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Abstract. Communication complexity has recently been recognized as
a major obstacle in the implementation of combinatorial auctions. In this
paper, we consider a setting in which the auctioneer (elicitor), instead of
passively waiting for the bids presented by the bidders, elicits the bidders’
preferences (or valuations) by asking value queries. It is known that in
the more general case (no restrictions on the bidders’ preferences) this
approach requires the exchange of an exponential amount of information.
However, in practical economic scenarios we might expect that bidders’
valuations are somewhat structured. In this paper, we consider several
such scenarios, and we show that polynomial elicitation in these cases is
often sufficient. We also prove that the family of “easy to elicit” classes of
valuations is closed under union. This suggests that efficient preference
elicitation is possible in a scenario in which the elicitor, contrary to what
it is commonly assumed in the literature on preference elicitation, does
not exactly know the class to which the function to elicit belongs. Finally,
we discuss what renders a certain class of valuations “easy to elicit with
value queries”.

1 Introduction

Combinatorial auctions (CAs) have recently emerged as a possible mechanism to
improve economic efficiency when many items are on sale. In a CA, bidders can
present bids on bundle of items, and thus may easily express complementarities
(i-e., the bidder values two items together more than the sum of the valuations
of the single items), and substitutabilities (i.e., the two items together are worth
less than the sum of the valuations of the single items) between the objects
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on sale®. CAs can be applied, for instance, to sell spectrum licenses, pollution
permits, land lots, and so on [9)].

The implementation of CAs poses several challenges, including computing
the optimal allocation of the items (also known as the winner determination
problem), and efficiently communicating bidders’ preferences to the auctioneer.

Historically, the first problem that has been addressed in the literature is
winner determination. In [16], it is shown that solving the winner determination
problem is NP-hard; even worse, finding a n'/?~¢-approximation (here, n is the
number of bidders) to the optimal solution is NP-hard [18]. Despite these impos-
sibility results, recent research has shown that in many scenarios the average-case
performance of both exact and approximate winner determination algorithms is
very good [4,13,17,18,22]. This is mainly due to the fact that, in practice,
bidders’ preferences (and, thus, bids) are somewhat structured, where the bid
structure is usually induced by the economic scenario considered.

The communication complexity of CAs has been addressed only more re-
cently. In particular, preference elicitation, where the auctioneer is enhanced by
elicitor software that incrementally elicits the bidders’ preferences using queries,
has recently been proposed to reduce the communication burden. Elicitation al-
gorithms based on different type of queries (e.g., rank, order, or value queries)
have been proposed [6,7,12]. Unfortunately, a recent result by Nisan and Segal
[15] shows that elicitation algorithms in the worst case have no hope of consid-
erably reducing the communication complexity, because computing the optimal
allocation requires the exchange of an exponential amount of information be-
tween the elicitor and the bidders. Indeed, the authors prove an even stronger
negative result: obtaining a better approximation of the optimal allocation than
that generated by auctioning off all objects as a bundle requires the exchange
of an exponential amount of information. Thus, the communication burden pro-
duced by any combinatorial auction design that aims at producing a non-trivial
approximation of the optimal allocation is overwhelming, unless the bidders’ val-
uation functions display some structure. This is a far worse scenario than that
occurring in single item auctions, where a good approximation to the optimal
solution can be found by exchanging a very limited amount of information [3].

For this reason, elicitation in restricted classes of valuation functions has been
studied [2,8,15,21]. The goal is to identify classes of valuation functions that
are general (in the sense that they allow to express super-, or sub-additivity, or
both, between items) and can be elicited in polynomial time.

Preference elicitation in CAs has recently attracted significant interest from
machine learning theorists in general [6,21], and at COLT in particular [2].

1.1 Full elicitation with value queries

In this paper, we consider a setting in which the elicitor’s goal is full elicitation,
i.e., learning the entire valuation function of all the bidders. This definition
should be contrasted with the other definition of preference elicitation, in which

3 In this paper, we will use also the terms super- and sub-additivity to refer comple-
mentarities and substitutabilities, respectively.



the elicitor’s goal is to elicit enough information from the bidders so that the
optimal allocation can be computed. In this paper, we call this type of elicitation
partial elicitation. Note that, contrary to the case of partial elicitation, in full
elicitation we can restrict attention to learning the valuation of a single bidder.

