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Abstract

The design of revenue-maximizing combinatorial auctions, i.e. multi-item auctions
over bundles of goods, is one of the most fundamental problems in computational
economics, unsolved even for two bidders and two items for sale. In the traditional
economic models, it is assumed that the bidders’ valuations are drawn from an
underlying distribution and that the auction designer has perfect knowledge of
this distribution. Despite this strong and oftentimes unrealistic assumption, it is
remarkable that the revenue-maximizing combinatorial auction remains unknown.
In recent years, automated mechanism design has emerged as one of the most prac-
tical and promising approaches to designing high-revenue combinatorial auctions.
The most scalable automated mechanism design algorithms take as input samples
from the bidders’ valuation distribution and then search for a high-revenue auction
in a rich auction class. In this work, we provide the first sample complexity analysis
for the standard hierarchy of deterministic combinatorial auction classes used in
automated mechanism design. In particular, we provide tight sample complexity
bounds on the number of samples needed to guarantee that the empirical revenue
of the designed mechanism on the samples is close to its expected revenue on the
underlying, unknown distribution over bidder valuations, for each of the auction
classes in the hierarchy. In addition to helping set automated mechanism design on
firm foundations, our results also push the boundaries of learning theory. In partic-
ular, the hypothesis functions used in our contexts are defined through multi-stage
combinatorial optimization procedures, rather than simple decision boundaries, as
are common in machine learning.

1 Introduction

Multi-item, multi-bidder auctions have been studied extensively in economics, operations research,
and computer science. In a combinatorial auction (CA), the bidders may submit bids on bundles of
goods, rather than on individual items alone, and thereby they may fully express their complex valua-
tion functions. Notably, these functions may be non-additive due to the presence of complementary
or substitutable goods for sale. There are many important and practical applications of CAs, ranging
from the US government’s wireless spectrum license auctions to sourcing auctions, through which
companies coordinate the procurement and distribution of equipment, materials and supplies.

One of the most important and tantalizing open questions in computational economics is the design
of optimal auctions, that is, auctions that maximize the seller’s expected. In the standard economic
model, it is assumed that the bidders’ valuations are drawn from an underlying distribution and that
the mechanism designer has perfect information about this distribution. Astonishingly, even with this
strong assumption, the optimal CA design problem is unsolved even for auctions with just two distinct
items for sale and two bidders. A monumental advance in the study of optimal auction design was
the characterization of the optimal 1-item auction [Myerson, 1981]. However, the problem becomes
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significantly more challenging with multiple items for sale. In particular, Conitzer and Sandholm
proved that the problem of finding a revenue-maximizing deterministic CA is NP-complete [Conitzer
and Sandholm, 2004]. We note here that it is well-known that randomization can increase revenue in
CAs, but we focus on deterministic CAs in this work because in many applications, randomization is
not palatable and very few, if any, randomized CAs are used in practice.

In recent years, a novel approach known as automated mechanism design (AMD) has been adopted
to attack the revenue-maximizing auction design problem [Conitzer and Sandholm, 2002, Sandholm,
2003]. In the most scalable strand of AMD, algorithms have been developed which take samples
from the bidders’ valuation distributions as input, optimize over a rich class of auctions, and return an
auction which is high-performing over the sample [Likhodedov and Sandholm, 2004, 2005, Sandholm
and Likhodedov, 2015]. AMD algorithms have yielded deterministic mechanisms with the highest
known revenues in the contexts used for empirical evaluations [Sandholm and Likhodedov, 2015].
This approach relaxes the unrealistic assumption that the mechanism designer has perfect information
about the bidders’ valuation distribution.

