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ABSTRACT

The openness of wireless communication and the recent de-
velopment of software-defined radio technology, respectively,
provide a low barrier and a wide range of capabilities for
misbehavior, attacks, and defenses against attacks. In this
work we present finite-energy jamming games, a game model
that allows a jammer and sender to choose (1) whether to
transmit or sleep, (2) a power level to transmit with, and
(3) what channel to transmit on. We also allow the jammer
to choose on how many channels it simultaneously attacks.
A major addition in finite-energy jamming games is that the
jammer and sender both have a limited amount of energy
which is drained according to the actions a player takes.

We develop a model of our system as a zero-sum finite-
horizon stochastic game with deterministic transitions. We
leverage the zero-sum and finite-horizon properties of our
model to design a simple polynomial-time algorithm to com-
pute optimal randomized strategies for both players. The
utility function of our game model can be decoupled into a
recursive equation. Our algorithm exploits this fact to use
dynamic programming to construct solutions in a bottom-
up fashion. For each state of energy levels, a linear pro-
gram is solved to find Nash equilibrium strategies for the
subgame. With these techniques, our algorithm has only a
linear dependence on the number of states, and quadratic
dependence on the number of actions, allowing us to solve
very large instances.

By computing Nash equilibria for our game models, we ex-
plore what kind of performance guarantees can be achieved
both for the sender and jammer, when playing against an
optimal opponent. We also use the optimal strategies to sim-
ulate finite-energy jamming games and provide insights into
robust communication among reconfigurable, yet energy-
limited, radio systems. To test the performance of the opti-
mal strategies we compare their performance with a random
and adaptive strategy. Matching our intuition, the aggres-
siveness of an attacker is related to how much of a discount
is placed on data delay. This results in the defender often
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choosing to sleep despite the latency implication, because
the threat of jamming is high. We also present several other
findings from simulations where we vary the strategies for
one or both of the players.
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[Security and privacy]: Mobile and wireless networks;
[Computing methodologies]: Artificial Intelligence—Dis-
tributed Artificial Intelligence, Multi-agent systems
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1. INTRODUCTION
The flexibility of wireless communication enables unteth-

ered mobility, agile deployment, and on-the-fly reorganiza-
tion of connected devices. However, the openness of wire-
less communication and the recent development of software-
defined radio (SDR) technology, respectively, provide a low
barrier and a wide range of capabilities for misbehavior and
attacks. One class of attacks which has benefited signif-
icantly from SDR technology is jamming, or injection of
intentionally interfering signals into the wireless medium.
While jamming has been a topic of research for several dec-
ades [37], partially due to the devastating potential and dif-
ficulty of defense, the SDR revolution has sparked continued
innovation on jamming and anti-jamming techniques.

Much of the early work in developing jamming models and
technologies focused on attackers with unlimited energy re-
sources, postulating that a jamming attacker would use a
generator or be connected to the power grid [32]. Such as-
sumptions have led to overly wasteful or boisterous attack-
ers that make no attempt to conserve energy or to hide their
attack activity. Likewise, anti-jamming mechanisms are of-
ten designed assuming that the jamming attack is trivial to
detect, so many techniques reduce to either advanced signal
processing [33] or localizing the attack source to take further
action [40].

Our increasingly battery-operated mobile world has re-
cently inspired exploration of attackers with limited energy
resources [29]. Constrained attackers, however, are not nec-
essarily less effective, as they can leverage the advanced tech-
nologies of SDR, software-defined networking, agile and re-
configurable protocols, sensing, and machine learning. Such
capabilities can also provide increases in attack stealth, al-
lowing attackers to avoid detection or localization [9]. Ex-



Figure 1: The players involved in our Finite-Energy

Jamming Game are the attacker and the defender,

made up of the sender-receiver combination. All

game decisions on the defender side are actually

made by the sender in our model.

amples of recent energy-conscious attacks include periodic
jamming [10] and random jamming [40] that alternate be-
tween jamming and sleeping to save energy; control chan-
nel jamming [8] and similar attacks that leverage protocol
structure for efficiency; and reactive jamming [39], adaptive
jamming [9, 31], and mesh jamming [22] which respond to
observed activity instead of attacking statically.

Fortunately, the same innovative technologies that enable
energy-efficient and stealthy attacks can also enable more
robust and agile anti-jamming techniques. The agility pro-
vided by SDRs allows defenders and attackers alike to have
more fine-grained control of protocols and parameters, en-
abling the ability to adapt on the fly [25]. However, this
mutual agility increases system complexity and presents a
significant challenge to our understanding of various perfor-
mance, security, and reliability metrics required for effec-
tive system design. Understanding how mutually agile op-
ponents interact in a resource-constrained scenario remains
an active research field. In this work we explore a battery-
operated jammer and battery-operated sender, where the
sender’s goal is to successfully transmit and the jammer’s
goal is to prevent that.

To increase our understanding of mutually agile, resource-
constrained players in the context of wireless communica-
tions, we look to game theory for tools to analyze optimal
strategies for jamming and anti-jamming. We make the fol-
lowing contributions in this work.

• We design a new model for energy-constrained jammer-
defender interaction, allowing players to transmit or
sleep during any round. This provides for the explo-
ration of a realistic scenario where opponents have sim-
ilar energy levels and freedom to reconfigure.

• We model this interaction as a zero-sum finite-horizon
stochastic game with deterministic transitions to find
optimal player strategies. We leverage the properties
of our game to design a simple polynomial-time dy-
namic programming algorithm that solves a series of
small linear programs to compute optimal strategies
(a Nash equilibrium).

• We implement a simulation of three scenarios to gain
insights on the performance of energy-constrained Di-
rect Sequence Spread Spectrum (DSSS) and Frequency
Hopping Spread Spectrum (FHSS) systems.

