
Action Translation in Extensive-Form Games with Large Action Spaces:
Axioms, Paradoxes, and the Pseudo-Harmonic Mapping∗

Sam Ganzfried and Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
{sganzfri, sandholm}@cs.cmu.edu

Abstract
When solving extensive-form games with large
action spaces, typically significant abstraction is
needed to make the problem manageable from a
modeling or computational perspective. When this
occurs, a procedure is needed to interpret actions of
the opponent that fall outside of our abstraction (by
mapping them to actions in our abstraction). This is
called an action translation mapping. Prior action
translation mappings have been based on heuris-
tics without theoretical justification. We show that
the prior mappings are highly exploitable and that
most of them violate certain natural desiderata. We
present a new mapping that satisfies these desider-
ata and has significantly lower exploitability than
the prior mappings. Furthermore, we observe that
the cost of this worst-case performance benefit (low
exploitability) is not high in practice; our map-
ping performs competitively with the prior map-
pings against no-limit Texas Hold’em agents sub-
mitted to the 2012 Annual Computer Poker Com-
petition. We also observe several paradoxes that
can arise when performing action abstraction and
translation; for example, we show that it is possi-
ble to improve performance by including subopti-
mal actions in our abstraction and excluding opti-
mal actions.

1 Introduction
Abstraction has emerged as a necessary component in solv-
ing large games. There are several reasons abstraction may be
necessary. First, the model that one creates of the real world
or of a complex artificial system is typically an abstraction.
Game-theoretic modeling of security games and trading agent
competitions are examples of this [Wellman, 2006]. Second,
the model may be too computationally complex to solve, and
thus needs to be abstracted further. For example, this is the
typical way the top programs approach Texas Hold’em poker.
Third, the solver that is used to find the game-theoretic strate-
gies in the model may assume a certain kind of game, and

∗This material is based upon work supported by the National Sci-
ence Foundation under grants IIS-0964579 and CCF-1101668. We
also acknowledge Intel Corporation and IBM for their machine gifts.

the model may not fall within that class without further ab-
straction. For example, the solver may assume that there is
a countable or finite number of actions. Fourth, in certain
kinds of game models a game-theoretic equilibrium might not
even exist, and to be guaranteed existence, one may want to
abstract the model further. For example, this has been dis-
cussed in the context of computational billiards [Archibald
and Shoham, 2009].

In many domains, significant abstraction is necessary in or-
der to produce software agents. For example, the variant of
no-limit Texas Hold’em currently used in the Annual Com-
puter Poker Competition has approximately 10165 states in
its game tree [Johanson, 2013], while the best approximate
equilibrium-finding algorithms “only” scale to games with
about 1012 states [Hoda et al., 2010; Zinkevich et al., 2007].
In general, extensive-form games can have enormous strategy
spaces for two primary reasons: the game tree has many in-
formation sets (i.e., game states where players must choose
an action), or players have many actions available at each
information set (e.g., when actions correspond to real num-
bers from some large set). There are two kinds of abstrac-
tion to deal with these two sources of complexity: informa-
tion abstraction and action abstraction [Billings et al., 2003;
Gilpin and Sandholm, 2006; Sandholm, 2010]. In informa-
tion abstraction, one groups information sets of a player to-
gether in order to reduce the total number of information sets.
(Essentially this forces the player to play the game the same
way in two different states of knowledge.) In action abstrac-
tion, one reduces the size of the action space. The typical
approach for performing action abstraction is to discretize
an action space into a smaller number of allowable actions;
for example, instead of allowing agents to bid any integral
amount between $1 and $1000, perhaps we limit the actions
to only multiples of $10 or $100. This approach applies to
almost any game where action sizing is an issue, such as bet
sizing in poker, bid sizing in auctions, offer sizing in nego-
tiations, allocating different quantities of attack resources or
defense resources in security games, and so on.

One issue that can arise when performing action abstrac-
tion is that the opponent might take an action that we have
removed from the model. For example, we may have lim-
ited bids to multiples of $100, but the opponent makes a bid
of $215. We need an intelligent way of interpreting and re-
sponding to such actions which are not in our abstraction. The

standard approach for doing this is to apply an action transla-
tion mapping (aka reverse mapping [Gilpin et al., 2008], state
translation [Schnizlein et al., 2009]), which maps the ob-
served action a of the opponent to an action a′ in the abstrac-
tion; then we simply respond as if the opponent had played a′
instead of a.A natural action translation mapping would be to
map the observed action to the closest action in our abstrac-
tion (according to a natural distance metric); in the example
just described, this mapping would map the bid of $215 to
$200. However, this is just one possible mapping, and signif-
icantly more sophisticated ones are possible.

Several prior action translation mappings have been pro-
posed for the domain of no-limit Texas Hold’em [Anders-
son, 2006; Gilpin et al., 2008; Rubin and Watson, 2012;
Schnizlein et al., 2009]. However, these have all been
based on heuristics and lack any theoretical justification. We
show that most of the prior approaches violate certain natu-
ral desiderata and that all of them are highly exploitable in
simplified games. (Exploitability in such simplified games is
a standard evaluation technique since it cannot be computed
in the large.) We present a new mapping, called the pseudo-
harmonic mapping, that satisfies these desiderata and has sig-
nificantly lower exploitability than the prior mappings. Thus,
we expect our mapping to perform much better than the prior
ones against sophisticated adaptive opponents who are specif-
ically trying to exploit our mapping. (For one, any strong hu-
man poker player would try this against a computer program.)
Furthermore, we observe that the cost of this worst-case per-
formance benefit (low exploitability) is not high in practice;
our mapping performs competitively with the prior mappings
against no-limit Texas Hold’em agents submitted to the 2012
Annual Computer Poker Competition.