However, until now, there was no formal characterization of the number of samples required to
guarantee that the empirical revenue of the designed mechanism on the samples is close to its
expected revenue on the underlying, unknown distribution over bidder valuations. In this paper,
we provide that missing link. We present tight sample complexity guarantees over an extensive
hierarchy of expressive CA families. These are the most commonly used auction families in AMD.
The classes in the hierarchy are based on the classic VCG mechanism, which is a generalization of
the well-known second-price, or Vickrey, single-item auction. The auctions we consider achieve
significantly higher revenue than the VCG baseline by weighting bidders (multiplicatively increasing
all of their bids) and boosting outcomes (additively increasing the liklihood that a particular outcome
will be the result of the auction).

A major strength of our results is their applicability to any algorithm that determines the optimal
auction over the sample, a nearly optimal approximation, or any other black box procedure. Therefore,
they apply to any automated mechanism design algorithm, optimal or not. One of the key challenges
in deriving these general sample complexity bounds is that to do so, we must develop deep insights
into how changes to the auction parameters (the bidder weights and allocation boosts) effect the
outcome of the auction (who wins which items and how much each bidder pays) and thereby the
revenue of the auction. In our context, we show that the functions which determine the outcome of an
auction are highly complex, consisting of multi-stage optimization procedures.

Therefore, the function classes we consider are much more challenging than those commonly found
in machine learning contexts. Typically, for well-understood classes of functions used in machine
learning, such as linear separators or other smooth curves in Euclidean spaces, there is a simple
mapping from the parameters of a specific hypothesis to its prediction on a given example and a
close connection between the distance in the parameter space between two parameter vectors and the
distance in function space between their associated hypotheses. Roughly speaking, it is necessary to
understand this connection in order to determine how many significantly different hypotheses there
are over the full range of parameters. In our context, due to the inherent complexity of the classes we
consider, connecting the parameter space to the space of revenue functions requires a much more
delicate analysis. The key technical part of our work involves understanding this connection from a
learning theoretic perspective. For the more general classes in the hierarchy, we use Rademacher
complexity to derive our bounds, and for the auction classes with more combinatorial structure, we
exploit that structure to prove pseudo-dimension bounds. This work is both of practical importance
since we fill a fundamental gap in AMD, and of learning theoretical interest, as our sample complexity
analysis requires a deep understanding of the structure of the revenue function classes we consider.

Related Work. In prior research, the sample complexity of revenue maximization has been studied
primarily in the single-item or the more general single-dimensional settings [Elkind, 2007, Cole and
Roughgarden, 2014, Huang et al., 2015, Medina and Mohri, 2014, Morgenstern and Roughgarden,
2015, Roughgarden and Schrijvers, 2016, Devanur et al., 2016], as well as some multi-dimensional
settings which are reducible to the single-bidder setting [Morgenstern and Roughgarden, 2016]. In
contrast, the combinatorial settings that we study are much more complex since the revenue functions
consist of multi-stage optimization procedures that cannot be reduced to a single-bidder setting. The
complexity intrinsic to the multi-item setting is explored in [Dughmi et al., 2014], who show that
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for a single unit-demand bidder, when the bidder’s values for the items may be correlated, Ω(2m)
samples are required to determine a constant-factor approximation to the optimal auction.

Learning theory tools such as pseudo-dimension and Rademacher complexity were used to prove
strong guarantees in [Medina and Mohri, 2014, Morgenstern and Roughgarden, 2015, 2016], which
analyze piecewise linear revenue functions and show that few samples are needed to learn over the
revenue function classes in question. In a similar direction, bounds on the sample complexity of
welfare-optimal item pricings have been developed [Feldman et al., 2015, Hsu et al., 2016]. Earlier
work of Balcan et al. [2008] addressed sample complexity results for revenue maximization in
unrestricted supply settings. In that context, the revenue function decomposes additively among
bidders and does not apply to our combinatorial setting.

Despite the inherent complexity of designing high-revenue CAs, Morgenstern and Roughgarden
use linear separability as a tool to prove that certain simple classes of multi-parameter auctions
have small sample complexity. The auctions they study are sequential auctions with item and grand
bundle pricings, as well as second-price item auctions with item reserve prices [Morgenstern and
Roughgarden, 2016]. In the item pricing auctions, the bidders show up one at a time and the
seller offers each item that remains at some price. Each buyer then chooses the subset of goods
that maximizes her utility. In the grand bundle pricing auctions, the bidders are each offered the
grand bundle in some fixed order, and the first bidder to have a value greater than the price buys it.
They show that bounding the sample complexity of these sequential auctions can be reduced to the
single-buyer setting.

