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1. INTRODUCTION
Automated market makers are algorithmic agents that provide liquidity in (electronic)
markets. In many markets, there may not be enough organic liquidity to support
active trade, or the market may encompass enough events that buyers and sellers
have trouble finding one another. Markets mediated by automated agents have suc-
cessfully predicted the openings of buildings [Othman and Sandholm 2010a], point
spreads in sports matches [Goel et al. 2008], anticipated the ratings of course instruc-
tors [Chakraborty et al. 2011], etc. Automated market makers are also used by a num-
ber of companies (e.g., Inkling Markets) offering private corporate prediction markets
to aggregate internal information. Automated market makers are also used in finan-
cial markets in practice and in research [Othman and Sandholm 2012]. An alternate,
more theoretical view of automated market makers places them as a platonic ideal of
the way prices move in response to trades being made [Ostrovsky 2009; Othman and
Sandholm 2010b]. Overviews of automated market making are given by Pennock and
Sami [2007] and Chen and Pennock [2010].

Real-world markets are currently populated by profitable human (or human-
controlled) market makers. While effective on average, their worst-case performance is
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questionable (e.g., in the recent “Flash Crash” [U.S. Commodity and Futures Trading
Commission and U.S. Securities & Exchange Commission 2010]). Human-controlled
market makers often withdraw from uncertain or volatile markets, yielding catas-
trophic consequences [MacKenzie 2006; Taleb 2007]. In contrast, some market makers
from the computer science literature have well-defined performance characteristics,
including bounds on loss independent of the behavior of counterparties, and need not
panic in the face of uncertainty. Providing an algorithmic alternative to more fickle
human-controlled market makers should be considered a long-term goal of this line of
research.

One obstacle that has held this line back is that the market making agents in the
literature do a poor job of matching many attributes of human market makers, partic-
ularly those related to profitability. To put it bluntly, those agents are virtually assured
of losing money. Automated market making agents have been employed where the goal
is information elicitation, and the market maker’s losses can be rationalized as subsi-
dies for information revelation [Hanson 2003; Chen and Pennock 2010]. However, real
markets seldom run at a loss. The agents from the literature may also be subject to
the vagaries of unchangeable prior parameters, like a fixed amount of market depth,
which can produce problems in practice, even when used with fake money [Othman
and Sandholm 2010a], or a sizable marginal bid/ask spread, yielding ambiguity over
the true probabilities implied by prices [Othman et al. 2010]. The agents of the litera-
ture have not been successfully employed in any real-money markets where profit and
loss are important considerations.

In this paper, we develop market making agents that provide a principled way to ex-
tend the worst-case results of the literature to incorporate desirable, realistic features
in practice. These are the first agents to include three human properties: the ability to
make a profit, and (provided sufficient trading volume) unlimited market depth, and a
vanishing bid/ask spread. At the same time, our agents retain the bounded loss prop-
erty of the algorithmic agents in the literature. Furthermore, our agents incentivize
myopic traders to directly reveal their private beliefs. In addition to these desirable
theoretical properties, our new market making agents have other key practical prop-
erties . Just like in real markets, but unlike most agents in the literature, our market
making agents are not path independent: a trader that buys from and then sells to our
market making agents will incur a small loss. Additionally, our market making agents
provide a straightforward way to incorporate the principal’s subjective belief over the
future into the quoted prices, and those quoted prices can be computed efficiently and
simply.

2. DESIRABLE PROPERTIES FOR A MARKET MAKER
In this section, we use a real example to demonstrate how liquidity is provisioned in
real markets. We then use the insights gleaned from the example to motivate four
desiderata for automated market makers. Finally, we give an overview of market mak-
ers from the literature to show that, while they can achieve every combination of three
of the desiderata, no existing approach satisfies all four.

2.1. Our study of stock and prediction markets
The word liquidity in financial markets is burdened with several connotations. O’Hara
[1995] memorably quips: “liquidity, like pornography, is easily recognized but not so
easily defined”. She goes on to describe several perspectives on what liquidity means:
the volume in the market; the size of the marginal bid/ask spread (i.e., the spread for
the smallest possible quantity); and the degree to which large bets move prevailing
prices (equivalent to the volume of bets placed near the marginal bid/ask spread, the
market depth). In traditional markets, all the senses of the term liquidity are conflated



because these characteristics tend to accompany each other. We proceed to illustrate
the conflation of these several views of liquidity using live, current markets as exam-
ples.

In real markets as the volume of trade increases, the bid/ask spread falls. This im-
plies both that a fixed size bet moves the market less and that the marginal bid/ask
spread decreases. Although there can be exceptions—such as the Flash Crash—this
relationship holds broadly and was discussed at least as early as 1968 [Demsetz 1968].

To provide an example of the effect of volume on bid/ask spreads, we collected values
from five live markets. Table I shows the total cost to buy and then sell a thousand
dollars of underlying contracts (without regard to any trading fees imposed by the
exchange or brokers). We took these values from a snapshot of the relevant order books
at 3pm on September 8th, 2011.

Table I. The difference in bid and ask prices for $1,000 dollars
of the underlying in several markets.

