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Abstract

Counterfactual Regret Minimization (CFR) is a leading algorithm for finding a
Nash equilibrium in large zero-sum imperfect-information games. CFR is an it-
erative algorithm that repeatedly traverses the game tree, updating regrets at each
information set. We introduce an improvement to CFR that prunes any path of play
in the tree, and its descendants, that has negative regret. It revisits that sequence
at the earliest subsequent CFR iteration where the regret could have become posi-
tive, had that path been explored on every iteration. The new algorithm maintains
CFR’s convergence guarantees while making iterations significantly faster—even
if previously known pruning techniques are used in the comparison. This improve-
ment carries over to CFR+, a recent variant of CFR. Experiments show an order
of magnitude speed improvement, and the relative speed improvement increases
with the size of the game.

1 Introduction

Extensive-form imperfect-information games are a general model for strategic interaction. The last
ten years have witnessed a leap of several orders of magnitude in the size of two-player zero-sum
extensive-form imperfect-information games that can be solved to (near-)equilibrium [11][2][6].
This is the game class that this paper focuses on. For small games, a linear program (LP) can
find a solution (that is, a Nash equilibrium) to the game in polynomial time, even in the presence
of imperfect information. However, today’s leading LP solvers only scale to games with around
108 nodes in the game tree [4]. Instead, iterative algorithms are used to approximate solutions for
larger games. There are a variety of such iterative algorithms that are guaranteed to converge to a
solution [5, 3, 10]. Among these, Counterfactual Regret Minimization (CFR) [16] has emerged as
the most popular, and CFR+ as the state-of-the-art variant thereof [13, 14].

CFR begins by exploring the entire game tree (though sampling variants exist as well [9]) and
calculating regret for every hypothetical situation in which the player could be. A key improvement
that makes CFR practical in large games is pruning. At a high level, pruning allows the algorithm to
avoid traversing the entire game tree while still maintaining the same convergence guarantees. The
classic version of pruning, which we will refer to as partial pruning, allows the algorithm to skip
updates for a player in a sequence if the other player’s current strategy does not reach the sequence
with positive probability. This dramatically reduces the cost of each iteration. The magnitude of this
reduction varies considerably depending on the game, but can easily be higher than 90% [9], which
improves the convergence speed of the algorithm by a factor of 10. Moreover, the benefit of partial
pruning empirically seems to be more significant as the size of the game increases.

While partial pruning leads to a large gain in speed, we observe that there is still room for much
larger speed improvement. Partial pruning only skips updates for a player if an opponent’s action
in the path leading to that point has zero probability. This can fail to prune paths that are actually
prunable. Consider a game where the first player to act (Player 1) has hundreds of actions to choose
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from, and where, over several iterations, the reward received from many of them is extremely poor.
Intuitively, we should be able to spend less time updating the strategy for Player 1 following these
poor actions, and more time on the actions that proved worthwhile so far. However, here, partial
pruning will continue to update Player 1’s strategy following each action in every iteration.

In this paper we introduce a better version of pruning, regret-based pruning (RBP), in which CFR
can avoid traversing a path in the game tree if either player takes actions leading to that path with
zero probability. This pruning needs to be temporary, because the probabilities may change later in
the CFR iterations, so the reach probability may turn positive later on. The number of CFR iterations
during which a sequence can be skipped depends on how poorly the sequence has performed in
previous CFR iterations. More specifically, the number of iterations that an action can be pruned is
proportional to how negative the regret is for that action. We will detail these topics in this paper.

RBP can lead to a dramatic improvement depending on the game. As a rough example, consider
a game in which each player has very negative regret for actions leading to 90% of nodes. Partial
pruning, which skips updates for a player when the opponent does not reach the node, would traverse
10% of the game tree per iteration. In contrast, regret-based pruning, which skips updates when
either player does not reach the node, would traverse only 0.1 · 0.1 = 1% of the game tree. In
general, RBP roughly squares the performance gain of partial pruning.

We test RBP with CFR and CFR+. Experiments show that it leads to more than an order of magni-
tude speed improvement over partial pruning. The benefit increases with the size of the game.