Our first contribution is considering attacking and defend-
ing opponents that can choose (1) whether to transmit or
sleep, (2) what power level to transmit with, and (3) what
channel (or how many channels) to transmit on, with the
understanding that each choice has a different energy us-
age and that the outcome also depends on the action cho-
sen by their opponent. Due to the energy constraints and
the fact that every choice has a non-zero cost (even sleep-
ing is subject to non-trivial energy leakage), both players
can only participate for a finite amount of time. Moreover,
since the value of data may significantly decrease with la-
tency, we allow the sender’s utility to decay with time. Since
our game incorporates aspects of power control and sleep-
ing for throughput and latency management, we refer to our
game formulation as a finite-energy jamming game. We are
the first to mathematically model and analyze accumulative
energy-constrained jammer-sender strategic interaction. In
related energy-constrained work, the focus has been on av-
erage energy consumption [5] or over-heating [26].

In particular, our finite-energy jamming game formulation
imposes maximum energy expenditure on both the jammer
and defender, while allowing both players to adjust their
transmit power levels. The sender and receiver, collectively
comprising the defender in our scenario, communicate ei-
ther using single-channel DSSS or multi-channel FHSS. We
model DSSS and FHSS because many modern communica-
tion systems use variants of these techniques. Likewise, the
attacker can jam on one or many channels depending on
which technique is employed by the defender. If the sender
selects a sufficiently high power level compared to the jam-
mer’s selected power level (or if the jammer chooses a differ-
ent channel), then the transmission is successful. Regardless,
both player’s expend an amount of energy that corresponds
to their chosen power level (or sleeping).

In most related work on modeling jamming games, en-
ergy constraints have not been considered, so single-shot or
repeated game approaches have been adopted. In contrast
to that work, the energy constraint means that our game
has state, and thus needs more advanced modeling tech-
niques. The two papers in the literature that are closest to
our work are the following. First, Altman et. al. [5], con-
sider jamming in a stochastic game setting. Whereas we
assume that actions and energy levels are fully observed,
their work goes the opposite direction and requires that ac-
tions are completely unobserved. The truth lies, of course,
somewhere in the middle, but both our and their work can
shed light on the possibilities and limitations for the gen-
eral problem. Second, Mallik et. al. [26] consider a dynamic
game where temporal energy constraints exist, in the form
of over-heating. This means that energy usage only impacts
the immediate rounds afterwards, as opposed to expending
energy from a finite supply. Like us, they assume that ac-
tions are fully observed. They propose a dynamic game,
almost akin to a repeated game, with slight variations in
the available actions.

Our second contribution is to develop algorithms for com-
puting optimal strategies for our system, formulating it as a
zero-sum finite-horizon stochastic game with deterministic
transitions. We use Nash equilibria as our framework for



optimal strategies. Nash equilibria are a compelling solu-
tion concept especially for zero-sum settings such as ours,
as they guarantee the highest utility against optimal oppo-
nents and sub-optimal opponents only increase our utility.
As such, Nash equilibria and their associated expected util-
ity represent the best guarantee on utility that one can hope
for, when faced with potentially optimal adversaries.

We leverage the zero-sum and finite-horizon properties to
design a simple polynomial-time dynamic programming al-
gorithm that solves a series of small linear programs to com-
pute a Nash equilibrium. The dynamic programming aspect
is similar to the work of Mallik et. al. [26], who also use
the finite-horizon aspect to obtain a dynamic programming
description. However, they further use specific properties of
their setting to derive analytical solutions, whereas our work
relies on algorithms for computing strategies. Their consid-
eration of temporal constraints could easily be incorporated
into our more general framework and algorithms, along with
our finite-resource energy constraints.

Our third contribution is a series of simulations of finite-
energy jamming games, which provide insights into robust
communication among reconfigurable yet energy-limited ra-
dio systems. To further understand the benefit of our game-
theoretic models, we compare the rational player using the
finite-energy jamming game model with a random player
and an adaptive player, demonstrating several cases where
the game-theoretic strategies provided by finite-energy jam-
ming game provides significant gains over other strategies.
The game theoretic strategies also provides interesting in-
sights about the tradeoffs of energy-constrained jamming-
defender interaction. Of particular interest and matching
our intuition, we observe that the jammer’s optimal strat-
egy is extremely aggressive when the sender highly values
low-latency communication, resulting in an attack strategy
using high-power jamming in the beginning. This forces the
sender to transmit with low probability in the beginning of
the game, even when highly valuing low latency. In addi-
tion to these observations, we evaluate a number of different
attack and defense scenarios, and identify a number of in-
teresting trends and tradeoffs in the realm of finite-energy
jamming games. In order to mimic a realistic scenario, we
set the jammer and defender’s initial energies to be within
an order of magnitude of each other for our simulations.

The remainder of this work is organized as follows. In
Section 2, we explore related work in jamming and game
theory. We introduce our system model and assumptions
in Section 3, and we present finite-energy jamming games
in Section 4. In Section 5, we present our simulation and
evaluation setup, and we discuss our simulation results in
Section 6. Lastly, in Section 7 we briefly discuss limitations
and future research directions.

2. RELATED WORK
Due to the potential risk of jamming, a large body of

work has recently focused on how to effectively avoid and
mitigate the effects of jamming attacks. Much of the work
on basic and advanced jamming techniques through the last
decade has been summarized in a 2010 survey [29]. Efficient
jamming and anti-jamming techniques can be classified into
two categories: static and adaptive. Static jamming and
anti-jamming techniques rely on specification of protocols,
parameters, and strategies in advance, while adaptive tech-
niques rely on context, measurements, and observations to

choose protocols, parameters, and strategies on the fly to
improve performance.