Market Difference ($) Approximate
Daily Volume ($)

NWS stock 0.61 140 million
NYT stock 1.51 18 million
MNI stock 14.41 1.2 million

Obama 2012 31.58 900
Higgs Boson 2011 970 1.20

Note: “Obama 2012” is the Barack Obama re-elected contract
on Intrade, and “Higgs Boson 2011” is the discovery of the
Higgs Boson in 2011 contract on Intrade.

To illustrate how we calculated these values, imagine a certain security had the
following order book: bid orders for 200 shares at both 2 and 3 dollars, and ask orders
for 250 shares at 4 dollars. Then the bid/ask spread would be calculated as 300 dollars:
250 shares would be purchased at 4 dollars, exhausting the thousand dollar budget.
Then, 200 shares would be resold at 3 dollars for a 1 dollar loss each, and the remaining
50 shares would be re-sold at 2 dollars for a 2 dollar loss each.

NWS, NYT, and MNI are all equities in news companies. The Obama 2012 Intrade
contract, which pays off if the President is re-elected, is one of the most popular con-
tracts on what is probably the most popular Internet prediction market. The Higgs
Boson 2011 contract pays out if the Higgs Boson is discovered before the end of 2011
and is a very sparsely traded Intrade contract. The NWS contract is very liquid—well
over a hundred million dollars worth is exchanged each day and sizable positions can
be exited at almost no spread (the bid/ask spread on each share of NWS is one cent, the
smallest possible value). In contrast, the Higgs Boson contract is very illiquid, seeing
almost no trade each day. The bid/ask spread on a sizable position is large: buying and
then selling a 1,000-dollar position results in an immediate loss of 970 dollars.

2.2. Four oppositional desiderata in the literature
The observations of the previous section suggest that real markets have a shrinking
bid/ask spread for fixed-size bets as the volume gets large. This, combined with the
profit motives of real market makers and the algorithmic worst-case guarantees of the
market makers from the literature, yields four desiderata for market making agents:

(1) Bounded worst-case loss.
(2) The ability to enter a state where the market maker books a profit regardless of

which future state of the world is realized.
(3) A marginal bid/ask spread that approaches zero in the limit as volume gets large.



(4) The price of any fixed-size transaction approaches the marginal bid or ask price, so
that there is unlimited depth in the limit as volume gets large.

In addition to their self-evident desirability, all four combinations of exactly three
of these properties already exist in the literature. Satisfying all four characteristics
is challenging because several of the qualities are oppositional; for instance, making
a profit involves charging extra, but charging extra means that the bid/ask spread
may not vanish. As another example, a market maker that is very deep must not
move prices very much in the face of large bets, but if prices are not moved enough
then worst-case loss can become unbounded. To illustrate the challenge involved in
satisfying all four of these desiderata, we proceed to provide a quick survey of the
relevant constructions from the literature. (The next sections will define the desiderata
formally.)

2.2.1. Fixed prices. Probably the simplest automated market maker is to determine a
probability distribution over the future states of the world, and to offer to make bets
directly at those odds. This scheme offers unlimited depth and no marginal bid/ask
spread, but has unbounded worst-case loss and no ability to book a profit.

2.2.2. Fixed prices with profit-taking. Adding a profit cut on top of the fixed odds gives
the market maker the ability to make a profit and retains the unlimited depth of the
fixed pricing scheme. However, this market maker has unbounded worst-case loss and
a non-vanishing bid/ask spread.

2.2.3. Fixed prices with shrinking profit cuts. If we allow the profit cut to diminish to zero
as trading volume increases, the resulting market maker has three of the four de-
sired properties: the ability to make a profit, a vanishing marginal bid/ask spread, and
unbounded depth in limit. However, it still has unbounded worst-case loss because a
trader with knowledge of the true future could make an arbitrarily large winning bet
with the market maker.

2.2.4. Convex risk measures. Convex risk measures are the general class of market
makers [Agrawal et al. 2009; Othman and Sandholm 2011b] featured in much of the
prediction market literature [Chen and Pennock 2007; Peters et al. 2007; Agrawal
et al. 2009; Chen and Vaughan 2010; Othman and Sandholm 2010a; Abernethy et al.
2011], including the most widely-used automated market maker in practice, the Loga-
rithmic Market Scoring Rule (LMSR) [Hanson 2003, 2007]. These market makers can
offer bounded worst-case loss and no marginal bid/ask spread. However, they do not
offer the ability for the market maker to book a profit, and they offer a fixed market
depth that does not increase with volume. (For instance, in the LMSR, the depth of the
market is fixed by the parameter b which is an exogenous constant set a priori.)

2.2.5. Convex risk measures with profit-taking. Adding a fixed charge on top of a convex
risk measure gives the market maker the ability to make a profit, but the marginal
bid/ask spread will not vanish.

2.2.6. Convex risk measures with shrinking profit cuts. If we allow the profit cut to shrink to
zero as trading volume increases, the resulting market maker can have bounded loss,
the ability to make a profit, and a marginal bid/ask spread that vanishes. However,
the depth of the market is still an exogenous constant, and a fixed size bet will always
diverge in price from the marginal.