2 Background

In this section we present the notation used in the rest of the paper. In an imperfect-information
extensive-form game there is a finite set of players, P . H is the set of all possible histories (nodes)
in the game tree, represented as a sequence of actions, and includes the empty history. A(h) is
the actions available in a history and P (h) ∈ P ∪ c is the player who acts at that history, where c
denotes chance. Chance plays an action a ∈ A(h) with a fixed probability σc(h, a) that is known
to all players. The history h′ reached after an action is taken in h is a child of h, represented by
h · a = h′, while h is the parent of h′. More generally, h′ is an ancestor of h (and h is a descendant
of h′), represented by h′ @ h, if there exists a sequence of actions from h′ to h. Z ⊆ H are
terminal histories for which no actions are available. For each player i ∈ P , there is a payoff
function ui : Z → <. If P = {1, 2} and u1 = −u2, the game is two-player zero-sum. We define
∆i = maxz∈Z ui(z)−minz∈Z ui(z) and ∆ = maxi ∆i.

Imperfect information is represented by information sets for each player i ∈ P by a partition Ii of
h ∈ H : P (h) = i. For any information set I ∈ Ii, all histories h, h′ ∈ I are indistinguishable
to player i, so A(h) = A(h′). I(h) is the information set I where h ∈ I . P (I) is the player
i such that I ∈ Ii. A(I) is the set of actions such that for all h ∈ I , A(I) = A(h). |Ai| =
maxI∈Ii |A(I)| and |A| = maxi |Ai|. We define U(I) to be the maximum payoff reachable from a
history in I , and L(I) to be the minimum. That is, U(I) = maxz∈Z,h∈I:hvz uP (I)(z) and L(I) =
minz∈Z,h∈I:hvz uP (I)(z). We define ∆(I) = U(I) − L(I) to be the range of payoffs reachable
from a history in I . We similarly define U(I, a), L(I, a), and ∆(I, a) as the maximum, minimum,
and range of payoffs (respectively) reachable from a history in I after taking action a. We define
D(I, a) to be the set of information sets reachable by player P (I) after taking action a. Formally,
I ′ ∈ D(I, a) if for some history h ∈ I and h′ ∈ I ′, h · a v h′ and P (I) = P (I ′).

A strategy σi(I) is a probability vector over A(I) for player i in information set I . The probability
of a particular action a is denoted by σi(I, a). Since all histories in an information set belonging to
player i are indistinguishable, the strategies in each of them must be identical. That is, for all h ∈ I ,
σi(h) = σi(I) and σi(h, a) = σi(I, a). We define σi to be a probability vector for player i over all
available strategies Σi in the game. A strategy profile σ is a tuple of strategies, one for each player.
ui(σi, σ−i) is the expected payoff for player i if all players play according to the strategy profile

〈σi, σ−i〉. If a series of strategies are played over T iterations, then σ̄Ti =
∑
t∈T σ

t
i

T .

πσ(h) = Πh′→avhσP (h)(h, a) is the joint probability of reaching h if all players play according to
σ. πσi (h) is the contribution of player i to this probability (that is, the probability of reaching h if all
players other than i, and chance, always chose actions leading to h). πσ−i(h) is the contribution of
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all players other than i, and chance. πσ(h, h′) is the probability of reaching h′ given that h has been
reached, and 0 if h 6@ h′. In a perfect-recall game, ∀h, h′ ∈ I ∈ Ii, πi(h) = πi(h

′). In this paper
we focus on perfect-recall games. Therefore, for i = P (I) we define πi(I) = πi(h) for h ∈ I . We
define the average strategy σ̄Ti (I) for an information set I to be

σ̄Ti (I) =

∑
t∈T π

σti
i σ

t
i(I)∑

t∈T π
σt
i (I)

(1)

2.1 Nash Equilibrium

A best response to σ−i is a strategy σ∗i such that ui(σ∗i , σ−i) = maxσ′i∈Σi ui(σ
′
i, σ−i). A Nash

equilibrium, is a strategy profile where every player plays a best response. Formally, it is a strategy
profile σ∗ such that ∀i, ui(σ∗i , σ∗−i) = maxσ′i∈Σi ui(σ

′
i, σ
∗
−i). We define a Nash equilibrium strategy

for player i as a strategy σi that is part of any Nash equilibrium. In two-player zero-sum games, if σi
and σ−i are both Nash equilibrium strategies, then 〈σi, σ−i〉 is a Nash equilibrium. An ε-equilibrium
is a strategy profile σ∗ such that ∀i, ui(σ∗i , σ∗−i) + ε ≥ maxσ′i∈Σi ui(σ

′
i, σ
∗
−i).

