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Abstract

We provide a single reduction that demonstrates that in normal-form games: (1) it is NP-complete to
determine whether Nash equilibria with certain natural properties exist (these results are similar to those ob-
tained by Gilboa and Zemel [Gilboa, I., Zemel, E., 1989. Nash and correlated equilibria: Some complexity
considerations. Games Econ. Behav. 1, 80–93]), (2) more significantly, the problems of maximizing certain
properties of a Nash equilibrium are inapproximable (unless P =NP), and (3) it is #P-hard to count the
Nash equilibria. We also show that determining whether a pure-strategy Bayes–Nash equilibrium exists in
a Bayesian game is NP-complete, and that determining whether a pure-strategy Nash equilibrium exists
in a Markov (stochastic) game is PSPACE-hard even if the game is unobserved (and that this remains
NP-hard if the game has finite length). All of our hardness results hold even if there are only two players
and the game is symmetric.
© 2008 Elsevier Inc. All rights reserved.

JEL classification: C63; C70; C72; C73

✩ This work appeared as an oral presentation at the Second World Congress of the Game Theory Society (GAMES-04),
and a short, early version was also presented at the Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI-03). The material in this paper is based upon work supported by the National Science Foundation under grants IIS-
0234694, IIS-0427858, IIS-0234695, and IIS-0121678, as well as two Sloan Fellowships and an IBM PhD Fellowship.

* Corresponding author at: Duke University, Department of Computer Science and Department of Economics, Box
90129, LRSC, Durham, NC 27708, USA.

E-mail addresses: conitzer@cs.duke.edu (V. Conitzer), sandholm@cs.cmu.edu (T. Sandholm).

0899-8256/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.geb.2008.02.015



Author's personal copy

622 V. Conitzer, T. Sandholm / Games and Economic Behavior 63 (2008) 621–641

1. Introduction

Game theory provides a normative framework for analyzing strategic interactions. However,
in order for anyone to play according to the solutions that it prescribes, these solutions must be
computed. There are many different ways in which this can happen: a player can consciously
solve the game (possibly with the help of a computer1); some players can perhaps eyeball the
game and find the solution by intuition, even without being aware of the general solution con-
cept; and in some cases, the players can converge to the solution by following simple learning
rules. In each case, some computational machinery (respectively, one player’s conscious brain,
a computer, one player’s subconscious brain, or the system consisting of all players together)
arrives at the solution using some procedure, or algorithm.

Some of the most basic computational problems in game theory concern the computation
of Nash equilibria of a finite normal-form game. An example problem is to compute one Nash
equilibrium—any equilibrium will do. What are good algorithms for solving such a problem?
Certainly, we want the algorithm to always return a correct solution. Moreover, we are interested
in how fast the algorithm returns a solution. Generally, as the size of the game (more generally,
the problem instance) increases, so does the running time of the algorithm. Whether the algorithm
is practical for solving larger instances depends on how rapidly its running time increases. An
algorithm is generally considered efficient if its running time is at most a polynomial function
of the size of the instance (game). There are certainly other properties that one may want the
algorithm to have—for example, one may be interested in learning algorithms that are simple
enough for people to use—but the algorithm should at least be correct and computationally
efficient.

The same computational problem may admit both efficient and inefficient algorithms. The
theory of computational complexity aims to analyze the inherent complexity of the problem it-
self: how fast is the fastest (correct) algorithm for a given problem? P is the class of problems
that admit at least one efficient (polynomial-time) algorithm.2 While many problems have been
proved to be in P (generally by explicitly giving an algorithm and proving a bound on its run-
ning time), it is extremely rare that someone proves that a problem is not in P . Instead, to show
that a problem is hard, computer scientists generally prove results of the form: “If this problem
can be solved efficiently, then so can every member of the class X of problems.” This is usually
shown using a reduction from one problem to another (we will give more detail on reductions
in Section 2). If this has been proven, the problem is said to be X -hard (and X -complete if,
additionally, the problem has also been shown to lie in X ). The strength of such a hardness re-
sult depends on the class X used. Usually, the class NP is used (we will describe NP in more
detail in Section 2), and most problems of interest turn out to be either in P or NP-hard. NP
contains P , and it is generally considered unlikely that P =NP . Exhibiting a polynomial-time
algorithm for an NP-hard problem (thereby showing P =NP) would constitute a truly major
upset: among other things, it would (at least in a theoretical sense, and possibly in a practical

1 The player might also be a computer, for example, a poker-playing computer program. Indeed, at least for some
variants of poker, the top computer programs are based around computing a game-theoretic solution (usually, a minimax
strategy).

2 To defineP formally (which we will not do here), one must also formally define a model of computation. Fortunately,
the class of polynomial-time solvable problems is quite robust to changes in the model of computation. Nevertheless,
it is in principle possible that humans have a more powerful computational architecture, and hence that they can solve
problems outside P efficiently.
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sense) break current approaches to cryptography, and it would allow a computer to find a proof
of any theorem that has a proof of reasonable length.