2.2.7. Extended constant-utility cost functions. Othman and Sandholm [2011a] describe a
market maker that has unbounded depth in the limit, bounded loss, and vanishing
bid/ask spread in the limit. However, it has no ability to book a profit. The market
making agents of Othman and Sandholm [2011a] are a restricted special case of the



market makers we develop in this work, where the utility function and liquidity func-
tion are both logarithmic functions and there is no profit function.

2.2.8. Liquidity-sensitive automated market makers. The market maker described in Oth-
man et al. [2010] has three of the desired properties. While it does have unbounded
depth in the limit, bounded loss, and the ability to make a profit, the marginal bid/ask
spread never goes to zero.

3. TECHNICAL PRELIMINARIES
This section provides a formal introduction to the automated market maker setting,
which we will extend to create our market markers that satisfy all four desiderata. As
is standard, the world is exhaustively partitioned into finite n possible future states
ωi ∈ Ω. The market maker keeps track of its state through a payout vector.

Definition 1. A payout vector is a vector x ∈ <n where xi is the cumulative amount
the market maker must pay out to traders if future state of the world ωi is realized.

Definition 2. Let U ⊂ < be an open interval on the real line that includes all posi-
tive values. A utility function is a strictly increasing, concave function u : U 7→ <.

We are particularly interested in a special class of utility functions called barrier
utility functions. These are functions which have a barrier to going into negative
wealths.

Definition 3. A barrier utility function u is a utility function that has

lim
x↓0

u(x) = −∞.

Examples of barrier utility functions include u(x) = log(x) and u(x) = −1/x, both of
which are defined over the open interval (0,∞).

Cost function-based market makers are standard in the literature [Chen and Pen-
nock 2007, 2010; Othman et al. 2010]. These market makers have a cost function
C : <n 7→ < that tracks the amount of money paid into the market maker. When
a trader wants to make a bet with a market maker that would change the market
maker’s payout vector from x to y, the market maker offers the bet at a price of
C(y)− C(x). Consider a two-event market where the market maker’s payout vector
is (5, 3). If a trader wishes to place a bet that pays out a dollar if the first event
happens, a cost function-based market maker would quote that trader the price of
C((6, 3))− C((5, 3)).

Our work extends the constant-utility cost functions originally developed by Chen
and Pennock [2007].

Definition 4. Let x0 ∈ dom u and pi be the market maker’s (subjective) probabil-
ity that ωi will occur. A constant-utility cost function C : <n 7→ < implicitly solves∑
i piu(C(x)− xi) = u(x0).

The intuition here is that the market maker quotes prices to traders in order to
maintain constant utility of u(x0). Because u is strictly increasing, costs are uniquely
defined for every payout vector x [Chen and Pennock 2007]. Although they are not
generally expressible in closed form, constant-utility cost functions are still easy to
calculate: since utility functions are strictly increasing the cost can be solved to k bits
of precision in k iterations of a binary search.

One quality that is particularly important for an automated market maker to have is
bounded worst-case loss. This gives the market administrator a performance guarantee
regardless of the traders’ behavior (i.e., even if a trader has perfect foresight).



Definition 5. The worst-case loss of a market maker is the most, over all interac-
tion sequences and all possible ωi, that the market maker could lose. Formally, let
X = {x1,x2, . . .} be a (possibly infinite) chain of transactions, where xi denotes that
the i-th trade moves the market maker from payout vector xi−1 to payout vector xi, let
M(X) represent the least upper bound on the amount paid into the market maker for
the chain of transactions X, and let

x′(X) = lim sup
k→∞

(max
i
xi ∈ xk)

In this notation, the worst-case loss of a market maker is given formally by

sup
X
M(X)− x′(X).

(If we were to restrict our attention to path-indepedent market makers [Pennock and
Sami 2007; Chen and Pennock 2007; Othman et al. 2010; Abernethy et al. 2011], worst-
case loss would be much simpler to define, because those market makers operate only
on their current payout vector, without regard to the past history of transactions.)

One advantage of using constant-utility cost functions with barrier utility functions
is that their worst-case loss can be bounded simply.

PROPOSITION 1 ([OTHMAN AND SANDHOLM 2011A]). Let C be a constant-utility
cost function that employs a barrier utility function. If pi > 0 for every i, the cost
function-based market maker using C loses at most x0.

Now that we have provided the basic framework for the automated market maker
setting, we can describe how our market maker extends this framework.

4. HOW BETS ARE TAKEN
In this section, we describe how to calculate the prices an agent sees when she trades
with our market makers. We denote a market maker byM and we denoteM(x,y) to
be the total price charged to agents for moving the market maker from payout vector
x to payout vector y.

Let u be a utility function and x0 ∈ dom u. Let f and g be non-decreasing functions
<+ 7→ < with the property that f(0) = g(0) = 0. For reasons that will shortly become
clear, we call f the liquidity function and g the profit function. Let d : <n ×<n 7→ <+ be
a distance function (metric). The state s is an internal scalar initialized so that s = 0.
s can be thought of as a measure of the cumulative volume transacted in the market.

In order to price a bet, the following steps are taken:

(1) A trader wishes to place a bet that would move the market maker from payout
vector x to payout vector y. The market maker’s current state is s.

(2) The cost function C(y) is solved implicitly for∑
i

piu (C(y)− yi + f(s+ d(x,y))) = u(x0 + f(s+ d(x,y)))

This equation incorporates the liquidity function f but not the profit function g.
Just as in constant-utility cost functions, C will be uniquely defined because u is
strictly increasing, and it can be calculated efficiently through a binary search.