Traditional jamming mitigation techniques have focused
on static strategies and shared secrets to perform spread
spectrum techniques such as direct sequence spread spec-
trum (DSSS), frequency hopping spread spectrum (FHSS),
code division multiplexing (CDMA), and orthogonal fre-
quency division multiplexing (OFDM) [28]. Efficient static
strategies include random [40], periodic [10], and deceptive
jamming [40]. Both random and periodic jamming alter-
nate between attacking and sleeping in an attempt to attack
in an efficient manner. Deceptive jamming on the other
hand sends legitimate packets in an attempt to stealthily
interfere with communications, making its effect very sim-
ilar to greedy MAC misbehavior techniques [30]. More re-
cent strategies have explored adaptation of protocols and pa-
rameters at multiple layers either randomly or in response
to observations and measurements. The SPREAD system
uses multi-layer adaptation as an extension of spread spec-
trum [25], providing a more robust communication system
but still depending on the same secret-sharing fundamen-
tals. Adaptive jamming strategies using observation-based
agility [9] and offline optimization using long-term measure-
ment data [36]. Moreover, adaptive anti-jamming techniques
have included the use of advanced signal processing and fil-
tering at the receiver [33], jamming-aware traffic manage-
ment [35], and adaptive beamforming [6].

Game theory has provided a potent tool to investigate
and analyze jamming and anti-jamming [1,12,27] as well as
other security problems. In the domain of jamming, game
theory has provided a framework to select parameters and
strategies for both static and adaptive jamming and anti-
jamming scenarios. We briefly discuss three types of related
games: power management games, jammer-versus-defender
games, and friendly jamming games.

Power management games study the choice of transmis-
sion power levels among nodes in a network to achieve suf-
ficient signal quality while limiting interference with neigh-
bors [4]. Power management games are useful in maximizing
the signal-to-interference-and-noise ratio (SINR) of wireless
communication in the network. The authors derive a Nash
equilibrium for transmission power selection to maximize
SINR over the network in both a selfish and cooperative
setting.

A second class of relevant games involves explicit com-
petition between jamming and defending players. Previous
work has studied the equilibrium behavior of a rate-adaptive
defender versus a power-limited jammer [13], choosing jam-
ming power to avoid detection [23], choosing jamming and
communication transmission power to balance over-heating
concerns [26], choosing jamming strategies considering im-
pact and per-round energy drain [3], and team-versus-team
jamming where each team maximizes their own throughput
while minimizing the opposing team’s throughput [7,17,18].

Friendly jamming games aim to use jamming to enforce
communication secrecy or privacy against eavesdroppers. In
this scenario, utility is defined by the ability to relay data
to an intended receiver while preventing eavesdropping by
an unintended receiver [16, 19]. Variations on the game in-
clude using a coexisting network of active jamming attackers
that can also prevent the intended nodes from receiving the
data [41].



Figure 2: We illustrate our system and show the

Finite-Energy Jamming game. The jammer and

sender both are able to choose to power nap, trans-

mit at a low power, or transmit at a high power.

Our two-player game with energy-constrained players has
similarities with many of these related works, but we in-
clude the additional consideration of multi-round optimiza-
tion with a fixed energy budget for the entire game. The
closest of the related works in this regard is the optimal
jamming and anti-jamming work of Li et al. [23], but that
work differs in that the goal of the attacker is to avoid de-
tection, while in our work the attacker aims to maximally
ruin the sender’s throughput.

Beyond the papers mentioned in Section 1, much work
in the stochastic games literature has been focused around
iterative algorithms that eventually converge to a Nash equi-
librium or approximate Nash equilibrium, posing additional
constraints on the game for convergence, such as existence
of global optima, or saddle points [20,24,38]. For the finite-
horizon case, polynomial-time algorithms have been devel-
oped, with a running time that is quadratic in the size of the
state space [21]. Iterative convergence approaches have also
been combined with optimal solving of stage games [14,15],
but without runtime guarantees. Our context allows us to
develop a significantly more efficient algorithm that only re-
quires traversing the state space once.

3. SYSTEM MODEL AND ASSUMPTIONS
In this work, we explore a three-node scenario consisting of

a sender, a receiver, and a jamming attacker over a time in-
terval T , as illustrated in Figure 1. The sender and receiver
collectively comprise the defender, able to use single-channel
DSSS or N -channel FHSS, while all of the defender’s deci-
sions in our scenario are made by the sender. We assume
that both the attacker and defender are energy constrained,
starting with initial energy Ea,0 and Ed,0, respectively, so
they are forced to balance between maximum performance
and minimum energy expenditure.

We assume that the time interval T is divided into dis-
tinct sub-intervals referred to as rounds. In each round, the
defender chooses a transmission power pd from a discrete
set of power levels Pd ⊆ {0, 1, . . . , pd,max}, where pd,max

is the defender’s maximum transmission power. When the

defender transmits with power pd in a round, it incurs an
energy cost ǫd(pd), and we assume two fundamental proper-
ties of this cost function: monotonicity and strict positivity.
Monotonicity of the cost function simply means that higher
transmission power incurs higher energy cost, while strict
positivity means that all actions incur an energy cost, even
a play of pd = 0, in which case the defender pays a leakage
cost while sleeping. In the case of FHSS, the defender also
chooses which of the N channels it will use for communica-
tion. We assume that the underlying synchronization, con-
figuration, and channel switching costs are negligible, and
thus we treat them as free. We illustrate this system in
Figure 2.

The attacker’s energy model is similar. In each round,
the attacker chooses a jamming power pa from a discrete
set of power levels Pa ⊆ {0, 1, . . . , pa,max}, where pa,max is
the attacker’s maximum jamming power. The energy cost
of the attacker’s action in the round is also dictated by a
function ǫa(pa), which is both monotonic and strictly posi-
tive as with the defender, but with one significant difference.
In the FHSS case, the attacker is allowed to reconfigure the
radio front-end to jam any k out of the N channels, where
1 ≤ k ≤ N , using power pa per channel. The cost for the
attacker for this round is then given by kǫa(pa) proportional
to the number of channels jammed.