One motivation for studying full elicitation is that, once the full valuation
functions of all the bidders are known to the auctioneer, the VCG payments [5,
11, 20] can be computed without further message exchange. Since VCG payments
prevent strategic bidding behavior [14], the communication complexity of full
preference elicitation is an upper bound to the communication complexity of
truthful mechanisms for combinatorial auctions.

In this paper, we focus our attention on a restricted case of full preference
elicitation, in which the elicitor can ask only value queries (what is the value of
a particular bundle?) to the bidders. Qur interest in value queries is due to the
fact that, from the bidders’ point of view, these queries are very intuitive and
easy to understand. Furthermore, value queries are in general easier to answer
than, for instance, demand (given certain prices for the items, which would be
your preferred bundle?) or rank (which is your most valuable bundle?) queries.

Full preference elicitation with value queries has been investigated in a few re-
cent papers. In [21], Zinkevich et al. introduce two classes of valuation functions
(read-once formulas and ToolboxDNF formulas) that can be elicited with a poly-
nomial number of value queries. Read-once formulas can express both sub- and
super-additivity between objects, while ToolboxDNF formulas can only express
super-additive valuations. In [8], we have introduced another class of “easy to
elicit with value queries” functions, namely k-wise dependent valuations. Func-
tions in this class can display both sub- and super-additivity, and in general are
not monotone! (i.e., they can express costly disposal).

1.2 Owur contribution

The contributions of this paper can be summarized as follows:

e We introduce the hypercube representation of a valuation function, which
makes the contribution of every sub-bundle to the valuation of a certain bundle
S explicit. This representation is a very powerful tool in the analysis of structural
properties of valuations.

o We study several classes of “easy to elicit with value queries” valuations.
Besides considering the classes already introduced in the literature, we introduce
several new classes of polynomially elicitable valuations.

e We show that the family of “easy to elicit” classes of valuations is closed
under union. More formally, we prove that, if C; and C. are classes of valuations
elicitable asking at most p; (m) and pa(m) queries, respectively, then any function
in C1 |J Cs is elicitable asking at most p; (m) + p2(m) + 1 queries. Furthermore,
we prove that this bound cannot be improved.

4 A valuation function f is monotone if f(S) > f(S'), for any S’ C S. This property
is also know as free disposal, meaning that bidders that receive extra items incur no
cost for disposing them.



e The algorithm used to elicit valuations in Cp|JC2 might have super-
polynomial running time (but asks only polynomially many queries). The ques-
tion of whether a general polynomial time elicitation algorithm exists remains
open. However, we present a polynomial time elicitation algorithm which, given
any valuation function f in ROym J Tool_; | Tooly |JG2 |J INT (see Section
3 for the definition of the various classes of valuations), learns f correctly. This
is an improvement over existing results, in which the elicitor is assumed to know
exactly the class to which the valuation function belongs.

e In the last part of the paper, we discuss what renders a certain class of val-
uations “easy to elicit” with value queries. We introduce the concept of strongly
non-inferable set of a class of valuations, and we prove that if this set has super-
polynomial size then efficient elicitation is not possible. On the other hand, even
classes of valuations with empty strongly non-inferable set can be hard to elicit.
Furthermore, we introduce the concept of non-deterministic poly-query elicita-
tion, and we prove that a class of valuations is non-deterministically poly-query
elicitable if and only if its teaching dimension is polynomial.

Overall, our results seem to indicate that, despite the impossibility result of
[15], efficient and truthful CA mechanisms are a realistic goal in many economic
scenarios. In such scenarios, elicitation can be done using only a simple and very
intuitive kind of query, i.e. value query.

2 Preliminaries

Let I denotes the set of items on sale (also called the grand bundle), with |I| = m.
A waluation function on I (valuation for short) is a function f : 27 — Rt that
assigns to any bundle S C I its valuation. A valuation is linear, denoted fi, if
fi(S) = > 4cs f(a). To make the notation less cumbersome, we will use a, b, ...
to denote singletons, ab, bc, ... to denote two-item bundles, and so on.

Given any bundle S, ¢(S) denotes the value query correspondent to S. In this
paper, value queries are the only type of queries the elicitor can ask the bidder
in order to learn her preferences. Unless otherwise stated, in the following by
“query” we mean “value query”.