(3) The total cost quoted to the trader for the bet is the sum of the changes to the cost
function, liquidity function, and profit function

M(x,y) ≡ C(y)− C(x) + f(s+ d(x,y))− f(s) + g(s+ d(x,y))− g(s)

(4) If the bet is taken, the state changes: s← s+ d(x,y), and the new value of the cost
function C(y) is saved for the next transaction.



We will call a market making agent M that prices bets this way a constant-utility
profit-charging market maker.

The values involved in calculatingM all telescope from their initial values. Consider
a transaction that first moves from payout vector x to payout vector y, ending at payout
vector z. The total amount paid into the market maker is

M(x,y)+M(y, z) = C(z)−C(x)+f(s+d(x,y)+d(y, z))−f(s)+g(s+d(x,y)+d(y, z))−g(s)

Observe that the terms from the intermediate payout vector y (i.e., C(y), f(s+d(x,y)),
and g(s+ d(x,y))) cancel out and so do not appear in this expression. We will use this
telescoping property to simplify some of the proofs in Section 5.

5. THEORETICAL PROPERTIES
In this section, we show that our market makers satisfy several desirable properties.
We begin by showing that they have bounded loss. As a step toward this result, we
show that they have no money pumps, so they incentivize agents to directly acquire
their desired portfolios (rather than taking a roundabout path). We then show that our
agents have unlimited depth and no bid/ask spread in the limit. Finally, we formalize
the notion of profit-taking and describe how our agents can enter a state of uncon-
ditional profit, in which no matter what the realized outcome is or what the future
actions of the traders are the market maker will book a profit.

5.1. Bounded loss
One particularly undesirable property for a market making agent is to be in possession
of a money pump.

Definition 6. A market maker M has a money pump if there exists a sequence of
payout vectors x1, . . . ,xn and some terminal state x0 such that

M(x0,x1) + · · ·+M(xn−1,xn) +M(xn,x0) < 0

When a market maker has a money pump a trader can keep arbitraging the market
maker for unbounded riskless profit. Perhaps the most prominent difference between
our work and the prior literature is that the total prices charged by our market making
agents are not necessarily path independent, that is, different paths through quantity
space may correspond to different costs being charged by our market making agents.
With a path-independent market maker, buying a contract and then immediately sell-
ing it is without cost. This is in contrast to both real-world markets and our market
making agents, where buying and then immediately selling is costly to the trader (see,
e.g., Table I).

Every cost function-based market maker is path independent, and path indepen-
dence is sufficient for a market maker to have no money pumps [Othman et al. 2010].
However, path independence is not necessary for a market maker to have no money
pumps; having a path-dependent market making agent simply means that it is not
immediate that the market maker has no money pumps.

Definition 7. A market maker M obeys the triangle inequality if, for all payout
vectors x, y, and z

M(x,y) +M(y, z) ≥M(x, z)

By inductive argument, it is easy to see that a market maker that obeys the triangle
inequality cannot have a money pump.



PROPOSITION 2. Let M be a constant-utility profit-charging market maker. Then
M obeys the triangle inequality.

PROOF. ConsiderM(x,y) +M(y, z) −M(x, z). In terms of the triangle inequality,
this is the difference between taking the “long way” around the triangle versus the
direct way; we seek to show that it is non-negative for all x,y, and z.

Because all the values associated with the calculation ofM telescope, this difference
is just

C1(z)+f(s+d(x,y)+d(y, z))+g(s+d(x,y)+d(y, z))−(C2(z)+f(s+d(x, z))+g(s+d(x, z)))
(1)

where C1(z) solves∑
i

piu(C1(z)− zi + f(s+ d(x,y) + d(y, z))) = u(x0 + s+ d(x,y) + d(y, z))

and C2 solves ∑
i

piu(C2(z)− zi + f(s+ d(x, z))) = u(x0 + s+ d(x, z))

We will divide the terms in Equation 1 and deal with them each in turn. First, we
will show that

C1(z) + f(s+ d(x,y) + d(y, z))− (C2(z) + f(s+ d(x, z))) ≥ 0

Since u is strictly increasing and d is a distance function, we have

u(x0 + s+ d(x,y) + d(y, z)) ≥ u(x0 + s+ d(x, z))

and so∑
i

piu(C1(z)− zi + f(s+ d(x,y) + d(y, z))) ≥
∑
i

piu(C2(z)− zi + f(s+ d(x, z)))

which, because u is strictly increasing and the pi form a probability distribution, im-
plies

C1(z) + f(s+ d(x,y) + d(y, z)) ≥ C2(z) + f(s+ d(x, z))

so

C1(z) + f(s+ d(x,y) + d(y, z))− (C2(z) + f(s+ d(x, z))) ≥ 0 (2)

Now consider the other set of terms in Equation 1,

g(s+ d(x,y) + d(y, z))− g(s+ d(x, z))

Because d satisfies the triangle inequality, d(x,y) + d(y, z) ≥ d(x, z). Therefore, the
argument to the g(·) function on the left is at least as large as the argument to the g(·)
function on the right. Since g(·) is a non-decreasing function in its arguments

g(s+ d(x,y) + d(y, z))− g(s+ d(x, z)) ≥ 0 (3)

Putting together Equations 1, 2, and 3, we have thatM(x,y) +M(y, z)−M(x, z) ≥ 0,
or rewritten,M(x,y) +M(y, z) ≥M(x, z), and soM obeys the triangle inequality. �

The proof also provides the intuition that, with an increasing profit function, an
agent is charged strictly greater prices when he does not acquire inventory on the



path directly to his desired allocation. This is because the market maker will collect
more money from the profit function, while not losing any additional money from the
potential added liquidity from taking a longer path. Consequently, myopic agents are
incentivized to directly acquire their desired allocation.