2 Action Translation

Suppose the set of allowable actions at a given information
set is some subset of the real interval S = [T , T]. (In no-
limit poker, T will be zero and T will be the stack size of the
player to act.) An action abstraction at this information set
will correspond to a finite increasing sequence (A0, . . . , Ak)
with T ≤ A0 and Ak ≤ T . (In our experiments we will set
A0 = T and Ak = T ; that is, the interval boundaries will be
in our abstraction. In abstractions where that is not the case,
actions that fall outside of [A0, Ak] can simply be mapped to
A0 or Ak.)

Now suppose the opponent takes some action x ∈ S. Let
A = max{Ai : Ai ≤ x}, and let B = min{Ai : Ai ≥ x}.
Then x ∈ [A,B], where T ≤ A ≤ B ≤ T . The action
translation problem is to determine whether we should map
x to A or to B (perhaps probabilistically). Thus, our goal is
to construct a function fA,B(x), which denotes the probabil-
ity that we map x to A (1 − fA,B(x) denotes the probability
that we map x to B). This is our action translation mapping.
Ideally we would like to find the mapping that produces the
lowest exploitability when paired with a given action abstrac-
tion and equilibrium-finding algorithm. We call the value x∗
for which fA,B(x∗) = 1

2 the median of f (if it exists).

3 No-Limit Poker
We will evaluate different action translation mappings empir-
ically in several variants of two-player no-limit poker. In all
variants, both players sit down at a table with a stack of chips
worth some monetary amount. For example, suppose each
player has 400 chips worth $1 each. At each hand, the play-
ers must put some number of chips initially into a pot in the
middle of the table. In some variants, both players put in an
ante of the same amount—e.g., $1 each. In other variants,
players put in different amounts; e.g., the small blind puts in
$1 and the big blind puts in $2. After these initial investments
have been made, both players are dealt some number of pri-
vate cards (that only they can see) at random from a deck.

Next, there is an initial round of betting. The player whose
turn it is to act can choose from three available options:
• Fold: Give up on the hand, surrendering the pot to the

opponent.
• Call: Put in the minimum number of chips needed to

match the number of chips put into the pot by the oppo-
nent. For example, if the opponent has put in $5 and we
have put in $2, a call would require putting in $3 more.
A call of zero chips is also known as a check.
• Bet: Put in additional chips beyond what is needed to

call. A bet can be of any size up to the number of chips
a player has in his stack (provided it exceeds some mini-
mum size). A bet of all of one’s remaining chips is called
an all-in bet. If the opponent has just bet, then our ad-
ditional bet is also called a raise. In some variants, the
number of raises in a given round is limited, and players
are forced to either fold or call beyond that limit.

The initial round of betting ends if a player has folded, if
there has been a bet and a call, or if both players have called or
checked. Depending on the variant, there may be public cards
revealed face-up on the table and additional rounds of betting
(with the same rules, except potentially with a different player
going first). If a player ever folds, the other player wins all
the chips in the pot. If the final betting round is completed
without a player folding, then both players reveal their private
cards, and the player with the best hand wins the pot (it is
divided equally if there is a tie).

3.1 Clairvoyance Game
In the clairvoyance game [Ankenman and Chen, 2006],
player P2 is given no private cards, and P1 is given a sin-
gle card drawn from a distribution that is half winning hands
and half losing hands. Both players have stacks of size n, and
they both ante $0.50 (so the initial size of the pot is $1). P1 is
allowed to bet any amount x ∈ [0, n]. Then P2 is allowed to
call or fold (but not raise).

3.2 Kuhn Poker
No-limit Kuhn poker is similar to the clairvoyance game,
except that both players are dealt a single private card
from a three-card deck containing a King, Queen, and a
Jack [Ankenman and Chen, 2006; Kuhn, 1950].1 For Kuhn

1In limit Kuhn poker, player 2 is allowed to bet following a check
of player 1; this is not allowed in no-limit Kuhn poker.

poker and the clairvoyance game, we restrict all bets to be
multiples of $0.10.

3.3 Leduc Hold’em
In Leduc Hold’em, both players are dealt a single card from
a 6-card deck with two Kings, two Queens, and two Jacks.
Both players start with $12 in their stack, and ante $1 [Waugh
et al., 2009; Schnizlein et al., 2009]. There is initially a round
of betting, then one community card is dealt and there is a
second round of betting. Any number of bets and raises is
allowed (up to the number of chips remaining in one’s stack).

3.4 Texas Hold’em
In Texas Hold’em, both players are dealt two private cards
from a 52-card deck. Using the parameters of the Annual
Computer Poker Competition, both players have initial stacks
of size 20,000, with a small blind of 50 and big blind of 100.
The game has four betting rounds. The first round takes place
before any public information has been revealed. Then three
public cards are dealt, and there is a second betting round.
One more public card is then dealt before each of the two
remaining betting rounds.

4 Action Translation Desiderata
Before presenting an analysis of action translation mappings
for the domain of poker, we first introduce a set of natu-
ral domain-independent properties that any reasonable action
translation mapping should satisfy.

1. Boundary Constraints. If the opponent takes an action
that is actually in our abstraction, then it is natural to
map his action to the corresponding action with proba-
bility 1. Hence we require that f(A) = 1 and f(B) = 0.

2. Monotonicity. As the opponent’s action moves away
from A towards B, it is natural to require that the proba-
bility of his action being mapped to A does not increase.
Thus we require that f be non-increasing.

3. Scale Invariance. This condition requires that scaling
A, B, and x by some multiplicative factor k > 0 does
not affect the mapping. In poker for example, it is com-
mon to scale all bet sizes by the size of the big blind or
the size of the pot. Formally, we require

∀k > 0, x ∈ [A,B], fkA,kB(kx) = fA,B(x).