In contrast, the auctions we study are more versatile than item pricing auctions, as they give the
mechanism designer many more degrees of freedom than the number of items. This level of
expressiveness allows the designer to increase competition between bidders, much like Myerson’s
optimal auction, and thus boost revenue. It is easy to construct examples where even simple
AMAs achieve significantly greater revenue than sequential auctions with item and grand bundle
prices. Moreover, even the simpler auction classes we consider pose a unique challenge because the
parameters defining the auctions influence the multi-stage allocation procedure and resulting revenue
in non-intuitive ways. This is unlike item and grand bundle pricing auctions, as well as second-price
item auctions, which are simple by design. Our function classes therefore require us to understand
the specific form of the weighted VCG payment rule and its interaction with the parameter space.
Thus, our context and techniques diverge from those in [Morgenstern and Roughgarden, 2016].

Finally, there is a wealth of work on characterizing the optimal CA for restricted settings and designing
mechanisms which achieve high, if not optimal revenue in specific contexts. Due to space constraints,
in Section A of the supplementary materials, we describe these results as well as what is known
theoretically about the classes in the hierarchy of deterministic CAs we study.

2 Preliminaries, notation, and the combinatorial auction hierarchy

In the following section, we explain the basic mechanism design problem, fix notation, and then
describe the hierarchy of combinatorial auction families we study.

Mechanism Design Preliminaries. We consider the problem of selling m heterogeneous goods to
n bidders. This means that there are 2m different bundles of goods, B = {b1, . . . , b2m}. Each bidder
i ∈ [n] is associated with a set-wise valuation function over the bundles, vi : B → R. We assume
that the bidders’ valuations are drawn from a distribution D.

Every auction is defined by an allocation function and a payment function. The allocation function
determines which bidders receive which items based on their bids and the payment function determines
how much the bidders need to pay based on their bids and the allocation. It is up to the mechanism
designer to determine which allocation and payment functions should be used. In our context, the
two functions are fixed based on the samples from D before the bidders submit their bids.

Each auction family that we consider has a design based on the classic Vickrey-Clarke-Groves
mechanism (VCG). The VCG mechanism, which we describe below, is the canonical strategy-proof
mechanism, which means that every bidder’s dominant strategy is to bid truthfully. In other words,
for every Bidder i, no matter the bids made by the other bidders, Bidder i maximizes her expected
utility (her value for her allocation minus the price she pays) by bidding her true value. Therefore, we
describe the VCG mechanism assuming that the bids equal the bidders’ true valuations.
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The VCG mechanism allocates the items such that the social welfare of the bidders, that is, the
sum of each bidder’s value for the items she wins, is maximized. Intuitively, each winning bid-
der then pays her bid minus a “rebate” equal to the increase in welfare attributable to Bidder i’s
presence in the auction. This form of the payment function is crucial to ensuring that the auction
is strategy-proof. More concretely, the allocation of the VCG mechanism is the disjoint set of
subsets (b∗1, . . . , b

∗
n) ⊆ B that maximizes

∑
vi (b∗i ). Meanwhile, let

(
b−i1 , . . . , b−in

)
be the disjoint

set of subsets that maximizes
∑
j 6=i vj

(
b−ij
)
. Then Bidder i must pay

∑
j 6=i
[
vj
(
b−ij
)
− vj

(
b∗j
)]

=

vi (b∗i ) −
[∑

vj
(
b∗j
)
−
∑
j 6=i vj

(
b−ij
)]

. In the special case where there is one item for sale, the
VCG mechanism is known as the second price, or Vickrey, auction, where the highest bidder wins
the item and pays the second highest bid. We note that every auction in the classes we study is
strategy-proof, so we may assume that the bids equal the bidders’ valuations.

