targeting.

We consider two groups of problem instances, replicat-
ing those in Walsh et al. The non-guaranteed group con-
tains campaigns that pay their per-impression value v, for
every impression delivered. The guaranteed group con-
tains both per-impression bids, and bids that pay g only
when they receive their total requested number of impres-
sions (and O otherwise). A guaranteed campaign’s value and
budget are scaled up by a factor ~ UJ[1.1,1.5] to reflect
their more stringent requirements. For the non-guaranteed
group, we run 5 problem sizes with number of attributes
m € {20, 40, 60, 80,100}, and number of bidders n = 10m.
For the guaranteed group, we test 6 sizes with 100 attributes,
n € {10,20,30,40,50,60} guaranteed campaigns and 4n
non-guaranteed campaigns. The optimization problem for the
first (non-guaranteed) group is an LP. We formulate a MIP
to capture the guaranteed campaigns in the second problem
group, where a binary variable is associated with each guar-
anteed campaign to represent whether the required number of
impressions is allocated to the campaign or not, but the seg-
ment abstraction is based on the relaxation of this MIP to an
LP.

The solution to our optimization problem will not only in-
clude allocation decisions but also admission decisions. For
the non-guaranteed group, campaigns that receive zero im-
pressions are rejected. For the guaranteed group, the value
of the binary decision determines whether the campaign is
accepted or not.

The quality of the solution is evaluated by comparing to the
same upper bound as the one used by Walsh et al.: replace all
v? in problem (M) by v, and impose an upper bound on %
so that each bidder can get at most its matching number of
impressions in each segment a. Since bids are paying for
the un-discounted value of each impression, this is an upper
bound on the optimal revenue. The upper bound problem and
the MIP (for guaranteed campaigns) are only solved to obtain
performance metrics in different iterations, and will not count
towards the time to compute an abstraction.

The experiments were conducted on an Amazon Web Ser-
vices instance of type r3.xlarge with 4 cores and 30.5GB of
memory. Our implementation was single threaded. The re-
sults below are averaged over 20 instances for each problem
size.

4.1 Time Abstraction Techniques

In Figure 2, we compare the better two of our three time-
handling techniques: 2 and 3. We ran each until it reached

2
)
& -
204} lossy time ! \
> abstraction |
< 0.2} lossless time abstraction —
=}
So0.0 . . : ‘
20 40 60 80 100
o 1.0
=)

% 0.2+ ! lossless time abstraction 1
o J
0.0 o : ‘ ‘

20 40 60 80 100

Number of segments

© I
o '
= 0.4+ jossy time ! ! \ 1
> abstraction :
1

i

i

1

Figure 2: Lossy time abstraction (solid) vs. lossless time ab-
straction (dashed) for the non-guaranteed (top) and guaran-
teed (bottom) group.

100 segments. The advantage of letting the algorithm deter-
mine the best time segmentation (lossy time abstraction) is
clear: while both versions would eventually converge to the
optimal solution (as indicated by the quality relative to upper
bound) in a finite number of steps, the lossy time abstraction
achieves a much better solution with any given number of
abstract segments. This advantage is consistent across prob-
lem sizes (each of the solid curves corresponds to a different

problem size n, as does each of the dashed curves; within
each curve cluster, problem size increases from high to low).
The advantage applies to both groups: non-guaranteed and
guaranteed.

4.2 Comparing Abstraction Algorithms

Next, we compare our algorithm to the one of Walsh et al..
In Figure 3, we mark with stars the quality of the solutions
achieved in their paper (under setting M I = 0.01, the de-
fault setting there for termination), and run our algorithm
until the same termination time for the corresponding prob-
lem size. At termination, the solutions generated by our al-
gorithm with the new scoring function (solid lines) signifi-
cantly outperform those reported in Walsh ez al. for both the
non-guaranteed and guaranteed groups. Again, same-colored
lines and markers correspond to the same problem size n in
each sub-figure, and problem size increases from high to low
within each curve cluster. Moreover, in reaching the same
solution quality, our algorithm achieves a speedup of up to
45x and 142x for the non-guaranteed and guaranteed groups,
respectively.