Because the total prices charged by a constant-utility profit-charging market maker
obey the triangle inequality, we also have the following result.

COROLLARY 1. LetM be a constant-utility profit-charging market maker. ThenM
has no money pumps.

Recall that a constant-utility cost function employing a barrier utility function has
a worst-case loss of the x0 originally used to seed the utility function. BecauseM has
no money pumps, we have the following result.

COROLLARY 2. Let u be a barrier utility function. Then if pi > 0 for every i, a
constant-utility profit-charging market maker M that uses u loses no more than the
x0 originally used to seed the utility function, regardless of the trades made by agents
or the realized future state of the world. (This result holds even if the liquidity function
f and the profit function g are zero.)

5.2. Profit, liquidity, and market depth
We begin this section by showing that, under certain conditions, a constant-utility
profit-charging market maker has a vanishing bid/ask spread. Then, we show that
under more stringent conditions, constant-utility profit-charging market makers also
have unbounded market depth.

Throughout this section, to simplify the proofs, we assume d is a distance function
implied by any Lp norm. However, the results of this section hold for any continuous
distance function.

5.2.1. Vanishing bid/ask spread. In this section, we show that if the profit and liquid-
ity functions are diminishing, a constant-utility profit-charging market maker has a
vanishing bid/ask spread.

Definition 8. For a market maker M with a differentiable price response, let Mi

denote the marginal cost of a bet on the i-th event. A market maker has a vanishing
bid/ask spread if

∑
iMi = 1.

PROPOSITION 3. Let the liquidity function f and profit function g have the property
that lims→∞ f ′(s) = lims→∞ g′(s) = 0. Then a constant-utility profit charging market
maker has a vanishing bid/ask spread as s gets large. Formally, lims→∞

∑
iMi = 0.

PROOF. At any x and s, by definition we have

Mi = ∇iC(x) +∇if(s) +∇ig(s) = ∇iC(x) + f ′(s) + g′(s)

Since, by construction, both f ′(s) and g′(s) go to zero as s gets large, the interesting
term is ∇iC(x). From the definition of constant-utility profit-charging market makers
we have

∇i

∑
j

pju(C(x)− xj + f(s))

 = ∇iu(x0 + f(s))

∇ipiu(C(x)− xi + f(s)) +∇i
∑
j 6=i

pju(C(x)− xj + f(s)) = u′(x0 + f(s))f ′(s)



(∇iC(x)+f ′(s))

∑
j

pju
′(C(x)− xj + f(s))

 = piu
′(C(x)−xi+f(s))+u′(x0+f(s))f ′(s)

solving for ∇iC(x), we get

∇iC(x) =
piu
′(C(x)− xi + f(s)) + u′(x0 + f(s))f ′(s)∑

j pju
′(C(x)− xj + f(s))

− f ′(s)

=
piu
′(C(x)− xi + f(s)) + f ′(s)

(
u′(x0 + f(s))−

∑
j pju

′(C(x)− xj + f(s))
)

∑
j pju

′(C(x)− xj + f(s))

=
piu
′(C(x)− xi + f(s))∑

j pju
′(C(x)− xj + f(s))

because by construction

u(x0 + f(s)) =
∑
j

pju(C(x)− xj + f(s))

and so their derivatives are also equal. Therefore

∑
i

∇iC(x) =

∑
i piu

′(C(x)− xi + f(s))∑
j pju

′(C(x)− xj + f(s))
= 1

and so

lim
s→∞

∑
i

Mi =
∑
i

∇iC(x) + nf ′(s) + ng′(s) = 1 + 0 + 0 = 1

�

5.2.2. Unbounded depth. In this section, we show that under additional, somewhat
stronger, conditions a constant-utility profit-charging market maker also has un-
bounded depth. This result is similar to the one in Othman and Sandholm [2011a].
However, that market maker only showed unbounded depth when both u and f were
logarithmic functions. Our result in this section is for a much broader class of utility,
liquidity, and profit functions.

The first condition we require is that the utility function employed has vanishing
absolute risk aversion. To our knowledge this concept was first defined in Caballé and
Pomansky [1996].

Definition 9. A utility function has vanishing absolute risk aversion if it is twice-
differentiable and

lim
c→∞

−u
′′(c)

u′(c)
= 0

Most utility functions that are standard in the literature have this property. For in-
stance, every utility function that has Constant Relative Risk Aversion (CRRA) [Mas-
Colell et al. 1995] also has vanishing absolute risk aversion. An example of a utility
function that does not have vanishing absolute risk aversion is u(x) = −e−x.