Notation. We study auctions with n bidders and m items. We refer to the bundle of all m items
as the grand bundle. In total, there are (n + 1)m possible allocations, which we denote as the
vectors O =

{
~o1, . . . , ~o(n+1)m

}
. Each allocation vector ~oi can be written as (oi,1, . . . , oi,n), where

oi,j = b` ∈ B denotes the bundle of items allocated to Bidder j in allocation ~oi. We use the
notation ~v1 = (v1 (b1) , . . . , v1 (b2m)) and ~v = (~v1, . . . , ~vn) to denote a vector of bidder valuation
functions. We say that revA(~v) is the revenue of an auction A on the valuation vector ~v. Denoting
the payment of any one bidder under auction A given valuation vector ~v as pi,A (~v), we have that
revA(~v) =

∑n
i=1 pi,A (~v). Finally, U is an upper bound on the revenue achievable for any auction

over the support of the bidders’ valuation distribution.

Auction Classes. We now give formal definitions of the CA families in the hierarchy we study. See
Figure 1 for the hierarchical organization of the auction classes, together with the papers which
introduced each family.

Affine maximizer auctions (AMAs). An AMA A is defined by a set of weights per
bidder (w1, . . . , wn) ⊂ R>0 and boosts per allocation

(
λ (~o1) , . . . , λ

(
~o(n+1)m

))
⊂ R.

An auction A uniquely corresponds to a set of these parameters, so we write A =(
w1, . . . , wn, λ (~o1) , . . . , λ

(
~o(n+1)m

))
. To simplify notation, we write λi = λ (~oi) interchange-

ably. These parameters allow the mechanism designer to multiplicatively boost any bidder’s bids
by their corresponding weight and to increase the likelihood that any one allocation is returned
as the output of an auction. More concretely, the allocation ~o∗ of an AMA A is the one which
maximizes the weighted social welfare, i.e. ~o∗ = argmax~oi∈O

{∑n
j=1 wjvj (oi,j) + λ (~oi)

}
. The

payment function of A has the same form as the VCG payment rule, with the parameters fac-
tored in to ensure that the auction remains strategy-proof. In particular, for all j ∈ [n], the
payments are pj,A (~v) = 1

wj

[∑
` 6=j w`v` (o−j,`) + λ (~o−j)−

∑
6̀=j w`v` (o∗` )− λ (~o∗)

]
, where

~o−j = argmax~oi∈O
{∑

` 6=j w`v` (oi,`) + λ (~oi)
}
.

We assume that Hw ≤ wi ≤ Hw, λi ≤ Hλ, and vi (b`) ≤ Hv for some Hw, Hw, Hλ, Hv ∈ R≥0.
It is typical to assume an upper bound (here, Hv) on the bidders’ valuation for any bundle. This is
related to the fact that an upper bound on a target function’s range is always assumed in standard
machine learning sample complexity bounds. Intuitively, generalizability depends on how much any
one sample can skew the empirical average of a hypothesis, or in this case, auction. The bounds on
the AMA parameters are closely related to the bound on the bidders’ valuations Hv. For example, it
is a simple exercise to see that we need not search for a lambda value which is greater than Hv.

Virtual valuation combinatorial auctions (VVCAs). VVCAs are a subset of AMAs. The defining
characteristic of a VVCA is that each λ (~oj) is split into n terms such that λ (~oj) =

∑n
i=1 λi (~oj)

where λi (~oj) = ci,b for all allocations ~oj that give Bidder i exactly bundle b ∈ B.

λ-auctions. λ-auctions are the subclass of AMAs where wi = 1 for all i ∈ [n].

Mixed bundling auctions (MBAs). The class of MBAs is parameterized by a constant c ≥ 0 which
can be seen as a discount for any bidder who receives the grand bundle. Formally, the c-MBA is the
λ-auction with λ(~o) = c if some bidder receives the grand bundle in allocation ~o and 0 otherwise.