2 1.0
5 0.9
gos)
0.7
GL) |
506
T 05}
3
S04
0.

g 1.0
° 0.9
gos
©0.7
g

QO.G
© 0.5 i
>

o 0.4
0.0 0.2 0.4 0.6 0.8 1.0

Time relative to termination time

Walsh et al. [2010] |

Figure 3: Revenue from our new abstraction algorithm (solid
lines) compared to that of Walsh et al. (points represented
by stars on the right). Also shown are our lossy abstraction
solutions with old (dashed) and new (solid) scoring functions.
The z-axis is time relative to the time reported by Walsh et
al. for each of the problem sizes separately. The top figure
is for the non-guaranteed group and the bottom figure for the
guaranteed group.

Finally, we compare the effects of our new scoring func-
tion (3) versus the one used in Walsh et al.. We run our new
fast lossy abstraction algorithm with these two scoring meth-
ods on same instances until the termination time, and track
the progress in terms of percentage of upper bound reached.
As can be seen in Figure 3, the new scoring function offers
significant revenue gains, especially during the early stages.

(Note further that the complexity of the master problem and
of the split search are roughly equal between the two scor-
ing functions, so the number of segments should be roughly
proportional to time.)

5 Conclusions and Future Research

We developed an optimal anytime algorithm for segment ab-
straction. Compared to that of Walsh er al. [2010], it yields
two orders of magnitude speed improvement and significant
improvement in abstraction quality. These benefits hold both
for guaranteed and non-guaranteed campaigns. The perfor-
mance gain stems from three improvements: 1) a quadratic-
time (as opposed to doubly exponential or heuristic) algo-
rithm for finding an optimal split of an abstract segment, 2)
a better scoring function for evaluating splits, and 3) split-
ting time lossily like any other targeting attribute (instead of
losslessly segmenting time first). The algorithm makes rapid
progress initially, and tapers off as it spends more time split-
ting segments more finely, especially for larger problem in-
stances in the guaranteed group.

It is easy to parallelize our split search to speed up the ex-
ecution of the algorithm. Further improvements can be ob-
tained by adding a cut generation routine described in Walsh
et al. [2010], which can be applied to the column generation
phase both in that paper and here. In that setting, the best
timing for switching from the column generation phase to the
cut generation phase still remains open.

At the end of our segment abstraction process, the final
set of segments, along with the planned probabilities z°, are
given to a dispatcher, which then serves impressions to in-
dividual campaigns according to these probabilities in real
time. To prevent wasteful assignment of impressions, a smart
dispatcher can determine, before dispatching, whether there
is a fit between the impression and the bid targeting crite-
ria. In addition, the dispatcher can try to accelerate cam-
paigns that are falling behind plan in delivery, and vice
versa (e.g., [Parkes and Sandholm, 2005; Chen er al., 2011;
Bharadwayj et al., 2012]). However, because the time for a dis-
patcher to make a decision is extremely short, it cannot per-
form tasks for making sophisticated bid adjustments. There-
fore, if the actual stream of impressions deviates significantly
from forecast, periodically re-optimizing in light of delivered
impressions may be warranted.

A number of issues remain to be investigated further. Han-
dling other types of constraints besides budget, supply, de-
mand, and targeting is of interest. Also, following the same
instance generator setup as Walsh et al. [2010], we assumed
that attributes are independent of each other. Having a more
realistic, but still tractable attribute model can be useful.
Moreover, how should the algorithm be intelligently adapted
to settings where inventory forecasts can be inaccurate, and
where bids may arrive dynamically? Finally, it would be in-
teresting to take the approach to other large allocation prob-
lems.

References

[Abrams et al., 2007] Zoe Abrams, Ofer Mendelevitch, and
John Tomlin. Optimal delivery of sponsored search adver-

tisements subject to budget constraints. In Proceedings of
the 8th ACM Conference on Electronic Commerce, pages
272-278, 2007.

[Alaei et al., 2009] Saced Alaei, Esteban Arcaute, Samir
Khuller, Wenjing Ma, Azarakhsh Malekian, and John
Tomlin. Online allocation of display advertisements sub-
ject to advanced sales contracts. In Proceedings of the
Third International Workshop on Data Mining and Au-
dience Intelligence for Advertising, pages 69-77. ACM,
2009.