4. Action Robustness. We want f to be robust to small
changes in x. If f changes abruptly at some x∗, then
the opponent could potentially significantly exploit us
by betting slightly above or below x∗. Thus, we require
that fA,B is continuous in x, and preferably Lipschitz
continuous as well.2

5. Boundary Robustness. We also want f to be robust to
small changes in A and B. If a tiny change in A (say
from A1 to A2) caused fA,B(x) to change dramatically,
then it would mean that f was incorrectly interpreting a

2A function f : X → Y is Lipschitz continuous if there
exists a real constant K ≥ 0 such that, for all x1, x2 ∈ X,
dY (f(x1), f(x2)) ≤ KdX(x1, x2).

bet of size x for either A = A1 or A = A2, and could be
exploited if the boundary happened to be chosen poorly.
Thus, we require that f be continuous and ideally Lips-
chitz continuous in A and B.

5 Prior Mappings
Several action translation mappings have been proposed in
the literature for no-limit Texas Hold’em [Andersson, 2006;
Gilpin et al., 2008; Rubin and Watson, 2012; Schnizlein et
al., 2009]. In this section we describe them briefly. In later
sections, we will analyze the mappings in more detail, both
empirically and theoretically. For all the mappings, we as-
sume that the pot initially has size 1 and that all values have
been scaled accordingly.

5.1 Deterministic Arithmetic
The deterministic arithmetic mapping is the simple mapping
described in the introduction. If x < A+B

2 , then x is mapped
to A; otherwise x is mapped to B. In poker, this mapping
can be highly exploitable. For example, suppose A is a pot-
sized bet (e.g., of 1) and B is an all-in (e.g., of 100). Then
the opponent could significantly exploit us by betting slightly
less than A+B

2 with his strong hands. Since we will map his
bet to A, we will end up calling much more often than we
should with weaker hands. For example, suppose our strategy
calls a pot-sized bet of 1 with probability 1

2 with a medium-
strength hand. If the opponent bets 1 with a very strong hand,
his expected payoff will be 1 · 12 + 2 · 12 = 1.5. However, if
instead he bets 50, then his expected payoff will be 1 · 12 +

51 · 12 = 26. In fact, this phenomenon was observed in the
2007 Annual Poker Competition when the agent Tartanian1
used this mapping [Gilpin et al., 2008].

5.2 Randomized Arithmetic
This mapping improves upon the deterministic mapping by
incorporating randomness [Andersson, 2006; Gilpin et al.,
2008]:

fA,B(x) =
B − x
B −A

Now a bet at x∗ = A+B
2 is mapped to both A and B with

probability 1
2 . While certainly an improvement, it turns out

that this mapping is still highly exploitable for similar rea-
sons. For example, suppose the opponent bets 50.5 in the
situation described above, and suppose that we will call an
all-in bet with probability 1

101 . Then his expected payoff will
be
1

2
(1 · 1

2
+ 51.5 · 1

2
) +

1

2
(1 · 100

101
+ 51.5 · 1

101
) = 13.875.

This mapping was used by the agent AggroBot [Andersson,
2006].

5.3 Deterministic Geometric
In contrast to the arithmetic approaches, which consider
differences from the endpoints, the deterministic geometric
mapping uses a threshold x∗ at the point where the ratios of
x∗ to A and B to x∗ are the same [Gilpin et al., 2008]. In
particular, if A

x > x
B then x is mapped to A; otherwise x

is mapped to B. Thus, the threshold will be x∗ =
√
AB

rather than A+B
2 . This will diminish the effectiveness of the

exploitation described above; namely to make a large value
bet just below the threshold. This mapping was used by the
agent Tartanian2 in the 2008 Annual Computer Poker Com-
petition [Gilpin et al., 2008].

5.4 Randomized Geometric 1
Two different randomized geometric approaches have also
been used by strong poker agents. Both behave similarly
and satisfy fA,B(

√
AB) = 1

2 . The first has been used by at
least two strong agents in the competition, Sartre and Hyper-
borean [Rubin and Watson, 2012; Schnizlein et al., 2009]:

gA,B(x) =
A
x −

A
B

1− A
B

hA,B(x) =
x
B −

A
B

1− A
B

fA,B(x) =
gA,B(x)

gA,B(x) + hA,B(x)
=

A(B − x)
A(B − x) + x(x−A)

5.5 Randomized Geometric 2
The second one was used by another strong agent, Tartanian4,
in the 2010 competition:

fA,B(x) =
A(B + x)(B − x)
(B −A)(x2 +AB)

6 Our New Mapping
The prior mappings have all been based on heuristics with-
out theoretical justification. We propose a new mapping that
is game-theoretically motivated as the generalization of the
solution to a simplified game—specifically, the clairvoyance
game described in Section 3.1. The clairvoyance game is
small enough that its solution can be computed analytically
(a derivation is given in Appendix A):
• P1 bets n with probability 1 with a winning hand.
• P1 bets n with probability n

1+n with a losing hand (and
checks otherwise).
• For all x ∈ [0, n], P2 calls a bet of size xwith probability

1
1+x .

In fact, these betting and calling frequencies have been shown
to be optimal in many other poker variants as well [Anken-
man and Chen, 2006].

Using this as motivation, our new action translation map-
ping will be the solution to

fA,B(x) ·
1

1 +A
+ (1− fA,B(x)) ·

1

1 +B
=

1

1 + x
.

Specifically, our mapping is

fA,B(x) =
(B − x)(1 +A)

(B −A)(1 + x)
.

This is the only mapping consistent with player 2 calling a
bet of size x with probability 1

1+x for all x ∈ [A,B].
This mapping is not as susceptible to the exploitations pre-

viously described. The median of f is

x∗ =
A+B + 2AB

A+B + 2
.

As for the arithmetic and geometric mappings, we define
both deterministic and randomized versions of our new map-
ping. The randomized mapping plays according to f as de-
scribed above, while the deterministic mapping plays deter-
ministically using the threshold x∗.