Mixed bundling auctions with reserve prices (MBARPs). MBARPs are identical to MBAs though
with reserve prices. In a single-item VCG auction (i.e. second price auction) with a reserve price, the

4



item is only sold if the highest bidder’s bid exceeds the reserve price, and the winner must pay the
maximum of the second highest bid and the reserve price. We describe how this intuition generalizes
to MBAs in Section 3.

Generalization bounds. In order to derive sample complexity bounds which apply to any algorithm
that determines the optimal auction over the sample, a nearly optimal approximation, or any other
black-box procedure, we derive uniform convergence sample complexity bounds with respect to the
auction classes we examine. Formally, we define the sample complexity of uniform convergence over
an auction class A as follows.

Definition 1 (Sample complexity of uniform convergence over A). We say that N(ε, δ,A) is the
sample complexity of uniform convergence over A if for any ε, δ ∈ (0, 1), if S =

{
~v1, . . . , ~vN

}
is

a sample of size N ≥ N(ε, δ,A) drawn at random from D, with probability at least 1 − δ, for all

auctions A ∈ A,
∣∣∣ 1N ∑N

i=1 revA
(
~vi
)
− E~v∼D [revA(~v)]

∣∣∣ ≤ ε.
3 Sample complexity bounds over the hierarchy of auction classes

In this section, we provide an overview of our sample complexity guarantees over the hierarchy of
auction classes we consider (Section 3.1 and 3.2). We show that more structured classes require
drastically fewer samples to learn over. We conclude with a note about sample complexity guarantees
for algorithms that find an approximately optimal mechanism over a sample, as opposed to the
optimal mechanism. All omitted proofs are presented in full in the supplementary material.

3.1 The sample complexity of AMA, VVCA, and λ-auction revenue maximization

We begin by analyzing the most general families in the CA hierarchy — AMAs, VVCAs, and
λ-auctions — proving a general upper bound and class-specific lower bounds.

Theorem 1. The sample complexity of uniform convergence over the classes of n-bidder, m-item
AMAs, VVCAs, and λ-Auctions is N = Õ

([
Unm

√
m
(
U + nm/2

)
/ε
]2)

. Moreover, for λ-Auctions,

N = Ω (nm) and for VVCAs, N = Ω (2m).

We derive the upper bound by analyzing the Rademacher complexity of the class of n-bidder, m-item
AMA revenue functions. For a family of functions G and a finite sample S = {x1, . . . , xN} of size
N , the empirical Rademacher complexity is defined as R̂S(G) = Eσ[supg∈G

1
N

∑
σig(xi)], where

σ = (σ1, . . . , σN ), with σis independent uniform random variables taking values in {−1, 1}. The
Rademacher complexity of G is defined asRN (G) = ES∼DN [R̂S(G)].

The AMA revenue function, defined in Section 2, can be summarized as a multi-stage optimization
procedure: determine the weighted-optimal allocation and then compute the n different payments,
each of which requires a separate optimization procedure. Luckily, we are able to decompose the
revenue functions into small components, each of which is easier to analyze on its own, and then
combine our results to prove the following theorem about this class of revenue functions as a whole.

Theorem 2. Let F be the set of n-bidder, m-item AMA revenue functions revA such that A =(
w1, . . . , wn, λ1, . . . , λ(n+1)m

)
, Hw ≤ |wi| ≤ Hw, |λi| ≤ Hλ. Then

RN (F) = O

(
nm+2 (HwHv +Hλ)

Hw

√
m log n

N

(
nĤv (nHw +Hλ)

Hw
+
√
nm logN

))
,

where Ĥv = max {Hv, 1}.