2.2 Counterfactual Regret Minimization

Counterfactual Regret Minimization (CFR) is a popular regret-minimization algorithm for extensive-
form games [16]. Our analysis of CFR makes frequent use of counterfactual value. Informally, this
is the expected utility of an information set given that player i tries to reach it. For player i at
information set I given a strategy profile σ, this is defined as

vσi (I) =
∑
h∈I

(
πσ−i(h)

∑
z∈Z

(
πσ(h, z)ui(z)

))
(2)

The counterfactual value of an action a is

vσi (I, a) =
∑
h∈I

(
πσ−i(h)

∑
z∈Z

(
πσ(h · a, z)ui(z)

))
(3)

Let σt be the strategy profile used on iteration t. The instantaneous regret on iteration t for action a
in information set I is

rt(I, a) = vσ
t

P (I)(I, a)− vσ
t

P (I)(I) (4)
and the regret for action a in I on iteration T is

RT (I, a) =
∑
t∈T

rt(I, a) (5)

Additionally, RT+(I, a) = max{RT (I, a), 0} and RT (I) = maxa{RT+(I, a)}. Regret for player i
in the entire game is

RTi = max
σ′i∈Σi

∑
t∈T

(
ui(σ

′
i, σ

t
−i)− ui(σti , σt−i)

)
(6)

In CFR, a player in an information set picks an action among the actions with positive regret in
proportion to his positive regret on that action. Formally, on each iteration T + 1, player i selects
actions a ∈ A(I) according to probabilities

σT+1
i (I, a) =


RT+(I,a)∑

a′∈A(I) R
T
+(I,a′)

, if
∑
a′∈Ai R

T
+(I, a′) > 0

1
|A(I)| , otherwise

(7)

If a player plays according to CFR in every iteration, then on iteration T , RT (I) ≤ ∆i

√
|A(I)|

√
T .

Moreover,
RTi ≤

∑
I∈Ii

RT (I) ≤ |Ii|∆i

√
|Ai|
√
T (8)

So, as T → ∞, R
T
i

T → 0. In two-player zero-sum games, if both players’ average regret R
T
i

T ≤ ε,
their average strategies 〈σ̄T1 , σ̄T2 〉 form a 2ε-equilibrium [15]. Thus, CFR constitutes an anytime
algorithm for finding an ε-Nash equilibrium in zero-sum games.
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3 Applying Best Response to Zero-Reach Sequences

In Section 2 it was explained that if both players’ average regret approaches zero, then their average
strategies approach a Nash equilibrium. CFR provides one way to compute strategies that have
bounded regret, but it is not the only way. CFR-BR [7] is a variant of CFR in which one player
plays CFR and the other player plays a best response to the opponent’s strategy in every iteration.
Calculating a best response to a fixed strategy is computationally cheap (in games of perfect recall),
costing only a single traversal of the game tree. By playing a best response in every iteration, the
best-responder is guaranteed to have at most zero regret. Moreover, the CFR player’s regret is still
bounded according to (8). However, in practice the CFR player’s regret in CFR-BR tends to be
higher than when both players play vanilla CFR (since the opponent is clairvoyantly maximizing the
CFR player’s regret). For this reason, empirical results show that CFR-BR converges slower than
CFR, even though the best-responder’s regret is always at most zero.