As we have discussed, the depth of a market is the degree to which large bets
move marginal prices. A very deep market will clear large orders without moving the
marginal price. This leads us to the following definition.

Definition 10. Consider a market maker M with a twice-differentiable price re-
sponse, and letMii denote the marginal change in the marginal price of a bet on the
i-th event. We say thatM has unlimited depth ifMii = 0 for all i.

PROPOSITION 4. Let f be a liquidity function with the property that lims→∞ f(s) =
∞. Then in any constant-utility profit-charging market maker, the arguments to the
utility function grow arbitrarily large with s. Formally, for any x and i

lim
s→∞

C(x)− xi + f(s) =∞

PROOF. Suppose not. Then there exists some finite bound B such that, for all i

lim
s→∞

C(x)− xi + f(s) < B

but then, because u is strictly increasing,

lim
s→∞

∑
i

piu(C(x)− xi + f(s)) < u(B)

But by construction, ∑
i

piu(C(x)− xi + f(s)) = u(x0 + f(s))

and lims→∞ x0 + f(s) =∞. Therefore, there exists some S such that for all s > S,

x0 + f(s) > B

At such s, we have ∑
i

piu(C(x)− xi + f(s)) < u(B) < u(x0 + f(s))

but this is a contradiction because these values must be equal by construction. �

PROPOSITION 5. Let u be a utility function with vanishing absolute risk aversion,
and let f be a liquidity function with the property that lims→∞ f(s) = ∞, and let the
liquidity function f and profit function g have the property that

lim
s→∞

f ′(s) = lim
s→∞

f ′′(s) = lim
s→∞

g′′(s) = 0

Then the constant-utility profit charging market maker formed by u, f , and g has un-
limited depth as s gets large. Formally, lims→∞Mii = 0.

PROOF. By definitionMii = ∇2
iiC(x) + f ′′(s) + g′′(s). Just as in the proof of Proposi-

tion 3, since

lim
s→∞

f ′′(s) = lim
s→∞

g′′(s) = 0

the interesting term as s gets large is the cost function term.
For notational simplicity, define si ≡ C(x)− xi + f(s). Then

∇iC(x) =
piu
′(si)∑

j pju
′(sj)



and taking the partial derivative with respect to i of both sides yields

∇2
iiC =

piu
′′(si)s

′
i

(∑
j pju

′(sj)
)

(∑
j pju

′(sj)
)2 −

piu
′(si)

(∑
j pju

′′(sj)s
′
j

)
(∑

j pju
′(sj)

)2 (4)

We need to show that this approaches zero as s gets large.
First, C(x) is a convex function because it is implicitly defined as an argument

to equalize a concave utility function [Boyd and Vandenberghe 2004]. Therefore
∇2
iiC(x) ≥ 0.
Now consider the s′i terms. By construction s′j 6=i = ∇jC(x) + f ′(s) and s′i = ∇iC(x)−

1 + f ′(s). Therefore 1 ≥ lims→∞ s′j 6=i ≥ 0 ≥ lims→∞ s′i ≥ −1. Thus we can bound the
second derivative in the limit:

lim
s→∞

∇2
iiC(x) ≤ lim

s→∞
−

piu′′(si)
(∑

j pju
′(sj)

)
(∑

j pju
′(sj)

)2 +
piu
′(si)

(∑
j pju

′′(sj)
)

(∑
j pju

′(sj)
)2


where we have replaced all the s′i in the first term of Equation 4 with -1 and all the s′j
in the second term of Equation 4 with 1, in order to make all of the positive terms as
large as possible. (Recall that u is concave, and so u′′ ≤ 0.)

We will deal with the two terms of Equation 5.2.2 in succession, showing that the
limit of each as s gets large is 0. We can simplify the first term immediately by cancel-
ing out the like term from the numerator and denominator, leaving

lim
s→∞

− piu
′′(si)∑

j pju
′(sj)

but then

lim
s→∞

− piu
′′(si)∑

j pju
′(sj)

≤ lim
s→∞

−piu
′′(si)

piu′(si)
= 0

because u has vanishing absolute risk aversion and because by Proposition 4, we have
that lims→∞ si =∞.

Now, we address the second term of Equation 5.2.2

lim
s→∞

−
piu
′(si)

(∑
j pju

′′(sj)
)

(∑
j pju

′(sj)
)2

We will split this term into the product of two terms. First

piu
′(si)(∑

j pju
′(sj)

)



is just ∇iC(x), and is therefore no larger than 1. Then because u has vanishing
absolute risk aversion, and because as s gets large the sj get large

lim
s→∞

−

(∑
j pju

′′(sj)
)

(∑
j pju

′(sj)
) = 0

Consequently,

lim
s→∞

−
piu
′(si)

(∑
j pju

′′(sj)
)

(∑
j pju

′(sj)
)2 = lim

s→∞

piu
′(si)(∑

j pju
′(sj)

) · −
(∑

j pju
′′(sj)

)
(∑

j pju
′(sj)

) ≤ 1 · 0 = 0

Putting together all of our relations, we have

0 ≤ lim
s→∞

∇2
iiC(x) ≤ 0

and so lims→∞∇2
iiC(x) = 0, and therefore

lim
s→∞

Mii = lim
s→∞

∇2
iiC(x) + f ′′(s) + g′′(s) = 0 + 0 + 0 = 0

�

5.3. Revenue bounds
To our knowledge, the only previous formal study of profit-charging behavior within
the standard automated market making framework is Othman et al. [2010]. The auto-
mated market maker in that paper could enter a state of outcome-independent profit,
which means that regardless of the realized outcome, the agent would book a profit.
However, this condition only holds if the market terminates in that state. It is en-
tirely possible, and in some settings virtually assured, that the market will leave the
outcome-independent profit state and cause the market maker to run at a net loss.