Proof sketch. First, we describe how we split each revenue function into smaller, easier to analyze
atoms, which together allow us to bound the Rademacher complexity of the class of AMA revenue
functions. To this end, it is well-known (e.g. [Mohri et al., 2012]) that if every function f in a class
F can be written as the summation of two functions g and h from classes G andH, respectively, then
RN (F) ≤ RN (G) +RN (H). Therefore, we split each revenue function into n + 1 components
such that the sum of these components equals the revenue function.
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Affine maximizer auctions [Roberts, 1979]

∪∪
Virtual valuation CAs [Likhodedov and Sandholm, 2004] λ-auctions [Jehiel et al., 2007]

Mixed bundling auctions with reserve prices [Tang and Sandholm, 2012]
∪∪

Mixed bundling auctions [Jehiel et al., 2007]
∪

Figure 1: The hierarchy of deterministic CA families. Generality increases upward in the hierarchy.

With this objective in mind, let ~o∗A(~v) be the outcome of the AMA A on the bidding instance ~v,

i.e. ~o∗A = argmax~oi∈O
{∑n

j=1 wjvj (oi,j) + λi

}
and let φA,−j(~v) be the weighted social welfare

of the welfare-maximizing outcome without Bidder j’s participation. In other words, φA,−j(~v) =

max~oi∈O

{∑
` 6=j w`v` (oi,`) + λi

}
. Then we can write

revA(~v) =

n∑
j=1

1

wj
φA,−j(~v)−

(n+1)m∑
i=1

 n∑
j=1

1

wj

∑
` 6=j

w`v`(oi,`) + λi

 1~oi=~o∗A(~v).

We can now split revA into n+ 1 simpler functions: revA,j(~v) = 1
wj
φA,−j(~v) for j ∈ [n] and

revA,n+1(~v) = −
(n+1)m∑
i=1

 n∑
j=1

1

wj

∑
6̀=j

w`v` (oi,`) + λi

 1~oi=~o∗A(~v),

so revA(~v) =
∑n+1
j=1 revA,j(~v). Intuitively, for j ∈ [n], revA,j is a weighted version of what the

social welfare would be if Bidder j had not participated in the auction, whereas revA,n+1(~v) measures
the amount of revenue subtracted to ensure that the resulting auction is strategy-proof.

As to be expected, bounding the Rademacher complexity of each smaller class of functions Lj ={
revA,j |

(
w1, . . . , wn, λ1, . . . , λ(n+1)m

)
, Hw ≤ |wi| ≤ Hw, |λi| ≤ Hλ

}
for j ∈ [n+1] is simpler

than bounding the Rademacher complexity the class of revenue functions itself, and if F is the set
of all n-bidder, m-item AMA revenue functions, thenRN (F) ≤

∑n+1
j=1 RN (Lj). In Lemma 2 and

Lemma 3 of Section B.1 in the supplementary materials, we obtain bounds onRN (Lj) for j ∈ [n+1]
which lead us to our bound onRN (F).

3.2 The sample complexity of MBA revenue maximization

Fortunately, these negative sample complexity results are not the end of the story. We do achieve
polynomial sample complexity upper bounds for the important classes of mixed bundling auctions
(MBAs) and mixed bundling auctions with reserve prices (MBARPs). We derive these sample
complexity bounds by analyzing the pseudo-dimensions of these classes of auctions. In this section,
we present our results in increasing complexity, beginning with the class of n-bidder, m-item MBAs,
which we show has a pseudo-dimension of 2. We build on the proof of this result to show that the
class of n-bidder, m-item MBARPs has a pseudo-dimension of O

(
m3 log n

)
.

We note that when we analyze the class of MBARPs, we assume additive reserve prices, rather than
bundle reserve prices. In other words, each item has its own reserve price, and the reserve price of a
bundle is the sum of its components’ reserve prices, as opposed to each bundle having its own reserve
price. We have good reason to make this restriction; in Section C.1, we prove that an exponential
number of samples are required to learn over the class of MBARPs with bundle reserve prices.