Definition 1 (PQE) A class of valuations C is said to be poly-query (fully)
elicitable if there exists an elicitation algorithm which, given as input a descrip-
tion of C, and by asking value queries only, learns any valuation f € C asking
at most p(m) queries, for some polynomial p(m). PQE is the set of all classes
C that are poly-query elicitable.

The definition above is concerned only with the number of queries asked
(communication complexity). Below, we define a stronger notion of efficiency,
accounting for the computational complexity of the elicitation algorithm.

Definition 2 (PTE) A class of valuations C is said to be poly-time (fully) elic-
itable if there exists an elicitation algorithm which, given as input a description
of C, and by asking value queries only, learns any valuation f € C in polynomial
time. PTE is the set of all classes C that are poly-time elicitable.



It is clear that poly-time elicitability implies poly-query elicitability.

Throughout this paper, we will make extensive use of the following represen-
tation of valuation functions. We build the undirected graph H; introducing a
node for any subset of I (including the empty set), and an edge between any two
nodes S1, Sz such that S; C Sz and |S1| = |Sa| + 1 (or vice versa). It is imme-
diate that Hy, which represents the lattice of the inclusion relationship between
subsets of I, is a binary hypercube of dimension m. Nodes in H; can be parti-
tioned into levels according to the cardinality of the corresponding subset: level
0 contains the empty set, level 1 the m singletons, level 2 the W subsets of
two items, and so on.

The valuation function f can be represented using H; by assigning a weight
to each node of Hr as follows. We assign weight 0 to the empty set®, and weight
f(a) to any singleton a. Let us now consider a node at level 2, say node ab®.
The weight of the node is f(ab) — (f(a) + f(b)). At the general step i, we assign
to node Sy, with |S;| =4, the weight f(S1) — > g g, w(S), where w(S) denotes
the weight of the node corresponding to subset S. We call this representation of
f the hypercube representation of f, denoted Hy(f).

The hypercube representation of a valuation function makes it explicit the
fact that, under the common assumption of no externalities?, the bidder’s valua-
tion of a bundle S depends only on the valuation of all the singletons a € S, and
on the relationships between all possible sub-bundles included in S. In general,
an arbitrary sub-bundle of S may show positive or negative interactions between
the components, or may show no influence on the valuation of S. In the hyper-
cube representation, the contribution of any such sub-bundle on the valuation
of S is isolated, and associated as a weight to the corresponding node in Hj.

Given the hypercube representation H(f) of f, the valuation of any bundle
S can be obtained by summing up the weights of all the nodes S’ in H;(f) such
that S’ C S. These are the only weights contained in the sub-hypercube of H;(f)
“rooted” at S.

Proposition 1 Any valuation function f admits a hypercube representation,
and this representation is unique.

Proof. For the proof of this proposition, as well as of all for the proofs of the
other theorems presented in this work, see the full version of the paper [19].

Given Proposition 1, the problem of learning f can be equivalently restated
as the problem of learning all the weights in H;(f). In this paper, we will often
state the elicitation problem in terms of learning the weights in Hj(f), rather
than the value of bundles.

5 That is, we assume that the valuation function is normalized.

5 Slightly abusing the notation, we denote with ab both the bundle composed by the
two items a and b, and the corresponding node in Hj.

T With no externalities, we mean here that the bidder’s valuation depends only on
the set of items S that she wins, and not on the identity of the bidders who get the
items not in S.



Since the number of nodes in H; is exponential in m, the hypercube repre-
sentation of f is not compact, and cannot be used directly to elicit f. However,
this representation is a powerful tool in the analysis of structural properties of
valuation functions.

3 Classes of valuations in PTE

In this section, we consider several classes of valuation functions that can be
elicited in polynomial time using value queries.

3.1 Read-once formulas

The class of valuation functions that can be expressed as read-once formulas,
which we denote RO, has been introduced in [21]. A read-once formula is a
function that can be represented as a “reverse” tree, where the root is the output,
the leaves are the inputs (corresponding to items), and internal nodes are gates.
The leaf nodes are labeled with a real-valued multiplier. The gates can be of
the following type: SUM, MAX,, and ATLEAST,. The SUM operator simply
sums the values of its inputs; the MAX, operator returns the sum of the ¢
highest inputs; the ATLEAST. operator returns the sum of its inputs if at least
¢ of them are non-zero, otherwise returns 0. In [21], it is proved that read-once
formulas are in PTE.