We now discuss a modification of CFR that will motivate the main contribution of this paper, which,
in turn, is described in Section 4. The idea is that by applying a best response only in certain
situations (and CFR in others), we can lower regret for one player without increasing it for the
opponent. Without loss of generality, we discuss how to reduce regret for Player 1. Specifically,
consider an information set I ∈ I1 and action a where σt1(I, a) = 0 and any history h ∈ I . Then
for any ancestor history h′ such that h′ @ h · a, we know πσ

t

1 (h′, h · a) = 0. Likewise, for any
descendant history h′ such that h · a v h′, we know πσ

t

1 (h′) = 0. Thus, from (4) we see that Player
1’s strategy on iteration t in any information set following action a has no effect on Player 2’s regret
for that iteration. Moreover, it also has no effect on Player 1’s regret for any information set except
R(I, a) and information sets that follow action a. Therefore, by playing a best response only in
information sets following action a (and playing vanilla CFR elsewhere), Player 1 guarantees zero
regret for himself in all information sets following action a, without the practical cost of increasing
his regret in information sets before I or of increasing Player 2’s regret. This may increase regret
for action a itself, but if we only do this when R(I, a) ≤ −∆(I), we can guarantee R(I, a) ≤ 0
even after the iteration. Similarly, Player 2 can simultaneously play a best response in information
sets following an action a′ where σt2(I ′, a′) = 0 for I ′ ∈ I2. This approach leads to lower regret for
both players.

(In situations where both players’ sequences of reaching an information set have zero probability
(π1(h) = π2(h) = 0) the strategies chosen have no impact on the regret or average strategy for
either player, so there is no need to compute what strategies should be played from then on.)

Our experiments showed that this technique leads to a dramatic improvement over CFR in terms
of the number of iterations needed—though the theoretical convergence bound remains the same.
However, each iteration touches more nodes—because negative-regret actions more quickly become
positive and are not skipped with partial pruning—and thus takes longer. It depends on the game
whether CFR or this technique is faster overall; see experiments in Appendix A. Regret-based prun-
ing, introduced in the next section, outperforms both of these approaches significantly.

4 Regret-Based Pruning (RBP)

In this section we present the main contribution of this paper, a technique for soundly pruning—on a
temporary basis—negative-regret actions from the tree traversal in order to speed it up significantly.
In Section 3 we proposed a variant of CFR where a player plays a best response in information sets
that the player reaches with zero probability. In this section, we show that these information sets and
their descendants need not be traversed in every iteration. Rather, the frequency that they must be
traversed is proportional to how negative regret is for the action leading to them. This less-frequent
traversal does not hurt the regret bound (8). Consider an information set I ∈ I1 and action a where
Rt(I, a) = −1000 and regret for at least one other action in I is positive, and assume ∆(I) = 1.
From (7), we see that σt+1

1 (I, a) = 0. As described in Section 3, the strategy played by Player 1
on iteration t + 1 in any information set following action a has no effect on Player 2. Moreover, it
has no immediate effect on what Player 1 will do in the next iteration (other than in information sets
following action a), because we know regret for action a will still be at most -999 on iteration t+ 2
(since ∆(I) = 1) and will continue to not be played. So rather than traverse the game tree following
action a, we could “procrastinate” in deciding what Player 1 did on iteration t+1, t+2, ..., t+1000
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in that branch until after iteration t + 1000 (at which point regret for that action may be positive).
That is, we could (in principle) store Player 2’s strategy for each iteration between t+1 and t+1000,
and on iteration t+1000 calculate a best response to each of them and announce that Player 1 played
those best responses following action a on iterations t + 1 to t + 1000 (and update the regrets to
match this). Obviously this itself would not be an improvement, but performance would be identical
to the algorithm described in Section 3.

However, rather than have Player 1 calculate and play a best response for each iteration between
t+ 1 and t+ 1000 separately, we could simply calculate a best response against the average strategy
that Player 2 played in those iterations. This can be accomplished in a single traversal of the game
tree. We can then announce that Player 1 played this best response on each iteration between t + 1
and t + 1000. This provides benefits similar to the algorithm described in Section 3, but allows us
to do the work of 1000 iterations in a single traversal! We coin this regret-based pruning (RBP).

We now present a theorem that guarantees that when R(I, a) ≤ 0, we can prune D(I, a) through
regret-based pruning for b |R(I,a)|

U(I,a)−L(I)c iterations.

Theorem 1. Consider a two-player zero-sum game. Let a ∈ A(I) be an action such that on
iteration T0, RT0(I, a) ≤ 0. Let I ′ be an information set for any player such that I ′ 6∈ D(I, a) and
let a′ ∈ A(I ′). Let m = b |R(I,a)|

U(I,a)−L(I)c. If σ(I, a) = 0 when R(I, a) ≤ 0, then regardless of what
is played in D(I, a) during {T0, ..., T0 +m}, RT+(I ′, a′) is identical for T ≤ T0 +m.