If we assumed that a player would call a bet of size x with
probability 1

x instead of 1
1+x , then the median would be the

harmonic mean of the boundariesA andB: 2AB
A+B . Because of

this resemblance,3 we will call our new mapping the pseudo-
harmonic mapping. We will abbreviate the deterministic and
randomized versions of the mapping as Det-psHar and Rand-
psHar.

7 Graphical examples
In Figure 1 we plot all four randomized mappings using
A = 0.01 and B = 1. As the figure shows, both of the ran-
domized geometric mappings have a median of 0.1 pot, while
the median of the arithmetic mapping is around 0.5 pot and
the median of the pseudo-harmonic mapping is around 0.34
pot. In this case, the mappings differ significantly.

In Figure 2, we plot the mappings using A = 1 and B = 4.
In this case the pseudo-harmonic mapping is relatively simi-
lar to the geometric mappings, while the arithmetic mapping
differs significantly from the others.

8 Theoretical Analysis
Before we present an axiomatic analysis of the mappings, we
first note that A = 0 is somewhat of a degenerate special
case. In particular, the geometric mappings are the constant
function f = 0 for A = 0, and they behave much differently
than they do for A > 0 (even for A arbitrarily small). So
we will analyze these mappings separately for the A = 0
and A > 0 cases. In many applications it is natural to have
A = 0; for example, for the interval between a check and a
pot-sized bet in poker, we will have A = 0 and B = 1. So
the degenerate behavior of the geometric mappings forA = 0
can actually be a significant problem in practice.4

All of the mappings satisfy the Boundary Conditions for
A > 0, while the geometric mappings violate them for A =
0, since they map A to 0 instead of 1. All of the mappings
satisfy (weak) Monotonicity (though the deterministic ones
violate strict Monotonicity, as do the geometric ones for A =
0). All mappings satisfy Scale Invariance.

It is easy to see that the deterministic mappings violate
Action Robustness, as they are clearly discontinuous at the
threshold (this is true for any deterministic mapping). The
randomized mappings satisfy Action Robustness, as their
derivatives are bounded. The deterministic mappings all vi-
olate Boundary Robustness as well, since increasing A from

3We call our mapping pseudo-harmonic because it is actually
quite different from the one based on the harmonic series. For ex-
ample, for A = 0 and B = 1 the median of the new mapping is 1

3
,

while the harmonic mean is 0.
4Some poker agents never map a bet to 0, and map small bets

to the smallest positive betting size in the abstraction (e.g., 1
2

pot).
This approach could be significantly exploited by an opponent who
makes extremely small bets as bluffs, and is not desirable.

Figure 1: Randomized mappings with A = 0.01, B = 1. Figure 2: Randomized mappings with A = 1, B = 4.

A1 to A2 will cause f(x) to change abruptly from 0 to 1 for
some values of x near the threshold. It is natural to use the
L∞ norm to define distances between mappings, since a map-
ping could be exploited if it behaves poorly on just a single
action. Formally,

d(fA1,B1
, fA2,B2

) = max
x∈S
|fA1,B1

(x)− fA2,B2
(x)|,

where S = [A1, B1] ∩ [A2, B2] is nonempty. Using this defi-
nition, Rand-Arith and Rand-psHar are Lipschitz continuous
in both A and B (even for A = 0), while Rand-Geo-1 and
Rand-Geo-2 are discontinuous in A for A = 0, and Lips-
chitz discontinuous in A for A > 0. We present proofs for
Rand-psHar and Rand-Geo-2 in Appendix B (the proofs of
the results for Rand-Geo-1 are analogous to the proofs for
Rand-Geo-2).

Proposition 1. Rand-psHar is Lipschitz continuous in A.

Proposition 2. For anyB > 0, Rand-Geo-1 and Rand-Geo-2
are not continuous in A, where A has domain [0, B).

Proposition 3. For any B > 0, Rand-Geo-1 and Rand-Geo-
2 are not Lipschitz continuous in A, where A has domain
(0, B).

To give some intuition for why Boundary Robustness is im-
portant, we examine the effect of increasingA gradually from
0 to 0.1, while holding B = 1 and x = 0.25 fixed. Table 1
shows the value of fA,B(x) for several values of A, for each
of the randomized mappings. For the two mappings that sat-
isfy Boundary Robustness—Rand-Arith and Rand-psHar—
the values increase gradually as A is increased: Rand-Arith
increases from 0.75 at A = 0 to 0.833 at A = 0.1, while
Rand-psHar increases from 0.6 to 0.733. The two geometric
mappings increase much more sharply, from 0 to 0.667 and
0.641 respectively. In practice, we may not know the opti-
mal values to use in our abstraction ex ante, and may end up
selecting them somewhat arbitrarily. If we end up making a
choice that is not quite optimal (for example, 0.01 instead of
0.05), we would like it to not have too much of an effect. For
non-robust mappings, the effect of making poor decisions in
these situations could be much more severe than desired.

9 Comparing Exploitability
The exploitability of a strategy is the difference between
the value of the game and worst-case performance against a

A
0 0.001 0.01 0.05 0.1

Rand-Arith 0.75 0.751 0.758 0.789 0.833
Rand-Geo-1 0 0.012 0.111 0.429 0.667
Rand-Geo-2 0 0.015 0.131 0.439 0.641
Rand-psHar 0.6 0.601 0.612 0.663 0.733

Table 1: Effect of increasing A while holding B = 1 and
x = 0.25 fixed.

nemesis. In particular, Nash equilibrium strategies are pre-
cisely those that have zero exploitability. Since our main
goal is to approximate equilibrium strategies, minimizing
exploitability is a natural metric for evaluation. The clair-
voyance game, Kuhn poker, and Leduc Hold’em are small
enough that exploitability can be computed exactly.