In general, valuation functions in RO can express both complementarities
(through the ATLEAST, operator) and substitutabilities (through the MAX,
operator) between items. If we restrict our attention to the class of read-once
formulas that can use only SUM and MAX operators (here, MAX is a shortcut
for MAX), then only sub-additive valuations can be expressed. This restricted
class of read-once formulas is denoted RO, in the following.

3.2 k-wise dependent valuations

The class of k-wise dependent valuations, which we denote Gy, has been defined
and analyzed in [8]. k-wise dependent valuations are defined as follows:

Definition 3 A wvaluation function f is k-wise dependent if the only mutual
interactions between items are on sets of cardinality at most k, for some constant
k > 0. In other words, the Gy class corresponds to all valuation functions f such
that the weights associated to nodes at level i in Hi(f) are zero whenever i > k.

Note that functions in Gx might display both sub and super-additivity be-
tween items. Furthermore, contrary to most of the classes of valuation functions
described so far, k-wise dependent valuations might display costly disposal.

In [8], it is shown that valuations in Gy can be elicited in polynomial time
asking O(m*) value queries.



3.3 The Tool; class

The class of ToolboxDNF formulas, which we denote Toolg, has been introduced
in [21], and is defined as follows:

Definition 4 A function f is in Tooly, where t is polynomial in m, if it can be
represented by a polynomial p composed of t monomials (minterms), where each
monomial is positive.

For instance, polynomial p = 3a + 4ab + 2bc + cd corresponds to the function
which gives value 3 to item a, 0 to item b, value 9 to the bundle abe, and so on.
Note if f € Tool, the only non-zero weights in H;(f) are those associated to
the minterms of f.

ToolboxDNF valuations can express only substitutability-free valuations®,
and can be elicited in polynomial time asking O(mt) value queries [21].

3.4 The Tool_; class

This class of valuation functions is a variation of the ToolboxDNF class intro-
duced in [21]. The class is defined as follows.

Definition 5 Tool  is the class of all the valuation functions f such that
exactly t of the weights in Hy(f) are non-zero, where t is polynomial in m. Of
these weights, only those associated to singletons can be positive. The bundles
associated to non-zero weights in Hi(f) are called the minterms of f.

In other words, the Tool ¢ class corresponds to all valuation functions that
can be expressed using a polynomial p with ¢ monomials (minterms), where
the only monomials with positive sign are composed by one single literal. For
instance, function f defined by p = 10a + 15b + 3¢ — 2ab — 3bc gives value 10 to
item a, value 23 to the bundle ab, and so on.

Theorem 1 If f € Tool_y, where t is polynomial in m, then it can be elicited
in polynomial time by asking O(mt) queries.

3.5 Interval valuation functions

The class of interval valuations is inspired by the notion of interval bids [16,17],
which have important economic applications. The class is defined as follows. The
items on sale are ordered according to a linear order, and they can display super-
additive valuations when bundled together only when the bundle corresponds
to an interval in this order. We call this class of sustitutability-free valuations
INTERVAL, and we denote the set of all valuations in this class as INT.

An example of valuation in INT is the following: there are three items on
sale, a, b and ¢, and the linear order is a < b < ¢. We have f(a) = 10, f(b) = 5,

8 A valuation function f is substitutability-free if and only if, for any Si,S> C I, we

have £(S1) + £(S2) < £(S1U S2)-



fle) =3, f(ab) =17, f(bc) = 10, f(ac) = f(a) + f(c) = 13 (because bundle ac
is not an interval in the linear order), and f(abc) = 21.