To measure the defender’s performance in each round,
we consider the throughput T (pd, pa) achieved in the round
when the defender transmits with power pd and the attacker
transmits on the same channel with power pa. Moreover,
since the value of the sender’s data to the receiver may de-
crease with time, we introduce a discount factor δ ∈ (0, 1]
for every round in which the data does not reach the re-
ceiver. This discount function is representative of a system
where the sender has all data at the beginning of the time
interval and desires rapid transmission. To compensate for
the latency induced by the jamming attack in the defender’s
utility function, we multiply the throughput T (pd, pa) by δ
for each round of delay, so any throughput attained during
round i is valued according to the latency-adjusted through-
put δiT (pd, pa). When the attacker jams on a channel dif-
ferent from that used by the defender, we use the equivalent
throughput T (pd, 0), since the attack has no effect.

We assume a perfect knowledge scenario starting at the
beginning of the time interval, so the players know the initial
energy of both players. In addition, we assume that each
player can observe their opponent’s actions in that round
by the end of the round, so each player always has complete
knowledge of their opponent’s residual energy at the begin-
ning of the next round when they have to decide what to do
in that round.

4. FINITE-ENERGY JAMMING GAMES
We model a finite-energy jamming game in the described

wireless system as a zero-sum finite-horizon stochastic game
with deterministic transitions. In much of the related liter-
ature, jamming scenarios have been modeled as single-shot
or repeated games [2,34]. Both of these approaches are sen-
sible when no state is present, for example, when energy
constraints do not apply, as the same strategy remains op-
timal throughout the game. Since our game has state in
the form of residual energy, neither single-shot nor repeated
game models can adequately capture our setting. Instead,
we turn to stochastic games, where the game state transi-



tions at every time step. Since residual energy is monotoni-
cally decreasing, we can model our game as a finite-horizon
game. We allow all transitions between states to be deter-
ministic, since the energy cost of different actions is assumed
to be fixed and known.

In two-player zero-sum games, the solution concept of
Nash equilibria is particularly compelling. In general-sum
games, there can be many Nash equilibria with different ex-
pected utilities for the players, and playing a Nash equilib-
rium strategy says nothing about the expected utility for a
player, if the opponent does not play a best response. This
is not so for zero-sum games, where playing a Nash equilib-
rium strategy guarantees at least a certain level of utility in
expectation. That guaranteed utility is called the value of
the game, and it is achieved when the opponent responds
optimally to the player’s optimal (Nash equilibrium) strat-
egy. The zero-sum property guarantees that the player can
only benefit (and get more than the value of the game) if the
opponent does not play optimally. We will formally define
a Nash equilibrium in Section 4.1.

We first introduce our game framework in the context of
the single-channel communication system. We then extend
our study to include FHSS with the jammer transmitting on
a fixed number of channels. After this, we explore a further
extension using FHSS where the attacker can vary the num-
ber of jammed channels at each time step. For the FHSS
settings, we are not assuming that a single channel is chosen
at each time step. Rather, we assume that the frequency
hopping is so effective that the best the jammer can do is
jam a random subset of channels in the hopes of disrupt-
ing communication. Finally, we show how to compute Nash
equilibria for these games.

4.1 Single-Channel Game
The first game we explore is the single-channel finite-

energy jamming game. This game uses a single DSSS chan-
nel and has the attacker and defender select power levels
from a discrete set. The parameters to the game are the
discount factor δ and the initial energies Ed,0, Ea,0 for the
players. Based on the defender’s residual energy Ed at the
start of a round, the defender’s action set Ad(Ed) for that
round is defined as Ad(Ed) = {p ∈ Pd : ǫd(p) ≤ Ed}. The
attacker’s action set Aa(Ea) is similarly defined. When the
defender and attacker choose respective actions pd ∈ Ad(Ed)
and pa ∈ Aa(Ea), the immediate utility to the defender is
ud(pd, pa) = T (pd, pa), which is later discounted by δi during
round i to compensate for latency. The attacker’s immediate
utility is ua(pd, pa) = −ud(pd, pa). The defender chooses its

action based on an energy-dependent strategy σ
Ed,Ea

d that
specifies a probability distribution over actions in Ad(Ed).

For example, σ
Ed,Ea

d (p) is the probability the defender will
transmit at power level p ∈ Pd. We analogously define the
attacker’s strategy σ

Ed,Ea
a . Once the players choose their

actions in a round i, with the defender and attacker re-
spectively transmitting at power levels pd and pa, the game
transitions to round i + 1, where the players have residual
energy Ed − ǫd(pd) and Ea − ǫa(pa). The game continues
in this way until the defender’s residual energy is such that
Ad(Ed) ⊆ {0}, after which ud = ua = 0.

Considering the entire game over multiple rounds, a strat-
egy profile σ is a pair of strategies σ = {σd, σa} that fully
specifies the game. Using the strategy profile σ, we can then
compute the defender’s total expected utility uσ(Ed,0, Ea,0)

using a recursive definition over diminishing energy levels as

uσ(Ed, Ea) =
∑

pd∈Ad(Ed)

∑

pa∈Aa(Ea)

σ
Ed,Ea

d (pd)σ
Ed,Ea
a (pa)

×
(

ud(pd, pa) + δuσ(Ed − ǫd(pd), Ea − ǫa(pa))
)

(1)

where ud(pd, pa) = T (pd, pa) for the single-channel game.
This can be viewed as a series of normal-form games, where
the payoff matrix for each game depends on the values of
the subgames induced by the various choices of actions.