9.1 Clairvoyance Game

In Table 2, we present the exploitability of the mappings de-
scribed in Section 5 in the clairvoyance game. We varied the
starting stack from n = 1 up to n = 100, experimenting on
7 games in total. (A wide variety of stack sizes relative to
the blinds are encountered in poker in practice, so it is im-
portant to make sure a mapping performs well for many stack
sizes.) For these experiments, we used the betting abstrac-
tion {fold, check, pot, all-in} (fcpa). This abstraction is a
common benchmark in no-limit poker [Gilpin et al., 2008;
Hawkin et al., 2011; 2012; Schnizlein et al., 2009]: “previ-
ous expert knowledge [has] dictated that if only a single bet
size [in addition to all-in] is used everywhere, it should be pot
sized” [Hawkin et al., 2012].

For the abstract equilibrium, we used the equilibrium strat-
egy described in Section 6.5 The entries in Table 2 give player
2’s exploitability for each mapping. The results show that the
exploitability of Rand-psHar stays constant at zero, while the
exploitability of the other mappings steadily increases as the
stack size increases. As we have predicted, the arithmetic
mappings are more exploitable than the geometric ones, and
the deterministic mappings are more exploitable than the cor-
responding randomized ones.

5We also experimented using the Nash equilibrium at the other
extreme (see Appendix A), and the relative performances of the
mappings were very similar. This indicates that our results are robust
to the abstract equilibrium strategies selected by the solver.

Stack Size (n)
1 3 5 10 20 50 100

Det-Arith 0.01 0.24 0.49 1.12 2.38 6.12 12.37
Rand-Arith 0.00 0.02 0.09 0.36 0.96 2.82 5.94

Det-Geo 0.23 0.28 0.36 0.63 0.99 1.68 2.43
Rand-Geo-1 0.23 0.23 0.23 0.24 0.36 0.66 1.01
Rand-Geo-2 0.23 0.23 0.23 0.25 0.36 0.65 1.00
Det-psHar 0.15 0.19 0.33 0.47 0.59 0.67 0.71

Rand-psHar 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2: Exploitability of mappings for the clairvoyance
game, using betting abstraction {fold, check, pot, all-in}.

9.2 Kuhn Poker
We conducted similar experiments on the more complex
game of Kuhn poker; the results are given in Table 3. As
in the clairvoyance game, Rand-psHar significantly outper-
formed the other mappings, with an exploitability near zero
for all stack sizes. Interestingly, the relative performances of
the other mappings differ significantly from the results in the
clairvoyance game. Rand-Arith performed second-best while
Det-psHar performed the worst.6

It turns out that for each stack size, player 1 has a unique
equilibrium strategy that uses a bet size of 0.4 times the pot
(recall that we only allow bets that are a multiple of 0.1 pot).
So we thought it would be interesting to see how the results
would change if we used the bet size of 0.4 pot in our abstrac-
tion instead of pot. Results for these experiments are given in
Table 4. Surprisingly, all of the mappings became more ex-
ploitable (for larger stack sizes) when we used the “optimal”
bet size, sometimes significantly so (for n = 100 Det-Arith
had exploitability 0.301 using the first abstraction and 3.714
using the second abstraction)! This is very counterintuitive,
as we would expect performance to improve as we include
“better” actions in our abstraction. It also casts doubt on the
typical approach for selecting an action abstraction for poker-
playing programs; namely, emulating the bet sizes that human
professional poker players use.

We decided to investigate this paradox further, and com-
puted the bet size that minimized exploitability for each of
the mappings. The results are given in Table 5.7 Interest-
ingly, the unique full equilibrium bet size of 0.4 was very
rarely the optimal bet size to use. The optimal bet size varied
dramatically as different stack sizes and mappings were used.
In some cases it was quite large; for example, for n = 100 it
was 71.5 for Det-psHar and 29.8 for Det-Geo. The results in-
dicate that the optimal action abstraction to use may vary con-
siderably based on the action translation mapping used, and
can include surprising actions while excluding actions that are
played in the full equilibrium (even when these are the only

6We do not allow player 2 to fold when player 1 checks for
these experiments, since he performs at least as well by checking.
The results are even more favorable for Rand-psHar if we remove
this restriction because player 2 is indifferent between checking and
folding with a Jack, and the abstract equilibrium strategy our solver
output happened to select the fold action. The geometric mappings
are unaffected by this because they never map a bet down to a check,
but the other mappings sometimes do and will correctly fold a Jack
more often to a small bet. In particular, Rand-psHar obtained ex-
ploitability 0 for all stack sizes using fcpa.

7For ties, we reported the smallest size.

actions played in any full equilibrium). This suggests that
when using multiple actions in an abstraction, a mix of both
“optimal” offensive actions (which are actually taken by the
agent) and defensive actions (which are not taken themselves,
but reduce exploitability due to an imperfect abstraction) may
be more successful than focusing exclusively on the offensive
ones. This is consistent with the approach that some teams in
the competition have been using where they insert large de-
fensive actions into the abstraction on the opponent’s side.

Stack Size (n)
1 3 5 10 20 50 100

Det-Arith 0.205 0.205 0.244 0.271 0.287 0.298 0.301
Rand-Arith 0.055 0.055 0.055 0.055 0.055 0.055 0.055

Det-Geo 0.121 0.121 0.121 0.217 0.297 0.366 0.399
Rand-Geo-1 0.121 0.121 0.121 0.121 0.121 0.121 0.121
Rand-Geo-2 0.121 0.121 0.121 0.121 0.121 0.121 0.121
Det-psHar 0.171 0.171 0.233 0.365 0.454 0.520 0.545

Rand-psHar 0.029 0.029 0.029 0.029 0.029 0.029 0.029

Table 3: Exploitability of mappings for no-limit Kuhn poker,
using betting abstraction {fold, check, pot, all-in}.