The INT class displays several similarities with the Tool; class: there are
a number of basic bundles (minterms) with non-zero value, and the value of a
set of items depends on the value of the bundles that the bidder can form with
them. However, the two classes turn out to be not comparable with respect to
inclusion, i.e. there exist valuation functions f, f' such that f € Tool; — INT
and f' € INT — Tool;. For instance, the valuation function corresponding to
the polynomial p = a+b+c+ab+bc+acis in Tooly; —INT, since objects can be
bundled “cyclically”. On the other hand, the valuation function f of the example
above cannot be expressed using a ToolboxDNF function. In fact, the value of the
bundles a, b, ¢, ab, bc and ac gives the polynomial p' = 10a + 5b+ 3¢+ 2ab + 2bc.
In order to get the value 21 for the bundle abe, which clearly include all the
sub-bundles in p', we must add the term abc in p’ with negative weight -1. Since
only positive terms are allowed in Toolg, it follows that f € INT — Tool.

What about preference elicitation with value queries in case f € INT? It
turns out that the efficiency of elicitation depends on what the elicitor knows
about the linear ordering of the objects. We distinguish three scenarios:

a) the elicitor knows the linear ordering of the items;

b) the elicitor does not know the linear ordering of the items, but the valu-
ation function f to be elicited is such that f(ab) > f(a) + f(b) if and only if a
and b are immediate neighbors in the ordering.

c) the elicitor does not know the linear ordering of the items, and the valua-
tion function to be elicited is such that f(ab) = f(a) + f(b) does not imply that
a and b are not immediate neighbors in the ordering. For instance, we could have
a <b<c, f(ab) > f(a) + f(b), f(bc) = f(b) + f(c), and f(abc) > f(ab) + f(c)
(i-e., the weight of abc in H;(f) is greater than zero).

The following theorem shows that poly-time elicitation is feasible in scenarios
a) and b). Determining elicitation complexity under the scenario ¢) remains open.

Theorem 2 If f € INT, then:

— Scenario a): it can be elicited in polynomial time asking m(”;'H) value queries;

~ Scenario b): it can be elicited in polynomial time asking at most m?> —m + 1
value queries.

3.6 Tree valuation functions

A natural way to extend the INT class is to consider those valuation functions
in which the relationships between the objects on sale have a tree structure.
Unfortunately, it turns out that the valuation functions that belong to this class,
which we denote TREE, are not poly-query elicitable even if the structure of
the tree is known to the elicitor.

Theorem 3 There exists a valuation function f € TREE that can be learned
correctly only asking at least 2™/% value queries, even if the elicitor knows the
structure of the tree.



However, if we restrict the super-additive valuations to be only on subtrees
of the tree T that describes the item relationships, rather than on arbitrary
connected subgraphs of T', then polynomial time elicitation with value queries
is possible (given that T itself can be learned in polytime using value queries).

Theorem 4 Assume that the valuation function f € TREE is such that super-
additive valuations are only displayed between objects that form a subtree of T,
and assume that the elicitor can learn T asking a polynomial number of value
queries. Then, f can be elicited asking a polynomial number of value queries.

4 Generalized preference elicitation

In the previous section we have considered several classes of valuation functions,
proving that most of them are in PTE. However, the definition of PTE (and of
PQE) assumes that the elicitor has access to a description of the class of the
valuation to elicit; in other words, the elicitor a priori knows the class to which
the valuation function belongs. In this section, we analyze preference elicitation
under a more general framework, in which the elicitor has some uncertainty
about the actual class to which the valuation to elicit belongs.

We start by showing that the family of poly-query elicitable classes of valu-
ations is closed under union.

Theorem 5 Let Cq1 and Co be two classes of poly-query elicitable valuations,
and assume that p1(m) (resp., p2(m)) is a polynomial such that any valuation
in Cq (resp., Ca) can be elicited asking at most p1(m) (resp., p=(m)) queries.
Then, any valuation in C1 | Ca can be elicited asking at most p1(m)+pa(m)+1
queries.

In the following theorem, we prove that the bound on the number of queries
needed to elicit a function in Cy |J Cy stated in Theorem 5 is tight.

Theorem 6 There exist families of valuation functions Cy, Ca such that either
C; can be elicited asking at most m — 1 queries, but C1 U C2 cannot be elicited
asking less than 2m — 1 = 2(m — 1) + 1 queries (in the worst case).

Theorem 5 shows that, as far as communication complexity is concerned, effi-
cient elicitation can be implemented under a very general scenario: if the only
information available to the elicitor is that f € CyJ---|J Cq(m), where the C;s
are in PQE and ¢(m) is an arbitrary polynomial, then elicitation can be done
with polynomially many queries. This is a notable improvement over traditional
elicitation techniques, in which it is assumed that the elicitor knows exactly the
class to which the function to elicit belongs.