A Nash equilibrium is a strategy profile σ∗ = {σ∗
d , σ

∗
a}

that satisfies

σ∗
d = argmax

σd

u{σd,σ
∗

a}(Ed,0, Ea,0)

σ∗
a = argmax

σa

u{σ∗

d ,σa}(Ed,0, Ea,0)

In other words, in a Nash equilibrium, each player maximizes
their own utility, given the strategy of the other player.

4.2 Multi-Channel Game with FHSS
We next consider a finite-energy jamming game in which

the defender spreads its transmissions over N orthogonal
channels by choosing a different channel randomly in each
round of the game. In our first FHSS-based game, the at-
tacker chooses k channels to jam every round, where k is
constant for the duration of the game. In each round, the
attacker has a probability of k/N of interfering with the
defender’s transmission, so the immediate utility for the de-
fender in this case is given by

ud(pd, pa) =
k

N
T (pd, pa) +

N − k

N
T (pd, 0) (2)

The defender’s total expected utility is given by substituting
(2) into (1). In this game, the energy expenditure of the
attacker is increased by a factor of k, meaning that an attack
action with power pa incurs a cost kǫa(pa).

4.3 Multi-Channel Game with FHSS and Se-
lection of Number of Channels to Jam

Similar to our second game, we consider a generalization
of the previous FHSS game in an N -channel communication
system. In our second FHSS-based game, the attacker is free
to choose any value of k ∈ {1, . . . , N} in each round as part
of its attack strategy. Given the additional game parameter,
the attacker’s action set Aa(Ea) in each round is extended
to

Aa(Ea) = {(p, k) ∈ Pa × {1, . . . , N} : kǫa(p) ≤ Ea}

and the utility function ud(pd, pa) is extended to ud(pd, pa, k),
using the same form as (2). In contrast to the previous
game with fixed k, treating k as a variable game parameter
allows the attacker to effectively balance the tradeoff be-
tween higher utility and greater energy expenditure of jam-
ming more channels. In addition, since the attacker’s action
set Aa(Ea) has increased in dimensionality compared to the
fixed-k case, the complexity of solving the game increases
linearly in N .

4.4 Computing a Nash Equilibrium
For each of the three game models described above, we can

use the same basic approach for computing a Nash equilib-
rium. Each of those three games can be viewed as a series



of normal-form games, each of which depend on the val-
ues of subgames to fill out their payoff matrix. We use this
subgame property, along with the well-known fact that zero-
sum normal-form games can be solved in polynomial time
using linear programming, to solve our problem. Using dy-
namic programming, solutions are constructed bottom up
through successively solving linear programs that compute
Nash equilibria of subgames. The pseudocode is presented
as Algorithm 1.

Input: Energy levels Ed, Ea, discount factor δ
Output: Nash equilibrium strategy profile σ
U ← [ ] // dynamic programming table
for E′

d ∈ {0, . . . , Ed} do

for E′
a ∈ {0, . . . , Ea} do

M ← [ ] // payoff matrix
for pd ∈ Ad(E

′
d), pa ∈ Aa(E

′
a) do

M [pd, pa] =
u(pd, pa) + δ · U [E′

d − ǫd(pd), E
′
a − ǫa(pa)]

end

U [E′
d, E

′
a] = GameValue(M)

σE′

d,E
′

a = StrategyProfile(M)
end

end

Algorithm 1: Bottom-up dynamic program for com-

puting Nash equilibria in finite-energy jamming

games.

The dynamic program iterates over all possible energy lev-
els for the two players, starting from the smallest levels pos-
sible. For each pair of energy levels, a payoff matrix M is
computed. Line 1 implements the recursive equation for util-
ity given in (1) or (2) depending on the game played. That
is, it sets the payoff to the immediate payoff achieved from
the actions taken plus the value of the subgame reached by
the power loss, weighted by the discount factor δ. Lines 1
and 1 extract the value of the game and a strategy profile
that achieves a Nash equilibrium.

Our dynamic program crucially relies on the fact that ev-
ery set of energies Ed, Ea induces a subgame, where the path
traveled to get to these energy levels does not matter. De-
pending on the round where the energy levels are reached,
the discount factor might be different. However, in terms
of computing a strategy for Ed, Ea, we can assume with-
out loss of generality that we are at round 0, since for any
other round i, every entry in M will be scaled by the same
discount factor δi, and so the optimal strategies will be the
same.

For the function calls GameValue and StrategyPro-

file in Lines 1 and 1, a solver for computing a Nash equi-
librium of M is needed. Since M is a standard payoff matrix
for a normal-form game (entries are constants, because val-
ues for the subgames have already been computed), we can
adopt the standard linear programming approach for com-
puting a Nash equilibrium strategy. We will show how to
compute a Nash equilibrium strategy for the defender, with
the case for the attacker being completely analogous.

The linear program is shown in Figure 3. The variable
v denotes the utility for the defender, which is to be maxi-
mized. The first two constraints ensure that the defender’s
strategy at the subgame forms a probability distribution.
The last constraint ensures that no matter which action the
attacker selects, the defender is guaranteed value v. For

any optimal solution, the value of v will be the value of the
game, and the computed strategy will be a Nash equilibrium
strategy.

max v (3)
∑

pd∈Ad(Ed)

σ
Ed,Ea

d
(pd) = 1 (4)

σ
Ed,Ea

d
(pd) ≥ 0 ∀pd ∈ Ad(Ed) (5)

∑

pd∈Ad(Ed)

σ
Ed,Ea

d
(pd) ·M [pd, pa] ≥ v ∀pa ∈ Aa(Ea) (6)

Figure 3: The linear program used in computing a

Nash equilibrium strategy for the defender. Ad(Ed)
and Aa(Ea) are the sets of actions available for the

defender and attacker respectively, given their cur-

rent energy levels.