Stack Size (n)
1 3 5 10 20 50 100

Det-Arith 0.088 0.110 0.285 0.485 0.848 1.926 3.714
Rand-Arith 0.012 0.033 0.068 0.157 0.336 0.871 1.764

Det-Geo 0.086 0.114 0.294 0.425 0.548 0.714 0.873
Rand-Geo-1 0.071 0.085 0.095 0.116 0.145 0.203 0.269
Rand-Geo-2 0.071 0.083 0.094 0.114 0.144 0.203 0.269
Det-psHar 0.064 0.090 0.302 0.420 0.500 0.556 0.574

Rand-psHar 0.008 0.010 0.017 0.027 0.037 0.047 0.054

Table 4: Exploitability of mappings for no-limit Kuhn poker,
using betting abstraction {fold, check, 0.4 pot, all-in}.

Stack Size (n)
1 3 5 10 20 50 100

Det-Arith 0.3 0.4 0.7 0.9 0.9 1.0 1.0
Rand-Arith 0.3 0.5 0.6 0.8 0.9 1.0 1.0

Det-Geo 0.3 0.2 1.0 2.6 2.5 14.6 29.8
Rand-Geo-1 0.2 0.1 0.3 0.4 1.0 1.0 1.0
Rand-Geo-2 0.2 0.1 0.3 0.3 1.0 1.0 1.0
Det-psHar 0.4 0.3 2.3 7.9 4.5 49.9 71.5

Rand-psHar 0.1 0.4 0.5 0.6 0.6 0.7 0.7

Table 5: Optimal bet sizes for player 2 of action translation
mappings for no-limit Kuhn poker, using betting abstraction
with fold, check, all-in, and one additional bet size.

9.3 Leduc Hold’em
We also compared exploitability on Leduc Hold’em—a much
larger poker variant than the Clairvoyance Game and Kuhn
Poker. Unlike these smaller variants, Leduc Hold’em al-
lows for multiple bets and raises, multiple rounds of betting,
and shared community cards. Thus, it contains many of the
same complexities as the variants of poker commonly played
by humans—most notably Texas Hold’em—while remaining
small enough that exploitability computations are tractable.

Exploitabilities for both players using the fcpa abstraction
are given in Table 6. The results indicate that Rand-psHar
produces the lowest average exploitability by a significant

P1 exploitability P2 exploitability Avg. exploitability
Det-Arith 0.427 0.904 0.666

Rand-Arith 0.431 0.853 0.642
Det-Geo 0.341 0.922 0.632

Rand-Geo-1 0.295 0.853 0.574
Rand-Geo-2 0.296 0.853 0.575
Det-psHar 0.359 0.826 0.593

Rand-psHar 0.323 0.603 0.463

Table 6: Exploitability of mappings for each player in no-
limit Leduc Hold’em using the fcpa betting abstraction.

margin, while Det-Arith produces the highest exploitabil-
ity. Interestingly, Rand-psHar did not produce the lowest ex-
ploitability for player 1; however, its exploitability was by
far the smallest for player 2, making its average the lowest.
Player 2’s exploitability was higher than player 1’s in general
because player 1 acts first in both rounds, causing player 2 to
perform more action translation to interpret bet sizes.

10 Experiments in Texas Hold’em
We next tested the mappings against the agents submitted
to the no-limit Texas Hold’em division of the 2012 Annual
Computer Poker Competition. We started with our submitted
agent, Tartanian5 [Ganzfried and Sandholm, 2012], and var-
ied the action translation mapping while keeping everything
else about it unchanged.8 Then we had it play against each of
the other entries.

The results are in Table 7 (with 95% confidence intervals
included). Surprisingly, Det-Arith performed best using the
metric of average overall performance, despite the fact that
it was by far the most exploitable in simplified games. Det-
psHar, Rand-Arith, and Rand-psHar followed closely behind.
The three geometric mappings performed significantly worse
than the other four mappings, (and similarly to each other).

One interesting observation is that the performance rank-
ings of the mappings differed significantly from their ex-
ploitability rankings in simplified domains (with Det-Arith
being the most extreme example). The results can be partially
explained by the fact that none of the programs in the com-
petition were attempting any exploitation of bet sizes or of
action translation mappings (according to publicly-available
descriptions of the agents available on the competition web-
site). Against such unexploitative opponents, the benefits of
a defensive, randomized strategy are much less important.9
As agents become stronger in the future, we would expect
action exploitation to become a much more important factor
in competition performance, and the mappings with high ex-
ploitability would likely perform significantly worse. In fact,
in the 2009 competition, an entrant in the bankroll category
(Hyperborean) used a simple strategy (that did not even look
at its own cards) to exploit opponents’ betting boundaries and
came in first place [Schnizlein et al., 2009].

8Tartanian5 used Det-psHar in the actual competition.
9This is similar to a phenomenon previously observed in the

poker competition, where an agent that played a fully deterministic
strategy outperformed a version of the same agent that used random-
ization [Ganzfried et al., 2012].

11 Conclusions and Future Research
We have formally defined the action translation problem and
analyzed all the prior action translation mappings which have
been proposed for the domain of no-limit poker. We have
developed a new mapping which achieves significantly lower
exploitability than any of the prior approaches in the clair-
voyance game, Kuhn poker, and Leduc Hold’em for a wide
variety of stack sizes. In no-limit Texas Hold’em, our map-
ping significantly outperformed the mappings used by the
strongest agents submitted to the most recent Annual Com-
puter Poker Competitions (Det-Geo, Rand-Geo-1, and Rand-
Geo-2). It did not outperform the two less sophisticated (and
highly exploitable) mappings Det-Arith and Rand-Arith be-
cause the opponents were not exploitative (though the per-
formance differences were small). We also introduced a set
of natural domain-independent desiderata and showed that
only our new randomized mapping (and Rand-Arith, which
we showed to be highly exploitable) satisfy all of them.