Proof. Since vσi (I) ≥ L(I) and vσi (I, a) ≤ U(I, a), so from (4) we get rt(I, a) ≤ U(I, a)−L(I).
Thus, for iteration T0 ≤ T ≤ T0 + m, RT (I, a) ≤ 0. Clearly the theorem is true for T < T0.
We prove the theorem continues to hold inductively for T ≤ T0 + m. Assume the theorem holds
for iteration T and consider iteration T + 1. Suppose I ′ ∈ IP (I) and either I ′ 6= I or a′ 6= a.
Then for any h′ ∈ I ′, there is no ancestor of h′ in an information set in D(I, a). Thus, πσ

T+1

−i (h′)
does not depend on the strategy in D(I, a). Moreover, for any z ∈ Z, if h′ @ h @ z for some
h ∈ I∗ ∈ D(I, a), then πσ

T+1

(h′, z) = 0 because σT+1(I, a) = 0. Since I ′ 6= I or a′ 6= a, it
similarly holds that πσ

T+1

(h′ ·a′, z) = 0. Then from (4), rT+1(I, a) does not depend on the strategy
in D(I, a).

Now suppose I ′ ∈ Ii for i 6= P (I). Consider some h′ ∈ I ′ and some h ∈ I . First suppose that
h · a v h′. Since πσ

T+1

i (h · a) = 0, so πσ
T+1

i (h′) = 0 and h′ contributes nothing to the regret of
I ′. Now suppose h′ @ h. Then for any z ∈ Z, if h′ @ h @ z then πσ

T+1

(h′, z) = 0 and does not
depend on the strategy in D(I, a). Finally, suppose h′ 6@ h and h · a 6v h′. Then for any z ∈ Z
such that h′ @ z, we know h 6@ z and therefore πσ

T+1

(h′, z) = 0 does not depend on the strategy
in D(I, a).

Now suppose I ′ = I and a′ = a. We proved RT (I, a) ≤ 0 for T0 ≤ T ≤ T0 +m, so RT+(I, a) = 0.
Thus, for all T ≤ T0 +m, RT (I ′, a′) is identical regardless of what is played in D(I, a).

We can improve this approach significantly by not requiring knowledge beforehand of exactly how
many iterations can be skipped. Rather, we will decide in light of what happens during the interven-
ing CFR iterations when an action needs to be revisited. From (4) we know that rT (I, a) ∝ πσT−i (I).
Moreover, vσ

T

P (I)(I) does not depend onD(I, a). Thus, we can pruneD(I, a) from iteration T0 until
iteration T1 so long as

T0∑
t=1

vσ
t

P (I)(I, a) +

T1∑
t=T0+1

πσ
t

−i(I)U(I, a) ≤
T1∑
t=1

vσ
t

P (I)(I) (9)

In the worst case, this allows us to skip only b R(I,a)
U(I,a)−L(I)c iterations. However, in practice it

performs significantly better, though we cannot know on iteration T0 how many iterations it will
skip because it depends on what is played in T0 ≤ t ≤ T1. Our exploratory experiments showed
that in practice performance also improves by replacing U(I, a) with a more accurate upper bound
on reward in (9). CFR will still converge if D(I, a) is pruned for too many iterations; however, that
hurts convergence speed. In the experiments included in this paper, we conservatively use U(I, a)
as the upper bound.
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4.1 Best Response Calculation for Regret-Based Pruning

In this section we discuss how one can efficiently compute the best responses as called for in regret-
based pruning. The advantage of Theorem 1 is that we can wait until after pruning has finished—that
is, until we revisit an action—to decide what strategies were played inD(I, a) during the intervening
iterations. We can then calculate a single best response to the average strategy that the opponent
played, and say that that best response was played in D(I, a) in each of the intervening iterations.
This results in zero regret over those iterations for information sets in D(I, a). We now describe
how this best response can be calculated efficiently.