The number of linear programs can be upper-bounded by
the number of possible energy levels in subgames. Given
initial energy levels Ed,0 and Ea,0, the number of linear pro-

grams solved is O(
Ed,0

ǫd(0)
·
Ea,0

ǫa(0)
), since the power cost of sleep-

ing divides all other power costs. Each linear program has
size O(|Pd| · |Pa|).

Technically, our algorithm computes a subgame perfect
equilibrium, a refinement of Nash equilibria. A subgame
perfect equilibrium is a Nash equilibrium such that for any
subgame, even those reached with probability zero, the play-
ers are playing Nash equilibrium strategies for the subgame.
This provides an extra level of robustness over Nash equilib-
ria, as we are not only guaranteed the value of the game, but
also guaranteed to play optimally if the opponent chooses a
sub-optimal action, assuming the game is played optimally
onwards from there. This is not the same as optimally re-
sponding to any strategy of the opponent. Rather, it means
that we optimally respond to any current game state, as-
suming that the opponent will play optimally from then on,
even with mistakes in the past.

5. SIMULATION
To show the benefits of the finite-energy jamming game we

simulate three different games. To use realistic parameters
in the simulation we base our parameters on measurement
data taken from communication nodes and a jammer imple-
mented with GNUradio on USRP2 software-defined radio.
We consider an attacker that is able to adapt their power
level and also the number of channels they jam on. The
defender is able to choose a channel to transmit on and also
choose a power level to transmit at. For our measurements
the sender and jammer are connected to the receiver via
wire with equal attenuation. This mimics the location of
the senders being equidistant from the receiver. In this sec-
tion, we discuss the parameters we use for our simulation,
the optimization results, and the game play simulation we
use.

5.1 Game parameters
We take RF power measurements at the connection port

and find that the power expended for a low-power attack
as 1.16µw and for a high-power attack as 3.22µw. We also



(a) Single channel (b) Fixed FHSS (c) Optimal FHSS

Figure 4: To demonstrate the optimization, we show the expected utility for 3 different games with varying

initial energy levels. For all the games a discount factor of .975 is used and in the frequency hopping game

the defender uses 50 channels. The color scale shows the utility of the game.

assume a continuous energy drain per round that we esti-
mate as .5µw. This constant drain controls for calculation,
battery leakage, and other constant sources of drainage. We
normalize the cost of energy usage per round and define
{1, 3, 7} ∈ Pa as the values for sleeping, low power, and
high power attacking, respectively. The jammer is able to
simultaneously jam on multiple channels during any round.
We assume a linear cost increase per channel for the low- or
high-power attacks. Sleeping does not use channels so we
assume it has no increased costs.

Likewise for the defender we find power at the port for a
low-power transmission as 6.5µw and a high-power transmis-
sion as 7.83µw. We again assume a constant energy drain
of .5µw. Normalizing and approximating the cost per round
of each play we find costs of {1, 14, 16} ∈ Pd for sleeping,
low power transmissions, and high power transmissions, re-
spectively. We assume that synchronization and key-sharing
is done beforehand and that there is no extra cost for the
sender to use frequency hopping.

If the defender is transmitting we assume a constant rate
so the normalized throughput per round is approximated by
packet delivery ratio (PDR). Because of this we use packet
delivery ratio in lieu of throughput when the defender is
transmitting and assume zero throughput when the defender
is sleeping. We measure packet delivery ratio in our single
channel 802.15.4 system as

pdr(Pa,Pd) =





0 .96 1

0 .58 .92

0 0 0



 (7)

where the attacker is the row player and the defender is the
column player. We assume that there is no cross-channel
interference so if the jammer is not attacking a particular
channel there is no added interference.

In order to mimic both players using the same class of
devices, we constrain the attacker and defender to have sim-
ilar initial energy resources. We define similar initial energy
resources as both players having an initial energy that is
within one order of magnitude of the other.

5.2 Optimization
We use Algorithm 1 to arrive at an optimal strategy and

expected utility. In Figure 4(a) we show the values for the
single channel game with a .975 discount factor. In Fig-

(a) Attacker’s energy

(b) Defender’s energy

(c) Defender’s utility

Figure 5: The average over 10,000 runs of a simu-

lation of the single channel game with two rational

players and a .975 discount factor.



ure 4(b) we show the expected defender utility for a de-
fender with 50 channels and an attacker with 50 channels
and .975 discount. In Figure 4(c) we show the defender’s
utility when the defender has 50 channels and the attacker
optimizes power and number of channels. The optimization
provides confirmation of what is intuitively expected. The
single channel game heavily favors the attacker while either
of the frequency hopping games with 50 channels favors the
defender.

5.3 Game play
We designed a simulator to explore the performance of our

computed strategies and compare them to other strategies.
Other strategies we use for comparison include a constant
strategy, a uniform random strategy, and a weighted average
algorithm [11]. The random strategy that we consider uni-
formly samples from all possible strategies. The weighted
average algorithm was designed for a similar power game.
It works by keeping a weighted vector of the likelihood of
their opponents strategy as well as a matrix of the expected
utility for given combinations of plays. The player then uses
these to compute their strategy.

We designed a simulator for each of the games introduced
in Section 4. For the single channel, input parameters in-
clude both players’ strategies as well as the initial energy of
both players, and the discount factor for the players. In the
frequency hopping spread spectrum case with a constant
number of attacker channels the simulator also takes the
number of channels used by the defender N and attacker k.
The simulator also accepts the precomputed optimal strat-
egy for both players for the given game and the discount
factor.

To demonstrate the operation of our simulator we show
the average run of 10,000 trials of the single channel game
with a .975 discount factor and two rational players in Fig-
ure 5. The initial energy for assigned to both player is 500
units in this experiment, and the power levels and corre-
sponding energy usage are given in Section 5.1. Figures 5(a)
and 5(b) show the average remaining energy for the attacker
and defender, respectively, at the given time. Figure 5(c) on
the other hand shows the average instantaneous utility for
the defender.