[Barnhart et al., 1998] Cynthia Barnhart, Ellis L. Johnson,
George L. Nemhauser, Martin W. P. Savelsbergh, and
Pamela H. Vance. Branch-and-price: Column generation

for solving huge integer programs. Operations Research,
46(3):316-329, 1998.

[Bharadwaj er al., 2012] Vijay Bharadwaj, Peiji Chen, Wen-
jing Ma, Chandrashekhar Nagarajan, John Tomlin, Sergei
Vassilvitskii, Erik Vee, and Jian Yang. Shale: an efficient
algorithm for allocation of guaranteed display advertising.
In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,

pages 1195-1203, 2012.

[Boutilier ef al., 2008] Craig Boutilier, David Parkes, Tuo-
mas Sandholm, and William Walsh. Expressive banner ad

auctions and model-based online optimization for clearing.
In AAAI 2008.

[Chen et al., 2011] Ye Chen, Pavel Berkhin, Bo Anderson,
and Nikhil R Devanur. Real-time bidding algorithms for
performance-based display ad allocation. In Proceed-
ings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1307—
1315, 2011.

[Devanur and Hayes, 2009] N. Devanur and T. Hayes. The
adwords problem: Online keyword matching with bud-
geted bidders under random permutations. In Proceedings
of ACM Conference on Electronic Commerce (EC), 2009.

[Edelman et al., 2007] Benjamin Edelman, Michael Ostro-
vsky, and Michael Schwarz. Internet advertising and the
generalized second-price auction: Selling billions of dol-
lars worth of keywords. The American Economic Review,
97(1):242-259, March 2007.

[Ghosh et al., 2009] A. Ghosh, P. McAfee, K. Papineni, and
S. Vassilvitskii. Bidding for representative allocations for
display. In Proceedings of the Workshop on Internet Eco-
nomics (WINE), pages 208-219, 20009.

[Hojjat et al., 2014] Ali Hojjat, John Turner, Suleyman
Cetintas, and Jian Yang. Delivering guaranteed display ads
under reach and frequency requirements. In AAAI Confer-
ence on Artificial Intelligence (AAAI), 2014.

[Lu and Boutilier, 2015] Tyler Lu and Craig Boutilier.
Value-directed compression of large-scale assignment
problems. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence, 2015.

[Liibbecke and Desrosiers, 2005] Marco E Liibbecke and

Jacques Desrosiers. Selected topics in column generation.
Operations Research, 53(6):1007-1023, 2005.

[Parkes and Sandholm, 2005] David Parkes and Tuomas
Sandholm. Optimize-and-dispatch architecture for expres-
sive ad auctions. In First Workshop on Sponsored Search
Auctions, at the ACM Conference on Electronic Com-
merce, Vancouver, BC, Canada, June 2005.

[Turner et al., 2011] John Turner, Alan Scheller-Wolf, and
Sridhar Tayur. Scheduling of dynamic in-game advertis-
ing. Operations Research, 59(1):1-16, 2011.

[Turner, 2012] John Turner. The planning of guaranteed tar-
geted display advertising. Operations Research, 60:18-33,
2012.

[Vee et al., 2010] E. Vee, S. Vassilvitskii, and J. Shanmuga-
sundaram. Optimal online assignment with forecasts. In
Proceedings of ACM Conference on Electronic Commerce

(EC), 2010.

[Walsh er al., 2009] William Walsh, Craig Boutilier, Tuomas
Sandholm, Robert Shields, George Nemhauser, and David
Parkes. Automated channel abstraction for advertising
auctions. In Proceedings of the Ad Auctions Workshop,
2009.

[Walsh et al., 2010] William Walsh, Craig Boutilier, Tuomas
Sandholm, Robert Shields, George Nemhauser, and David
Parkes. Automated channel abstraction for advertising
auctions. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), 2010.

[Yang et al., 2010] Jian Yang, Erik Vee, Sergei Vassilvit-
skii, John Tomlin, Jayavel Shanmugasundaram, Tasos
Anastasakos, and Oliver Kennedy. Inventory allocation
for online graphical display advertising. arXiv preprint
arXiv:1008.3551, 2010.