Before we prove our sample complexity results, we fix some notation. For any c-MBA, let revc (~v)
be its revenue on ~v, which is determined in the exact same way as the general AMA revenue function
with the λ terms set as described in Section 2. Similarly, let rev~v`(c) be the revenue of the c-MBA
on ~v` as a function of c. We will use the following result regarding the structure of revc (~v) in order
to derive our pseudo-dimension results. The proof is in Section C of the supplementary materials.
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Figure 2: Example of rev~v`(c).

Lemma 1. There exists c∗ ∈ [0,∞) such that rev~v(c) is non-decreasing on the interval [0, c∗] and
non-increasing on the interval (c∗,∞).

The form of rev~v(c) as described in Lemma 1 is depicted in Figure 2. The full proof of the following
pseudo-dimension bound can be found in Section C of the supplementary materials.
Theorem 3. The pseudo-dimension of the class of n-bidder, m-item MBAs is 2.

Proof sketch. First, we recall what we must show in order to prove that the pseudo-dimension of this
class is 2 (for more on pseudo-dimension, see, for example, [Mohri et al., 2012]). The proof structure
is similar to those involved in VC dimension derivations. To begin with, we must provide a set of
two valuation vectors S =

{
~v1, ~v2

}
that can be shattered by the class of MBA revenue functions.

This means that there exist two targets z1, z2 ∈ R with the property that for any T ⊆ S , there exists
a cT ∈ C such that if ~vi ∈ T , then revcT

(
~vi
)
≤ zi and if ~vi 6∈ T , then revcT

(
~vi
)
> zi. In other

words, S can be labeled in every possible way by MBA revenue functions (whether or not revc
(
~vj
)

is greater than its target zj). We must also prove that no set of three valuation vectors is shatterable.

Our construction of the set S =
{
~v1, ~v2

}
that can be shattered by the set of MBAs can be found in

the full proof of this theorem in Section C of the supplementary materials. We now show that no set
of size N ≥ 3 can be shattered by the class of MBAs. Fix one sample ~vi ∈ S and consider rev~vi(c).
From Lemma 1, we know that there exists c∗i ∈ [0,∞), such that rev~vi(c) is non-decreasing on
the interval [0, c∗i ] and non-increasing on the interval (c∗i ,∞). Therefore, there exist two thresholds
t1i ∈ [0, c∗i ] and t2i ∈ (c∗i ,∞) ∪ {∞} such that rev~vi(c) is below its threshold for c ∈ [0, t1i ), above
its threshold for c ∈ (t1i , t

2
i ), and below its threshold for c ∈ (t2i ,∞). Now, merge these thresholds

for all N samples on the real line and consider the interval (t1, t2) between two adjacent thresholds.
The binary labeling of the samples in S on this interval is fixed. In other words, for any sample
~vj ∈ S, rev~vj (c) is either at least zj or strictly less than zj for all c ∈ (t1, t2). There are at most
2N + 1 intervals between adjacent thresholds, so at most 2N + 1 different binary labelings of S.
Since we assumed S is shatterable, it must be that 2N ≤ 2N + 1, so N ≤ 2.

This result allows us to prove the following sample complexity guarantee.
Theorem 4. The sample complexity of uniform convergence over the class of n-bidder, m-item MBAs
is N = O

(
(U/ε)

2
(log(U/ε) + log(1/δ))

)
.

Mixed bundling auctions with reserve prices (MBARPs). MBARPs are a variation on MBAs,
with the addition of reserve prices. Reserve prices in the single-item case, as described in Section 2,
can be generalized to the multi-item case as follows. We enlarge the set of agents to include the seller,
who is now Bidder 0 and whose valuation for a set of items is the set’s reserve price. Working in this
expanded set of agents, the bidder weights are all 1 and the λ terms are the same as in the standard
MBA setup. Importantly, the seller makes no payments, no matter her allocation. More formally, given
a vector of valuation functions ~v, the MBARP allocation is ~o∗ = argmax~o∈O

∑n
i=0 vi (oi) + λ (~o) .