To simulate the frequency hopping game the defender se-
lects one channel n ∈ [1, N ] at the beginning of every round.
Similarly, the attacker selects k of N channels to interfere
with. If n is one of the k channels selected then the at-
tacker is successful and the throughput is calculated using
(7). Otherwise the throughput is calculated using

pdr(Pa,Pd) =





0 .96 1

0 .96 1

0 .96 1



 (8)

6. SIMULATION RESULTS
In this section, we discuss simulated scenarios using the

setup and parameters presented in Section 5. We explore
all three games from Section 4 and describe insights gained
from various experiments.

6.1 Single-Channel Game
For the single channel game we compare the performance

of the rational, random, and adaptive weighted average algo-
rithm for both players. In Table 1 the utility averaged over

Figure 6: Counts of how many times out of a thou-

sand a defender chooses a strategy against a con-

stantly sleeping attacker with a .9 discount factor.

We define a dead node as a node that has expended

all of its energy.

100,000 runs for various attacker and defender strategy pairs
is presented. Both players start with 200 units of energy and
choose optimal strategies for the given discount factor. The
results for the rational player always outperform the random
and weighted average player’s performance, but sometimes
this is less pronounced. Although the gain from rationality
is marginal with the .9 discount factor, a second factor to
consider is that rationality decreases deviation of results. In
Table 2 we show that either player playing rationally greatly
decreases the standard deviation in utility. This decrease in
variance can be a significant benefit for designing secure sys-
tems in that it is able to provide performance guarantees and
less uncertainty.

The single channel game also provides an interesting in-
sight on the effect of rationality on the defender’s utility. In
Table 3 we see that rational play increases the defender’s
overall throughput. The smaller the discount factor, the
greater the gain in defender’s throughput from rationality
against a rational attacker.

Another interesting result is highlighted in Figure 6. In
this figure the attacker always chooses to power nap while
the defender is rational. This results in an attacker that
has a slow but constant energy fade. The rational defender
plays as if the attacker was also rational, and therefore he
transmits with very low probability in the beginning of the
game. This is highly counterintuitive from a throughput
perspective, since the sender could transmit freely, and gain
much higher utility. This is an example of how inoptimal
opponents are not exploited optimally by a Nash equilibrium
strategy, since the sender has to assume that the jammer
might start playing optimally at each round, in order to
guarantee attaining the value of the game.

We also explored the effect of a difference in energy be-
tween the two players. In Figure 7 we show the defender’s
utility for various advantages in the attacker’s energy. The
curve here, while qualitatively intuitive, can be instructive
in how much extra energy a defender must have to perform
well in the presence of an attacker.

6.2 Multi-Channel Game with FHSS
The second set of experiments we conduct considers a de-

fender frequency hopping over a set of N channels and a
jammer blocking a set of K channels per round. In Figure 8
we show the defender’s utility for various sets of attacker



Defense

.9 Discount Factor .95 Discount Factor .99 Discount Factor

Rational Random Weighted Rational Random Weighted Rational Random Weighted

A
tt
a
ck Rational 0.2575 0.2573 0.2564 1.2424 1.2351 1.2369 6.0236 6.0031 6.0119

Random 0.2583 3.2958 3.1432 1.2452 4.7213 4.5393 6.08 7.0388 6.8867

Weighted 0.2577 2.5974 2.5286 1.25 3.545 3.4438 6.425 5.0245 4.9568

Table 1: Mean defender’s utility for the single channel game.

Defense

.9 Discount Factor .95 Discount Factor .99 Discount Factor

Rational Random Weighted Rational Random Weighted Rational Random Weighted

A
tt
a
ck Rational 0.0956 0.3124 0.2942 0.3682 0.7693 0.7255 1.0194 1.3730 1.3590

Random 0.2651 0.9328 0.9878 0.5104 1.1131 1.1843 1.0983 1.4895 1.5331

Weighted 0.2554 1.3741 1.4083 0.5049 1.9931 2.0147 1.1843 3.1574 3.1580

Table 2: Standard deviation of the defender’s utility for the single channel game.

Figure 7: Advantage gained by an attacker or de-

fender having a energy advantage with varying dis-

count factors. The advantage shown is the multi-

plicative advantage such that defender’s advantage

= Ed

Ea
.

Figure 8: Defender’s utility for the set number of

attacker channel FHSS game. The attacker and de-

fender both choose their power levels optimally for

the number of channels they are using.

Figure 9: In this figure, we show the mean de-

fender’s utility for varying numbers of defending

channels and an optimal attacker.

and defenders channel numbers with a .975 discount factor
when both players are rational. This leads to two conclu-
sions when the defender and attacker have similar initial
energy. First, a defender with 20 or more channels effec-
tively mitigates the jamming threat. Second, an attacker
jamming fewer channels in this case can be beneficial to the
attacker. One likely explanation for this would be sensitivity
to power cost, since only being able to jam a large number
of channels (as opposed to being able to vary this) expends
a large portion of the energy.

6.3 Multi-Channel Game with FHSS and Se-
lection of Number of Channels to Jam

Our third set of experiments considers the FHSS game
where the attacker can choose power levels and the number
of simultaneous channels to attack. In Figure 9 we show the
mean defender’s utility for various discount factors. This fig-
ure suggests that above a certain number of channels, even
with an optimal attacker, there is a diminishing return on
investment for the defender adding more channels. The at-
tacker’s strategy with the lower discount factor causes an
attacker to select a very aggressive strategy, often expend-
ing all its energy as quickly as possible in hopes of causing
some degradation to the transmission.

In Figure 10 we show the defender’s utility for various
attacker multiplicative energy advantages defined as Ea

Ed
.