Typically, when playing CFR one stores
∑T
t=1 π

t
i(I)σti(I) for each information set I . This allows

one to immediately calculate the average strategy defined in (1) in any particular iteration. If we
start pruning on iteration T0 and revisit on iteration T1, we wish to calculate a best response to

σ̄T1−T0
i where σ̄T1−T0

i (I) =
∑T1
t=T0

πti(I)σ
t
i(I)∑T1

t=T0
πti(I)

. An easy approach would be to store the opponent’s

cumulative strategy before pruning begins and subtract it from the current cumulative strategy when
pruning ends. In fact, we only need to store the opponent’s strategy in information sets that follow
action a. However, this could potentially use O(H) memory because the same information set I
belonging to Player 2 may be reached from multiple information sets belonging to Player 1. In
contrast, CFR only requires O(|I||A|) memory, and we want to maintain this desirable property.
We accomplish that as follows.

To calculate a best response against σ̄T2 , we traverse the game tree and calculate the counterfactual
value, defined in (3), for every action for every information set belonging to Player 1 that does
not lead to any further Player 1 information sets. Specifically, we calculate vσ̄

T0−1

1 (I, a) for every
action a in I such that D(I, a) = ∅. Since we calculate this only for actions where D(I, a) = ∅,
so vσ̄

T0−1

1 (I, a) does not depend on σ̄1. Then, starting from the bottom information sets, we set the
best-response strategy σBR1 (I) to always play the action with the highest counterfactual value (ties
can be broken arbitrarily), and pass this value up as the payoff for reaching I , repeating the process
up the tree. In order to calculate a best response to σ̄T1−T0

2 , we first store, before pruning begins,
the counterfactual values for Player 1 against Player 2’s average strategy for every action a in each
information set I whereD(I, a) = ∅. When we revisit the action on iteration T1, we calculate a best
response to σ̄T1

2 except that we set the counterfactual value for every action a in information set I
where D(I, a) = ∅ to be T1v

σ̄T1
1 (I, a)− (T0 − 1)vσ̄

T0−1

1 (I, a). The latter term was stored, and the
former term can be calculated from the current average strategy profile. As before, we set σBR1 (I)
to always play whichever action has the highest counterfactual value, and pass this term up.

A slight complication arises when we are pruning an action a in information set I and wish to start
pruning an earlier action a′ from information set I ′ such that I ∈ D(I ′, a′). In this case, it is
necessary to explore action a in order to calculate the best response in D(I ′, a′). However, if such
traversals happen frequently, then this would defeat the purpose of pruning action a. One way to
address this is to only prune an action a′ when the number of iterations guaranteed (or estimated)
to be skipped exceeds some threshold. This ensures that the overhead is worthwhile, and that we
are not frequently traversing an action a farther down the tree that is already being pruned. Another
option is to add some upper bound to how long we will prune an action. If the lower bound for
how long we will prune a exceeds the upper bound for how long we will prune a′, then we need not
traverse a in the best response calculation for a′ because a will still be pruned when we are finished
with pruning a′. In our experiments, we use the former approach. Experiments to determine a good
parameter for this are presented in Appendix B.

4.2 Regret-Based Pruning with CFR+

CFR+ [13] is a variant of CFR where the regret is never allowed to go below 0. Formally,RT (I, a) =
max{RT−1(I, a) + rT (I, a), 0} for T ≥ 1 and RT (I, a) = 0 for T = 0. Although this change
appears small, and does not improve the bound on regret, it leads to faster empirical convergence.
CFR+ was a key advancement that allowed Limit Texas Hold’em poker to be essentially solved [1].

At first glance, it would seem that CFR+ and RBP are incompatible. RBP allows actions to be
traversed with decreasing frequency as regret decreases below zero. However, CFR+ sets a floor
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for regret at zero. Nevertheless, it is possible to combine the two, as we now show. We modify
the definition of regret in CFR+ so that it can drop below zero, but immediately returns to being
positive as soon as regret begins increasing. Formally, we modify the definition of regret in CFR+
for T > 0 to be as follows: RT (I, a) = rT (I, a) if rT (I, a) > 0 and RT−1(I, a) ≤ 0, and
RT (I, a) = RT−1(I, a) + rT (I, a) otherwise. This leads to identical behavior in CFR+, and also
allows regret to drop below zero so actions can be pruned.