For each i ∈ {1, . . . , n}, Bidder i’s payment is

pA,i(~v) =
∑

j∈{0,...,n}\{i}

vj (o−i,j) + λ (~o−i)−
∑

j∈{0,...,n}\{i}

vj
(
o∗j
)
− λ (~o∗) ,

where
~o−i = argmax

~o∈O

∑
j∈{0,...,n}\{i}

vj (oj) + λ (~o) .
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As mentioned, we restrict our attention to item-specific reserve prices. In this case, the the reserve
price of a bundle is the sum of the reserve prices of the items in the bundle.

Each MBARP is therefore parameterized by m + 1 values (c, r1, . . . , rm), where ri
is the reserve price for the ith good. For a fixed valuation function vector ~v =
(v1 (b1) , . . . , v1 (b2m) , . . . , vn (b1) , . . . , vn (b2m)), we can analyze the MBARP revenue function
on ~v as a mapping rev~v : Rm+1 → R, where rev~v (c, r1, . . . , rm) is the revenue of the MBARP
parameterized by (c, r1, . . . , rm) on ~v.
Theorem 5. The psuedo-dimension of the class of n-bidder, m-item MBARPs with item-specific
reserve prices is O

(
m3 log n

)
.

Proof sketch. Let S =
{
~v1, . . . , ~vN

}
of size N be a set of n-bidder valuation function samples that

can be shattered by a set C of 2N MBARPs. This means that there exist N targets z1, . . . , zN such
that each MBARP in C induces a binary labeling of the samples ~vj in S (whether the revenue of the
MBARP on ~vj is greater than or less than zj). Since S is shatterable, we can thus label S in every
possible way using MBARPs in C.

This proof is similar to the proof of Theorem 3, where we split the real line into a set of intervals
I such that for any I ∈ I, the binary labeling of S by the c-MBA revenue function was fixed for
all c ∈ I . In the case of MBARPs, however, the domain is Rm+1, so we cannot split the domain
into intervals in the same way. Instead, we show that we can split the domain into cells such that
the binary labeling of S by the MBARP revenue function is a fixed linear function as we range over
parameters in a single cell. In this way, we show that N = O

(
m3 log n

)
.

This is enough to prove the following guarantee.
Theorem 6. The sample complexity of uniform convergence over the class of n-bidder, m-item
MBARPs with item-specific reserve prices is N = O

(
(U/ε)

2 (
m3 log n log (U/ε) + log (1/δ)

))
.

3.3 Sample complexity bounds for approximation algorithms

It may not always be computationally feasible to solve for the best auction over S for the given
auction family. Rather, we may only be able to determine an auction A that has average revenue
over S that is within a (1 + α) multiplicative factor of the revenue-maximizing auction over S
within the family. Nonetheless, in Theorem 11 of the supplementary materials, we prove that with
slightly more samples, we can ensure that the expected revenue of A is close to being with a (1 + α)
multiplicative factor of the expected revenue of the optimal auction within the family with respect to
the real distribution D. We prove a similar bound for an additive factor approximation as well.

4 Conclusion

In this paper, we proved strong bounds on the sample complexity of uniform convergence for the
well-studied and standard auction families that constitute the hierarchy of deterministic combinatorial
auctions. We thereby answered a crucial question in the study of (automated) mechanism design:
how to relate the performance of the mechanisms in the search space over the input samples to
their expectation over the underlying—unknown—distribution. Specifically, for a fixed class of
auctions, we determine the sample complexity necessary to ensure that with high probability, for
any auction in that class, the average revenue over the sample is close to the expected revenue with
respect to the underlying, unknown distribution over bidders’ valuations. Our bounds apply to any
algorithm that finds an optimal or approximately optimal auction over an input sample, and therefore
to any automated mechanism design algorithm. Moreover, our results and analyses are of interest
from a learning theoretic perspective because the function classes which make up the hierarchy of
deterministic combinatorial auctions diverge significantly from well-understood hypothesis classes
typically found in machine learning.
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