Defense

.9 Discount Factor .95 Discount Factor .99 Discount Factor

Rational Random Weighted Rational Random Weighted Rational Random Weighted

A
tt
a
ck Rational 7.0159 0.7682 1.0190 6.4976 1.9530 2.1542 6.6333 6.1134 6.1242

Random 6.8493 7.2073 7.0517 6.6224 7.2075 7.0662 6.6791 7.1996 7.0542

Weighted 6.2695 5.1466 5.0629 6.4519 5.1496 5.0321 7.0621 5.1268 5.0613

Table 3: Defender’s mean throughput for the single channel game.

(a) .9 discount factor

(b) .95 discount factor

(c) .99 discount factor

Figure 10: Defender’s utility for various channel

numbers against an optimal attacker. We define the

attacker’s energy advantage as Ea

Ed
.

These curves allow for a decision of how much of an energy
advantage an attacker needs to overcome spread spectrum.
This also illustrates that the number of channels a defender
needs to be protected from a jamming attack varies on the
difference in the two players energy.

6.4 Summary of Simulation Results
In this work, we consider three different finite-energy jam-

ming games. The first is a single channel DSSS jamming
game, the second is a FHSS game where the attacker jams a
constant number of channels, and the third is a power nap
game with jammer attacker the optimal number of channels.

In the first game we find that either player playing ra-
tional decreases the variance in the game, a beneficial re-
sult for designing a secure communication system. We also
noted that in this game a rational defender greatly increased
the overall throughput of the system. We also showed that
rationality can be detrimental to the defender. When the
discount factor is small and the attacker chooses a strategy
of constantly sleeping the defender is intimidated into not
transmitting until most of the energy is drained.

In the second game we show that the a defender that
hops over at least 20 channels is effectively able to mitigate
the effects of jamming. We also show, counter to intuition,
in some scenarios when the attacker jams less simultaneous
channels it has a greater impact.

In the third game we confirm the intuition of a diminishing
return for the defender past a certain number of channels.
We also show the tradeoff in the advantage in the attacker’s
energy level and the number of channels. These charts pro-
vide a basis for choosing the number of channels a defender
needs for hopping based on how much extra energy is avail-
able for the jammer.

7. CONCLUSION
In this work we introduced finite-energy jamming games, a

game-theoretic framework to understand energy-constrained
jammer-defender interaction. We developed several game
models within this framework, where the sender and jam-
mer can vary their power levels and whether to send at all.
In our more advanced models, we introduced frequency hop-
ping to the game model, and investigated the effect of allow-
ing the jammer to vary number of channels jammed on. To
do this, we modeled our system as a zero-sum finite-horizon
stochastic games with deterministic transitions. Leveraging
the properties of our game, we designed a simple and fast
polynomial-time dynamic programming algorithm for com-
puting a Nash equilibrium. We implemented a simulator
to explore the practical properties of our framework across
our different game types. Using our simulator, we investi-
gated the possible guarantees that can be achieved under
various game settings. We also investigated the practical
performance of Nash equilibrium strategies against simpler



strategies, such as adaptive or fixed randomized strategies.
An interesting result from this analysis was the decrease in
variance provided from a rational player, a beneficial prop-
erty for designing secure systems. Another interesting re-
sult provided by this analysis is that an inoptimal opponent
that sleeps constanly still leads to a rational sender incur-
ring large performance losses, due to the assumption that
the attacker will play optimally.

There are several interesting future research directions for
extending our current work. First, to make the problem
more practical, it would be interesting to relax the perfect
knowledge assumption and replace it with an observation
based approach. This would make the game model signifi-
cantly harder to solve, and so more advanced computational
approached would be needed. Second, expanding this work
to the setting of multiple jammers and multiple defenders
would provide a better understanding of interactions of ad-
versaries in the wild. Third, the scope of both players could
be expanded to include multiple layers in the communica-
tion stack and cross-layer attacks. Finally, there are sev-
eral options for expanding the action space of the players,
in ways that are easily incorporated in our current model
and algorithms. We currently allow the players to select
a single power level per round, even when the number of
channels jammed on is more than one. There could be cases
where the sender and jammer would want to select different
power levels for different channels. This would incur an ex-
ponential increase in the number of actions available to the
players, but our algorithmic results would transfer to such
a setting. Related to this, it might be possible to show that
certain combinations of power levels over different channels
are never optimal, in order to avoid this blowup. Likewise,
in this paper we only allowed the sender to transmit on a
single channel. In future work, it would be interesting to
investigate whether sending on several channels at once is
beneficial.
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[1] T. Alpcan and T. Başar. Network Security: A

Decision and Game-Theoretic Approach. Cambridge
University Press, 2010.

[2] E. Altman, K. Avrachenkov, and A. Garnaev.
Jamming in wireless networks: The case of several
jammers. In IEEE International Conference on Game
Theory for Networks, 2009, pages 585–592.

[3] E. Altman, K. Avrachenkov, and A. Garnaev. A
jamming game in wireless networks with transmission
cost. In Network Control and Optimization, pages
1–12. Springer, 2007.

[4] E. Altman, K. Avrachenkov, and A. Garnaev.
Transmission power control game with SINR as
objective function. In Network Control and
Optimization, pages 112–120. Springer, 2009.

[5] E. Altman, K. Avrachenkov, R. Marquez, and
G. Miller. Zero-sum constrained stochastic games with
independent state processes. Mathematical Methods of
Operations Research, 62(3):375–386, 2005.

[6] J. Becker, J. D. Lohn, and D. Linden. An in-situ
optimized anti-jamming beamformer for mobile
signals. In IEEE Antennas and Propagation Society
International Symposium 2012, pages 1–2.

[7] S. Bhattacharya, A. Khanafer, and T. Başar.
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