When using RBP with CFR+, regret does not strictly follow the rules for CFR+. CFR+ calls for an
action to be played with positive probability whenever instantaneous regret for it is positive in the
previous iteration. Since RBP only checks the regret for an action after potentially several iterations
have been skipped, there may be a delay between the iteration when an action would return to play
in CFR+ and the iteration when it returns to play in RBP. This does not pose a theoretical problem:
CFR’s convergence rate still applies.

However, this difference is noticeable when combined with linear averaging. Linear averaging
weighs each iteration σt in the average strategy by t. It does not affect regret or influence the selec-
tion of strategies on an iteration. That is, with linear averaging the new definition for average strat-

egy becomes σ̄Ti (I) =
∑
t∈T (tπ

σti
i σti)∑

t∈T (tπ
σt
i
i )

. Linear averaging still maintains the asymptotic convergence

rate of constant averaging (where each iteration is weighed equally) in CFR+ [14]. Empirically it
causes CFR+ to converge to a Nash equilibrium much faster. However, in vanilla CFR it results in
worse performance and there is no proof guaranteeing convergence. Since RBP with CFR+ results
in behavior that does not strictly conform to CFR+, linear averaging results in somewhat noisier
convergence. This can be mitigated by reporting the strategy profile found so far that is closest to a
Nash equilibrium rather than the current average strategy profile, and we do this in the experiments.

5 Experiments

We tested regret-based pruning in both CFR and CFR+ against partial pruning, as well as against
CFR with no pruning. Our implementation traverses the game tree once each iteration.1 We tested
our algorithm on standard Leduc Hold’em [12] and a scaled-up variant of it featuring more actions.
Leduc Hold’em is a popular benchmark problem for imperfect-information game solving due to its
size (large enough to be highly nontrivial but small enough to be solvable) and strategic complexity.
In Leduc Hold’em, there is a deck consisting of six cards: two each of Jack, Queen, and King. There
are two rounds. In the first round, each player places an ante of 1 chip in the pot and receives a single
private card. A round of betting then takes place with a two-bet maximum, with Player 1 going first.
A public shared card is then dealt face up and another round of betting takes place. Again, Player 1
goes first, and there is a two-bet maximum. If one of the players has a pair with the public card, that
players wins. Otherwise, the player with the higher card wins. In standard Leduc Hold’em, the bet
size in the first round is 2 chips, and 4 chips in the second round. In our scaled-up variant, which we
call Leduc-5, there are 5 bet sizes to choose from: in the first round a player may bet 0.5, 1, 2, 4, or
8 chips, while in the second round a player may bet 1, 2, 4, 8, or 16 chips.

We measure the quality of a strategy profile by its exploitability, which is the summed ε distance
of both players from a Nash equilibrium strategy. Formally, exploitability of a strategy profile σ
is maxσ∗1∈Σ1

u1(σ∗1 , σ2) + maxσ∗2∈Σ2
u2(σ1, σ

∗
2). We measure exploitability against the number of

nodes touched over all CFR traversals. As shown in Figure 1, RBP leads to a substantial improve-
ment over vanilla CFR with partial pruning in Leduc Hold’em, increasing the speed of convergence
by more than a factor of 8. This is partially due to the game tree being traversed twice as fast, and
partially due to the use of a best response in sequences that are pruned (the benefit of which was
described in Section 3). The improvement when added on top of CFR+ is smaller, increasing the
speed of convergence by about a factor of 2. This matches the reduction in game tree traversal size.

The benefit from RBP is more substantial in the larger benchmark game, Leduc-5. RBP increases
convergence speed of CFR by a factor of 12, and reduces the per-iteration game tree traversal cost by
about a factor of 7. In CFR+, RBP improves the rate of convergence by about an order of magnitude.
RBP also decreases the number of nodes touched per iteration in CFR+ by about a factor of 40.

1Canonical CFR+ traverses the game tree twice each iteration, updating the regrets for each player in sepa-
rate traversals [13]. This difference does not, however, affect the error measure (y-axis) in the experiments.
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(a) Leduc Hold’em (b) Leduc-5 Hold’em

Figure 1: Top: Exploitability. Bottom: Nodes touched per iteration.

The results imply that larger games benefit more from RBP than smaller games. This is not univer-
sally true, since it is possible to have a large game where every action is part of the Nash equilibrium.
Nevertheless, there are many games with very large action spaces where the vast majority of those
actions are suboptimal, but players do not know beforehand which are suboptimal. In such games,
RBP would improve convergence tremendously.