In the course of this work, we observed several paradoxical
and surprising results. In Kuhn poker, all of the action trans-
lation mappings had lower exploitability for large stack sizes
when using an abstraction with a suboptimal action (a pot-
sized bet) than when using an abstraction that contained the
optimal action (a 0.4 times pot bet), even when all equilib-
rium strategies use the latter bet size. When we computed
what the optimal action abstractions would have been for
each mapping, they often included actions that differed sig-
nificantly from the unique equilibrium actions. In addition,
we observed that the naı̈ve deterministic arithmetic mapping
actually outperformed all the other mappings against agents
submitted to the 2012 Annual Computer Poker Competition
despite the fact that it had by far the highest exploitability in
simplified domains (and violated many of the desiderata).

This work suggests many avenues for future research. One
idea would be to consider more complex action translation
mappings in addition to the ones proposed in this paper. For
example, one could consider mappings that take into ac-
count game-specific information (as opposed to the game-
independent ones considered here which only take as input
the action size x and the adjacent abstract actions A and B).
It also might make sense to use different mappings at dif-
ferent information sets (or even between different actions at
the same information set). For example, we may want to use
one mapping to interpret smaller bets (e.g., between 0 and
a pot-sized bet), but a different one to interpret larger bets.
In addition, our paradoxical results in Kuhn poker suggest
that, when using multiple actions in an abstraction, a mix of
both “optimal” offensive actions and defensive actions may
be more successful than focusing exclusively on the offen-
sive ones. Finally, we would like to use our framework (and
the new mapping) in applications other than poker, such as
those discussed in the introduction.

A Analysis of the Clairvoyance Game
It was shown by Ankenman and Chen [2006] that the strategy
profile presented in Section 6 constitutes a Nash equilibrium.
Here is a sketch of that argument.

Action Translation Mapping
Det-Arith Rand-Arith Det-Geo Rand-Geo-1 Rand-Geo-2 Det-psHar Rand-psHar

azure.sky 3135± 106 3457± 90 2051± 96 2082± 97 2057± 97 2954± 96 3041± 109
dcubot 880± 52 752± 51 169± 47 156± 47 141± 46 754± 36 622± 47
hugh 137± 84 122± 86 -103± 50 -98± 52 -117± 52 -102± 30 42± 72

hyperborean -189± 79 -272± 77 -216± 78 -203± 77 -161± 75 -161± 36 -276± 77
little.rock -115± 100 -107± 95 -48± 92 -22± 91 -85± 89 165± 63 93± 87
lucky7.12 772± 104 510± 105 465± 82 471± 78 462± 78 536± 94 565± 74

neo.poker.lab 6± 97 -37± 106 11± 101 24± 98 31± 100 8± 31 -9± 103
sartre 94± 65 -3± 65 51± 64 86± 64 26± 64 56± 38 50± 65

spewy.louie 457± 118 421± 116 572± 102 530± 106 475± 103 614± 60 484± 109
uni.mb.poker 856± 84 900± 87 1588± 102 1567± 101 1657± 104 1148± 61 1103± 90

Avg. 609 571 454 459 449 597 568

Table 7: No-limit Texas Hold’em results in milli big blinds per hand. The entry is the profit of our agent Tartanian5 using the
mapping given in the column against the opponent listed in the row.

Proposition 4. The strategy profile presented in Section 6 is
a Nash equilibrium of the clairvoyance game.

Proof. First, it is shown that player 2 must call a bet of size
x with probability 1

1+x in order to make player 1 indifferent
between betting x and checking with a losing hand. For a
given x, player 1 must bluff x

1+x as often as he value bets for
player 2 to be indifferent between calling and folding. Given
these quantities, the expected payoff to player 1 of betting
size x will be v(x) = x

2(1+x) . This function is monotonically
increasing, and therefore player 1 will maximize his payoff
by setting x = n and going all-in.

It turns out that player 2 does not need to call a bet of
size x 6= n with exact probability 1

1+x : he need only not
call with such an extreme probability that player 1 has an
incentive to change his bet size from n to x (with either a
winning or losing hand). In particular, it can be shown that
player 2 need only call a bet of size x with any probability
(which can be different for different values of x) in the in-
terval

[
1

1+x ,min
{

n
x(1+n) , 1

}]
in order to remain in equilib-

rium. Only the initial equilibrium is reasonable, however, in
the sense that we would expect a rational player 2 to main-
tain the calling frequency 1

1+x for all x so that he continues
to play a properly-balanced strategy in case player 1 happens
to bet x.

B Proofs of Results from Section 8
Proposition 5. Rand-psHar is Lipschitz continuous in A.

Proof. Let A1, A2 ∈ (0, B], A1 6= A2 be arbitrary, and with-
out loss of generality assume A1 < A2. Let

K =
1 +B

(B −A1)(1 +A2)
.

Then

max
x∈[A2,B]

∣∣∣∣ (B − x)(1 +A1)

(B −A1)(1 + x)
− (B − x)(1 +A2)

(B −A2)(1 + x)

∣∣∣∣
=

(A2 −A1)(1 +B)

(B −A1)(B −A2)
max

a∈[A2,B]

∣∣∣∣B − x1 + x

∣∣∣∣
=

(A2 −A1)(1 +B)

(B −A1)(B −A2)
· B −A2

1 +A2
= K|A2 −A1|

Proposition 6. For any B > 0, Rand-Geo-2 is not continu-
ous in A, where A has domain [0, B).

Proof. Let B > 0 be arbitrary, let ε = 0.5, and let δ > 0 be
arbitrary. Let A1 = 0 and A2 = δ

2 . Then fA1,B(A2) = 0 and
fA2,B(A2) = 1. So we have

max
x∈[A2,B]

|fA2,B(x)− fA1,B(x)|

≥ |fA2,B(A2)− fA1,B(A2)| = 1 > ε.