Although interesting, Theorem 5 leaves open the question of the computa-
tional complexity of the elicitation process. In fact, the general elicitation algo-
rithm Aq |, used in the proof of the theorem (see the full version of the paper
[19]) has running time which is super-polynomial in m. So, a natural question to



ask is the following: let C1 and C2 be poly-time elicitable classes of valuations;
Is the Cq |J C2 class elicitable in polynomial time?

Even if we do not know the answer to this question in general, in the fol-
lowing we show that, at least for many of the classes considered in this paper,
the answer is yes. In particular, we present a polynomial time algorithm that
elicits correctly any function f € RO nm|J Tool_¢|J Tool, |J G2 |J INT. The
algorithm is called GENPOLYLEARN, and is based on a set of theorems which
show that, given any f € C; | Cz, where C;,C2 are any two of the classes
listed above, f can be learned correctly with a low-order polynomial bound on
the runtime (see [19]).

The algorithm, which is reported in Figure 1, is very simple: initially, the
hypothesis set Hp contains all the five classes. After asking the value of any
singleton, GENPOLYLEARN asks the value of any two-item bundles and, based
on the corresponding weights on H(f), discards some of the hypotheses. When
the hypotheses set contains at most two classes, the algorithm continues pref-
erence elicitation accordingly. In case Hp contains more than two classes after
all the two-item bundles have been elicited, one more value query (on the grand
bundle) is sufficient for the elicitor to resolve uncertainty, reducing the size of
the hypotheses set to at most two. The following theorem shows the correctness
of GENPOLYLEARN, and gives a bound on its runtime.

Theorem 7 Algorithm GENPOLYLEARN learns correctly in polynomial time
any valuation function in RO41m | Tool_¢ | Tooly | G2 |JINT asking at most
O(m(m +t)) value queries.

From the bidders’ side, a positive feature of GENPOLYLEARN is that it asks
relatively easy to answer queries: valuation of singletons, two-item bundles, and
the grand bundle. (In many cases, the overall value of the market considered
(e.g., all the spectrum frequencies in the US) is publicly available information.)

5 Towards characterizing poly-query elicitation

In the previous sections we have presented several classes of valuation functions
that can be elicited asking polynomially many queries, and we have proved that
efficient elicitation can be implemeted in a quite general setting. In this section,
we discuss the properties that these classes have in common, thus making a step
forward in the characterization of what renders a class of valuations easy to elicit
with value queries.

Let C be a class of valuations, f any valuation in C, and Ac an elicitation
algorithm for C%. Let Q be an arbitrary set of value queries, representing the
queries asked by Ac at a certain stage of the elicitation process. Given the
answers to the queries in Q, which we denote Q(f) (f is the function to be
elicited), and a description of the class C, Ac returns a set of learned values

9 In the following, we assume that the elicitation algorithm is a “smart” algorithm for
C, i.e. an algorithm which is able to infer the largest amount of knowledge from the
answers to the queries asked so far.



Ve (Q(f))- This set obviously contains any S such that ¢(S) € Q; furthermore,
it may contain the value of other bundles (the inferred values), which are inferred

given the description of C and the answers to the queries in Q. The elicitation
process ends when Ve (Q(f)) = ol

Definition 6 (Inferability) Let S be an arbitrary bundle, and let f be any
function in C. The f-inferability of S w.r.t. C is defined as:

INyc(S) = min{|Q] s.t. (¢(5) ¢ Q) and (S € Vc(Q(f)))} -

If the value of S can be learned only by asking q(S), we set INs c(S) =2™ — 1.
The inferability of S w.r.t. to C is defined as:

INc(S) = r}lélé(INf,C(S) .

Intuitively, the inferability'® of a bundle measures how easy it is for an elic-
itation algorithm to learn the value of S without explicitly asking it.

Definition 7 (Polynomially-inferable bundle) A bundle S is said to be poly-
nomially-inferable (inferable for short) w.r.t. C if INc(S) = p(m), for some
polynomial p(m).

Definition 8 (Polynomially non-inferable bundle) A bundle S is said to
be polynomially non-inferable (non-inferable for short) w.r.t. C if INc(S) is
super-polynomial in m.