6 Conclusions and Future Research

In this paper we introduced a new method of pruning that allows CFR to avoid traversing high-
regret actions in every iteration. Our regret-based pruning (RBP) temporarily ceases their traversal
in a sound way without compromising the overall convergence rate. Experiments show an order of
magnitude speed improvement over partial pruning, and suggest that the benefit of RBP increases
with game size. Thus RBP is particularly useful in large games where many actions are suboptimal,
but where it is not known beforehand which actions those are.

In future research, it would be worth examining whether similar forms of pruning can be applied
to other equilibrium-finding algorithms as well. RBP, as presented in this paper, is for CFR using
regret matching to determine what strategies to use on each iteration based on the regrets. RBP
does not directly apply to other strategy selection techniques that could be used within CFR such as
exponential weights, because the latter always puts positive probability on actions. Also, it would be
interesting to see whether RBP-like pruning could be applied to first-order methods for equilibrium-
finding [5, 3, 10, 8]. The results in this paper suggest that for any equilibrium-finding algorithm to
be efficient in large games, effective pruning is essential.
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Appendix

A Experiments on Zero-Reach Best Response

Section 3 introduces a variant of CFR in which players play a best response only in sequences that
they reach with zero probability. Figure 2 shows experimental results comparing this variant to
CFR and CFR+. The figure shows that it reduces the number of iterations needed for convergence.
However, in Leduc-5, the number of nodes touched (which is a better measure of time required), is
actually slightly higher for a given level of convergence. In both games, playing a best response in
zero-reach sequences led to no substantial difference when combined with CFR+.

(a) Leduc Hold’em (b) Leduc-5 Hold’em

Figure 2: Top: Exploitability vs Nodes Touched. Bottom: Exploitability vs Iterations.

B Comparison of Minimum Skip Thresholds

As discussed in Section 4.1, it may be worthwhile to establish some minimum threshold for the
anticipated number of iterations to be skipped in order to prune an action. This ensures that the
overhead of pruning is worth the gain, and also prevents descendant actions that are already pruned
from being repeatedly traversed. Setting such a threshold does not affect the theoretical guarantees
of the algorithm, and may lead to better empirical performance.

We now describe how to set such a threshold. We estimate the number of iterations that will be
skipped if we prune an action by modifying (9) to assume the information set will continue to be
reached by the opponent as often as it has, on average, in the past. We also modify the equation to
assume that vσ

t

P (I)(I) will be the average that has been received in the past. This allows us to solve
the equation for the number of iterations we estimate will be skipped. If this estimated number of
iterations exceeds some minimum threshold, then we proceed with pruning the action. Formally, we
calculate the estimate as

T̂1 − T0 =
RT0(I, a)∑T0

t=1 v
σt (I)

T0
−

∑T0
t=1 π

σt
−iU(I,a)

T0

(10)

10



In Figure 3, we compare 1, 5, 10, 25, and 50 as possible thresholds in Leduc-5 for regret-based
pruning in CFR and CFR+. All of the options performed similarly, suggesting that the algorithm is
not very sensitive to the parameter chosen. The experiments show that a low threshold is preferable
early on, while a higher threshold leads to better performance later. The long-term gain of increasing
the threshold appears to quickly diminish however, as there is only a slight long-term difference
between a threshold of 10 iterations and a threshold of 50 iterations. In the experiments presented
in Section 5, we use a threshold of 25 iterations for RBP in all cases.

(a) Leduc Hold’em (b) Leduc-5 Hold’em

Figure 3: A comparison of minimum thresholds for estimated number of iterations pruned for RBP
in CFR (left) and CFR+ (right)

11


	Introduction
	Background
	Nash Equilibrium
	Counterfactual Regret Minimization

	Applying Best Response to Zero-Reach Sequences
	Regret-Based Pruning (RBP)
	Best Response Calculation for Regret-Based Pruning
	Regret-Based Pruning with CFR+

	Experiments
	Conclusions and Future Research
	Acknowledgement

	Experiments on Zero-Reach Best Response
	Comparison of Minimum Skip Thresholds