To explore this notion further, recall that the market maker in Othman et al. [2010]
is defined by the cost function

C(x) = b(x) log

(∑
i

exp(xi/b(x))

)
where b(x) = α

∑
i xi. To see how outcome-independent profit works, consider a sim-

ple two-event market where α = 0.05 and the market starts from x0 = (1, 1). Imag-
ine that the market maker takes two bets, the first a 50 dollar payout on the first
event and the second a 50 dollar payout on the second event. The market maker
is therefore in the state (51, 51) and is in a state of outcome-independent profit, be-
cause no matter whether ω1 or ω2 is realized, the market maker books a profit of
C(51, 51)− 51− C(x0) ≈ 2.5 > 0. However, imagine that another trader comes along
and places an additional 50 dollar payout bet on the first event. Now the market maker
is in state (101, 51). If the market terminates and ω1 is realized the market maker
clears C(101, 51) − 101 − C(x0) ≈ −1.1 < 0. So, the final bet has made the market
maker exit the state of outcome-independent profit.

This problem is especially likely to arise in practice in settings where more infor-
mation is revealed over time. For instance, consider a sports game in which betting is
left open as the game proceeds. Once a clear winner emerges, traders will likely buy



many shares from the market maker in that team, causing the market maker to exit
the state of unconditional profit.

There is an important loophole to this argument though. If the automated market
maker is not designated with a formal, contractual role that necessitates its activity
in a market, e.g., if it is being employed as the automated agent of a trader, then the
market maker can circumvent this failure by simply ceasing to trade once it enters a
state of outcome-independent profit, or alternately refusing to take any bet that would
cause it to exit the state of outcome-independent profit.

In many settings, however, market makers are required to keep a presence in the
market, e.g., if they are a designated market maker. For these settings, the notion of
unconditional profit is more important. We say that a market maker enters a state
of unconditional profit if it will make money regardless of the realized outcome and
the future actions of traders. What is important to note about unconditional profit, as
opposed to outcome-independent profit, is that once a market maker enters a state of
unconditional profit it can never exit that state.

For example, consider a constant-utility profit-charging market maker using a bar-
rier utility function. If the market maker’s prior is positive, and if the profit function
has collected more money than the initial value used to seed the liquidity function
(i.e., if for all i, pi > 0 and g(s) > x0), then the market maker has entered the state of
unconditional profit. This is because the market maker has no money pumps, loses no
more than x0, and has collected a profit of more than this worst-case loss.

6. INSTANTIATING THE THEORY
In this section we collect the complete set of conditions we require on the various parts
of the profit-charging automated market maker. We give several examples of functions
that satisfy these conditions; any mix of these choices will produce an automated mar-
ket maker with desirable qualities, differing only in the specifics of the initial amount
of market depth, marginal bid/ask spread, and so on.

The prior distribution should be positive everywhere (pi > 0) or the market maker
will have unbounded worst-case loss. The uniform distribution is one option, but if the
market maker has beliefs over the future these should be used, subject to never setting
the probability of any event to zero. (If it is truly impossible for event ωj to occur, then
pj can be set to zero while still maintaining bounded loss.)

The distance function d should be continuous. This is because a discrete distance
function will never be able to achieve a vanishing bid/ask spread. One simple sugges-
tion is to have d be (a positive multiple of) the distance function implied by any Lp
norm.

The utility function u should be a barrier utility function (in order to bound worst-
case loss in a simple way), and should have vanishing absolute risk aversion (in order
to have unlimited depth). One family of utility functions that satisfy both of these
requirements is the standard CRRA utility functions

u(x) =
x1−γ

1− γ
indexed by γ ≥ 1. (Here, log is the limit case for γ = 1.)

The liquidity function f should have f(0) = 0 and

lim
s→∞

f ′(s) = lim
s→∞

f ′′(s) = 0

and also lims→∞ f(s) =∞, to ensure a vanishing bid/ask spread and unlimited depth.
One simple class of functions with both of these properties is f(s) = αs1/β for β > 1



and α > 0. Another class of functions that has these properties is f(s) = α log(s + 1),
again for α > 0.

The profit function g should have g(0) = 0 and

lim
s→∞

g′(s) = lim
s→∞

g′′(s) = 0

for unlimited depth and vanishing bid/ask spread. Since the conditions on the liquidity
function f are a strict superset of the conditions on the profit function g, any liquidity
function could also serve as a profit function. An example of a valid profit function that
would not be a valid liquidity function is for the profit function to collect at most a
certain amount more than the worst-case loss bound, e.g., setting

g(s) = ξx0 (1− 1/(s+ 1))

for ξ > 1 so that the market maker will collect at most ξ times x0. Once the market
maker has collected more than x0, it is guaranteed to have entered an unconditional
profit state.