Definition 9 (Strongly polynomially non-inferable bundle) A bundle S
is said to be strongly polynomially non-inferable (strongly non-inferable for short)
with respect to class C if Vf € C, INf c(S) is super-polynomial in m.

Note the difference between poly and strongly poly non-inferable bundle: in
the former case, there exists a function f in C such that, on input f, the value
of S can be learned with polynomially many queries only by asking ¢(S); in the
latter case, this property holds for all the valuations in C.

Definition 10 (Non-inferable set) Given a class of valuations C, the non-
inferable set of C, denoted NIc, is the set of all bundles in 27 that are non-
inferable w.r.t. C.

Definition 11 (Strongly non-inferable set) Given a class of valuations C,
the non-inferable set of C, denoted SN Ig, is the set of all bundles in 2T that are
strongly non-inferable w.r.t. C.

10 When clear from the context, we simply speak of inferability, instead of inferability
w.r.t. C.



Clearly, we have SNIc C Nic. The following theorem shows that for some
class of valuations C the inclusion is strict. Actually, the gap between the size
of SNIc and that of NIc can be super-polynomial in m.

The theorem uses a class of valuations introduced by Angluin [1] in the related
context of concept learning. The class, which we call RDNF (Restricted DNF)
since it is a subclass of DNF formulas, is defined as follows. There are m = 2k
items, for some k£ > 0. The items are arbitrarily partitioned into k pairs, which
we denote S;, with i = 1,..., k. We also define a bundle S of cardinality k& such
that Vi, |S; ) S| = 1. In other words, S is an arbitrary bundle obtained by taking
exactly one element from each of the pairs. We call the S;s and the bundle S
the minterms of the valuation function f. The valuations in RDNF are defined
as follows: f(S) =11if S contains one of the minterms; f(S) = 0 otherwise.

Theorem 8 We have |SN Igrpnr| = 0, while |NIrpNr| is super-polynomial in
m.

Proof. We first prove that |[SNIgrpnr| = 0. Let f be any function in RDNF,
and let S1,..., Sk, S be its minterms. Let S be an arbitrary bundle, and assume
that S is not a minterm. Then, the value of S can be inferred given the answers to
the queries Q' = {q(S1),...,q(Sk),q(S)}, which are polynomially many. Thus, S
is not in SN IrpNF. Since for any bundle S there exists a function f in RDNF
such that S is not one of the minterms of f, we have that SN IrpnF is empty.
Let us now consider NIgpnNrF- Let S be an arbitrary bundle of cardinality &, and
let f be a function in RDNF. If S is one of the minterms of f (i.e., S = S) the
only possibility for the elicitor to infer its value is by asking the value of all the
other bundles of cardinality & (there are super-polynomially many such bundles).
In fact, queries on bundles of cardinality < k of > k + 1 give no information on
the identity of S. So, S is in NIrpNr. Since for any bundle S of cardinality &k
there exists a function f in RDNF such that S is a minterm of f, we have that
NIrpnr contains super-polynomially many bundles.

The following theorem shows that whether a certain class C is in PQE de-
pends to a certain extent on the size of SNIc.

Theorem 9 Let C be an arbitrary class of valuations. If the size of SNIc is
super-polynomial in m, then C ¢ PQE.

Theorem 9 states that a necessary condition for a class of valuations C to
be easy to elicit is that its strongly non-inferable set has polynomial size. Is this
condition also sufficient? The following theorem, whose proof follows immedi-
ately by the fact that the RDNF class is hard to elicit with value queries [1],
gives a negative answer to this question, showing that even classes C with an
empty strongly non-inferable set may be hard to elicit.

Theorem 10 The condition |SNIc| = p(m) for some polynomial p(m) is not
sufficient for making C easy to elicit with value queries. In particular, we have
that |SNIRDNF| =0, and RDNF ¢ PQE.



Theorem 10 shows that the size of the strongly non-inferable set alone is not
sufficient to characterize classes of valuations which are easy to elicit. Curiously,
the size of the non-inferable set of RDINF is super-polynomial in m. Thus, the
following question remains open: “Does there exist a class of valuations C such
that |NIc| = p(m) for some polynomial p(m) and C ¢ PQE?” or, equivalently,
“Is the condition |NIc| = p(m) for some polynomial p(m) sufficient for making
C poly-query elicitable?”