But |A2 −A1| = δ
2 < δ. So Rand-Geo-2 is not continuous in

A at A = 0.

Proposition 7. For any B > 0, Rand-Geo-2 is not Lipschitz
continuous in A, where A has domain (0, B).

Proof. Let B > 0,K > 0 be arbitrary. For now, assume that
0 < A < A′ < B. Then

maxx∈[A′,B] |fA,B(x)− fA′,B(x)|
|A′ −A|

≥ |fA,B(A
′)− fA′,B(A

′)|
|A′ −A|

=
1− fA,B(A′)
|A′ −A|

=
B(A′ +A)

(B −A)(A′2 +AB)

This quantity is greater than K if and only if

A2(BK) +A(B +A′2K −KB2) + (A′B −A′2BK) > 0.

Let µ(A) denote the LHS of the final inequality. Note that
µ(A) → (A′B − A′2BK) as A → 0. Since µ(A) is contin-
uous, there exists some interval I = (A,A) with 0 < A <
A < min{ 1

4K ,
B
2 } such that µ(A) > 0 for all A ∈ I. Let

A be any value in I, and let A′ = 2A. Then we have found
A,A′ satisfying 0 < A < A′ < B such that

maxx∈[A′,B] |fA,B(x)− fA′,B(x)|
|A′ −A|

> K.

So Rand-Geo-2 is not Lipschitz continuous in A.

References
[Andersson, 2006] Rickard Andersson. Pseudo-optimal

strategies in no-limit poker. Master’s thesis, Umeå Uni-
versity, May 2006.

[Ankenman and Chen, 2006] Jerrod Ankenman and Bill
Chen. The Mathematics of Poker. ConJelCo LLC, 2006.

[Archibald and Shoham, 2009] C. Archibald and Y. Shoham.
Modeling billiards games. In International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS),
Budapest, Hungary, 2009.

[Billings et al., 2003] Darse Billings, Neil Burch, Aaron
Davidson, Robert Holte, Jonathan Schaeffer, Terence
Schauenberg, and Duane Szafron. Approximating game-
theoretic optimal strategies for full-scale poker. In Pro-
ceedings of the 18th International Joint Conference on Ar-
tificial Intelligence (IJCAI), 2003.

[Ganzfried and Sandholm, 2012] Sam Ganzfried and Tuo-
mas Sandholm. Tartanian5: A heads-up no-limit Texas
Hold’em poker-playing program. In Computer Poker Sym-
posium at the National Conference on Artificial Intelli-
gence (AAAI), 2012.

[Ganzfried et al., 2012] Sam Ganzfried, Tuomas Sandholm,
and Kevin Waugh. Strategy purification and threshold-
ing: Effective non-equilibrium approaches for playing
large games. In International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), 2012.

[Gilpin and Sandholm, 2006] Andrew Gilpin and Tuomas
Sandholm. A competitive Texas Hold’em poker player
via automated abstraction and real-time equilibrium com-
putation. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), 2006.

[Gilpin et al., 2008] Andrew Gilpin, Tuomas Sandholm, and
Troels Bjerre Sørensen. A heads-up no-limit Texas
Hold’em poker player: Discretized betting models and au-
tomatically generated equilibrium-finding programs. In
International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), 2008.

[Hawkin et al., 2011] John Hawkin, Robert Holte, and Du-
ane Szafron. Automated action abstraction of imperfect
information extensive-form games. In Proceedings of
the National Conference on Artificial Intelligence (AAAI),
2011.

[Hawkin et al., 2012] John Hawkin, Robert Holte, and Du-
ane Szafron. Using sliding windows to generate action
abstractions in extensive-form games. In Proceedings of
the National Conference on Artificial Intelligence (AAAI),
2012.

[Hoda et al., 2010] Samid Hoda, Andrew Gilpin, Javier
Peña, and Tuomas Sandholm. Smoothing techniques for
computing Nash equilibria of sequential games. Mathe-
matics of Operations Research, 35(2):494–512, 2010.

[Johanson, 2013] Michael Johanson. Measuring the size of
large no-limit poker games. Technical Report TR13-01,
Department of Computing Science, University of Alberta,
2013.

[Kuhn, 1950] H. W. Kuhn. Simplified two-person poker. In
H. W. Kuhn and A. W. Tucker, editors, Contributions to
the Theory of Games, volume 1 of Annals of Mathemat-
ics Studies, 24, pages 97–103. Princeton University Press,
Princeton, New Jersey, 1950.

[Rubin and Watson, 2012] Jonathan Rubin and Ian Watson.
Case-based strategies in computer poker. AI Communica-
tions, 25(1):19–48, 2012.

[Sandholm, 2010] Tuomas Sandholm. The state of solving
large incomplete-information games, and application to
poker. AI Magazine, pages 13–32, Winter 2010. Special
issue on Algorithmic Game Theory.

[Schnizlein et al., 2009] David Schnizlein, Michael Bowl-
ing, and Duane Szafron. Probabilistic state translation in
extensive games with large action sets. In Proceedings of
the 21st International Joint Conference on Artificial Intel-
ligence (IJCAI), 2009.

[Waugh et al., 2009] Kevin Waugh, David Schnizlein,
Michael Bowling, and Duane Szafron. Abstraction
pathologies in extensive games. In International Con-
ference on Autonomous Agents and Multi-Agent Systems
(AAMAS), 2009.

[Wellman, 2006] Michael Wellman. Methods for empirical
game-theoretic analysis (extended abstract). In Proceed-
ings of the National Conference on Artificial Intelligence
(AAAI), pages 1552–1555, 2006.

[Zinkevich et al., 2007] Martin Zinkevich, Michael Bowl-
ing, Michael Johanson, and Carmelo Piccione. Regret
minimization in games with incomplete information. In
Proceedings of the Annual Conference on Neural Infor-
mation Processing Systems (NIPS), 2007.