To get a perspective on the operation of a representative market maker, consider
Figures 1 and 2, which depict the prices charged by the market maker and the profit
made by the market maker, respectively. In this specific example, the number of events
is n = 2 and the market maker’s probability on each event is pi = 1/2. The distance
function is implied by the L2 norm of the payout vector. The utility function is u(x) =
−1/x, the initial wealth is x0 = 10, the liquidity function is f(s) = 100(log(s+ 10000)−
log(10000)), and the profit function is g(s) = 0.6

(√
s+ 100− 10

)
. These functions were

chosen by experimenting with the classes of functions we suggested previously until
we found a combination that made particularly attractive plots.

In both plots, the x axis is the quantity the market maker holds on both events before
the interaction of the agents. That is, a value of 102 on the x axis indicates the market
maker is at the payout vector (100, 100) before the interaction of the trader.

Figure 1 shows the marginal price on the first event and the total price charged by
the market maker for a one-dollar payout on the first event as the quantity in the mar-
ket increases. Observe both that the cost of a fixed size bet approaches the marginal
price and also that the marginal price approaches a bid/ask spread of 0 (which, be-
cause p1 = 0.5 and the two events have equal payouts, corresponds to a marginal price
of 0.5).

Figure 2 shows the profit made by the market maker as the amount transacted
increases. For s & 600, the market maker enters a state of unconditional profit, because
g(s) > x0 = 10. This state is reached at a payout of at most about 430 on each event. If
there is additional churn in the market—traders that sell their bets back to the market
maker—the state of unconditional profit can be reached at smaller payout vectors. At
an extreme, a state of unconditional profit can be made by an agent buying and selling
back a single bet to the market maker a large number of times, each time paying a
small amount into the profit function.

7. CONCLUSIONS
We constructed a new framework for automated market making agents that builds on
the prior literature. Our market making agents are the first to simultaneously satisfy
four key desiderata that have appeared in the literature: (1) bounded worst-case loss,
(2) the ability to make a profit, (3) vanishing bid/ask spread, and (4) unlimited depth as
trading volume grows large. All triples of these four properties have been achieved pre-
viously, but satisfying all four is not straightforward because several of the properties
are oppositional.
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Fig. 2. The profit collected increases with the quantity transacted in the market. The straight line at 10
represents when the market maker enters a state of unconditional profit. Both axes are log-scaled.

The approach that enables us to satisfy all four desiderata is based on new frame-
work of thinking about market makers. It extends constant-utility cost functions with
two separate functions that are added to the prices quoted to the trader. The liquidity
function uses its proceeds to increase the amount of liquidity provided by the market
maker. The profit function represents a “lockbox” of savings that is separate from the
rest of the market maker’s decision-making process.

Unlike most of the prior literature, interactions with our agents are path dependent.
For most of the market makers in the literature, (including the de facto market maker
in practice, the LMSR), a trader can buy and then immediately sell a contract from



the market maker at no cost. However, as we showed in Table I, real markets do not
generally function this way: a trader that buys and then immediately sells a contract
from the market maker will book a loss. Our market makers match real world market
makers in their path dependence.

8. FUTURE RESEARCH
There are several extensions worth considering. First, we have heard the argument
that it could make more sense to have smaller bid/ask spreads at the market’s initia-
tion, to encourage participation, and widen the bid/ask spread as the market matures.
This scheme has an appealing intuition: essentially, early participants are being com-
pensated for providing liquidity at the more fragile beginning stages of the market.
One way to produce this effect with our market makers is to start s at a large value
and decrement it over time (e.g., s ← s − d(x,y) when the value is updated). This es-
sentially runs the state variable s in reverse. However, as discussed in Section 2, this
is counter to the way real markets function, and so adopting this methodology may be
unintuitive for participants. There may be better ways of doing this, and we believe
that our framework of profit and liquidity functions can facilitate such study.

Another extension is to extend our agents to handle not only market orders, but also
limit orders—orders that execute only if certain price conditions are reached. Here, a
possible direction seems to be to extend the convex optimization framework of Agrawal
et al. [2009]. That work provided a simple, computationally efficient way to turn a cost
function that is capable of only handling market orders into a cost function that can
handle both market and limit orders. While adding a profit function to the Agrawal
framework is trivial, incorporating a liquidity function appears to be more challenging,
because the liquidity function is used in calculating prices. To be explicit, the trading
volume affects the liquidity function, which affects the cost function, which affects the
number of cleared orders, which affects the trading volume. Resolving this circularity
seems like the most direct solution for our market making agents to handle persistent
limit orders.

An extension of a different flavor is to consider the values we captured from real
markets in Table I. To our knowledge, that table represents the first comparison of the
prevalent liquidity in prediction markets versus equity markets. That table showed,
somewhat surprisingly, that active prediction market contracts have a bid/ask spread
roughly comparable to small cap equities, despite the fact that publicly traded equi-
ties have several orders of magnitude greater daily volume. This suggests that popular
prediction markets may be more robust than would be expected from their small trans-
action volumes. It would be interesting to study whether this phenomenon holds more
broadly, and to understand why.
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