Furthermore, Theorem 10 suggests the definition of another notion of poly-
query elicitation, which we call “non-deterministic poly-query elicitation” and
denote with NPQE. Let us consider the RDNF class used in the proof of The-
orem 8. In a certain sense, this class seems easier to elicit than a class C with
|SNI¢| superpolynomial in m. In case of the class C, any set of polynomially
many queries is not sufficient to learn the function (no “poly-query certificate”
exists). Conversely, in case of RDNF such “poly-query certificate” exists for any
f € RDNF (it is the set Q' as defined in the proof of Theorem 8); what makes
elicitation hard in this case is the fact that this certificate is “hard to guess”.
So, the RDNF class is easy to elicit if non-deterministic elicitation is allowed.
The following definition captures this concept:

Definition 12 (NPQE) A class of valuations C is said to be poly-query non-
deterministic (fully) elicitable if there exists a nondeterministic elicitation algo-
rithm which, given as input a description of C, and by asking value queries only,
learns any valuation f € C asking at most p(m) queries in at least one of the
nondeterministic computations, for some polynomial p(m). NPQE is the set of
all classes C that are poly-query nondeterministic elicitable.

It turns out that non-deterministic poly-query elicitation can be character-
ized using a notion introduced in [10], which we adapt here to the framework of
preference elicitation.

Definition 13 (Teaching dimension) Let C be a class of valuations, and let

f be an arbitrary function in C. A teaching set for f w.r.t. C is a set of queries
Q such that Vo(Q(f)) = 2. The teaching dimension of C is defined as

TD(C) = 1}1€a,éc min {|Q| s.t. (QC 221) and (Q is a teaching set for f)} .

Theorem 11 Let C be an arbitrary class of valuations. C € NPEQ if and only
if TD(C) = p(m) for some polynomial p(m).

The following results is straightforward by observing that RDNF is in NPQE
(it has O(m) teaching dimension) but not in PQE:

Proposition 2 PQE C NPQE.
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Algorithm GENPOLYLEARN:

0. Hp={ROtmMm,G2,Tool;,Tool_¢,INT}
1. build the first level of H;(f) asking the value of singletons

2. build the second level of Hr(f) asking the value of two-items bundles in arbitrary order
3. let w(ab) the computed weight for bundle ab
4. repeat

5. if w(ab) < 0 then

6. remove Tooly and INT from Hp

7. if w(ab) # —min{f(a), f(b)} then remove RO m from Hp

8. if w(ab)> 0 then

9. remove RO4+m and Tool_t from Hp

10. if w(ab) is not compatible with the linear order discovered so far then
11. remove INT from Hp

12. until [Hp| < 2 or all the w(ab) have been considered
13. if |Hp| < 2 then continue elicitation as described in theorems 6-15 of [19].

otherwise:
14. case 1: all the w(ab) weights are > 0 and compatible with the linear order, and at least one weight is positive
15. ask the value of the grand bundle I

16. if f(I) =X scr, 5/<2w(S) then

17. remove Tool; from Hp

18. continue elicitation as in the proof of Th. 9 of [19]
19. else

20. remove Gz from Hp

21. continue elicitation as in the proof of Th. 10 of [19]

22. case 2: all the w(ab) weights are < 0, at least one weight is negative, and RO4+m €Hp
23. ask the value of the grand bundle I

24. if f(I) # Xscrsi<2w(S) then

25. remove Gz from Hp

26. continue elicitation as in the proof of Th. 15 of [19]
27. else

28. remove Tool_; from Hp

29. continue elicitation as in the proof of Th. 6 of [19]

30. case 3: w(ab) = 0 for all ab
31. ask the value of the grand bundle I

32. if f(I) <X ,¢; fa) then

33. remove INT, Tool;, G2, RO;mMm from Hp
34. f € Tool_¢; continue elicitation accordingly
35. else

36. remove Tool_¢, G2, RO4m from Hp

37. proceed as in the proof of Th. 10 of [19]

Fig.1. Algorithm for learning correctly any valuation function in RO4mJ
Tool_¢ |J Tool; | G2 JINT asking a polynomial number of value queries.