The problem of finding just one Nash equilibrium of a finite normal-form game is one of
the rare interesting problems that have neither been shown to be in P , nor shown to be NP-
hard. Not too long ago, it was dubbed “a most fundamental computational problem whose
complexity is wide open” and “together with factoring, [...] the most important concrete open
question on the boundary of P today” (Papadimitriou, 2001). A recent sequence of break-
through papers (Chen and Deng, 2005, 2006; Daskalakis et al., 2006; Daskalakis and Pa-
padimitriou, 2005) shows that the problem is PPAD-complete, even in the two-player case.
[An earlier result shows that the problem is no easier if all utilities are required to be in
{0,1} (Abbott et al., 2005).] This gives some evidence that the problem is indeed hard, al-
though not nearly as much is known about the class PPAD as about NP . The best-known
algorithm for finding a Nash equilibrium, the Lemke–Howson algorithm (Lemke and How-
son, 1964), has been shown to indeed have exponential running time on some instances (and
is therefore not a polynomial-time algorithm) (Savani and von Stengel, 2006). More recent al-
gorithms for computing Nash equilibria have focused on guessing which of the players’ pure
strategies receive positive probability in the equilibrium: after this guess, only a simple lin-
ear feasibility problem needs to be solved (Dickhaut and Kaplan, 1991; Porter et al., 2008;
Sandholm et al., 2005). These algorithms clearly require exponentially many guesses, and hence
exponential time, on some instances, although they are often quite fast in practice.

The interest in the problem of computing a single Nash equilibrium has in large part been
driven by the fact that it posed a challenge to complexity theorists. However, from the perspec-
tive of a game theorist, this is not always the relevant computational problem. One may, for
example, be more interested in what the best equilibrium of the game is (for some definition of
“best”), or whether a given pure strategy is played in any equilibrium, etc. Gilboa and Zemel
(1989) have demonstrated that many of these problems are in fact NP-hard. In Section 3, we
continue this line of research by providing a single reduction that proves many results of this type.
One important improvement over Gilboa and Zemel’s results is that our reduction also shows in-
approximability results: for example, not even an equilibrium that is approximately optimal can
be found in polynomial time, unless P =NP .3 We also use the reduction to show that counting
the number of Nash equilibria (or connected sets of Nash equilibria) is #P-hard.

We proceed to prove some additional results (not based on the main reduction). In Section 4,
we consider Bayesian games and show that determining whether a pure-strategy Bayes–Nash
equilibrium exists is NP-complete. Finally, in Section 5 we show that determining whether a
pure-strategy Nash equilibrium exists in a Markov game is PSPACE-hard even if the game is
unobserved, and that this remains NP-hard if the game has finite length. (“Unobserved” means
that the players never receive any information about what happened earlier in the game.) All
of the hardness results in this paper hold even if there are only two players and the game is
symmetric. These results suggest that for sufficiently large games, we cannot expect the players
to always play according to these solution concepts, whether they are naïve learning players or
sophisticated game theorists armed with state-of-the-art computing equipment.

3 It should be noted that this is different from the problem of computing an approximate equilibrium (Daskalakis et al.,
2007; Lipton et al., 2003), that is, a strategy profile from which individual players have only a small incentive to deviate.
The problems that we consider require an exact equilibrium that approximately optimizes some objective.
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2. Brief review of reductions and complexity

A key concept in computational complexity theory is that of a reduction from one problem A

to another problem B . Informally, a reduction maps every instance of computational prob-
lem A to a corresponding instance of computational problem B , in such a way that the answer to
the former instance can be easily inferred from the answer to the latter instance. Moreover, we
require that this mapping is itself easy to compute. If such a reduction exists, then we know that,
in a sense, problem A is computationally at most as hard to solve as problem B: if we had an
efficient algorithm for problem B , then we could use the reduction together with this algorithm
to solve problem A.

The most directly useful reductions are those that reduce a problem of interest to a problem
for which we already have an efficient algorithm. However, another (backward) use of reductions
is to reduce a problem that is known or conjectured to be hard to the problem of interest. Such
a reduction tells us that we cannot hope to find an efficient algorithm for the problem of interest
without (implicitly) also finding such an algorithm for the hard problem.

Certain problems have been shown to be hard for a large class of problems (such as NP).
Problem A is hard for class X if any problem in X can be reduced to problem A. Thus, exhibiting
an efficient algorithm for the hard problem entails exhibiting an efficient algorithm for every
problem in the class. Once one problem A has been shown hard for a class, the task of proving
that another problem B is hard for the same class generally becomes much easier: we can do so
by reducing A to B . A problem is complete for a class if (1) it is hard for the class and (2) the
problem is itself in the class.

The class for which problems are most often shown to be hard (or complete) is NP . NP is
the class of all decision problems (problems that require a “yes” or “no” answer) such that if the
answer to a problem instance is “yes”, then there exists a polynomial-sized certificate for that
instance that proves that the answer is “yes.” More precisely, such a certificate can be used to
check that the answer is “yes” in polynomial time. The most famous complete problem for NP
is satisfiability (SAT). An instance of satisfiability is given by a Boolean formula in conjunctive
normal form (CNF)—that is, an “AND” of “ORs” of ground literals (Boolean variables and their
negations). We are asked whether there exists some assignment of truth values to the variables
such that the formula evaluates to true. For example, the formula (x1 ∨x2)∧ (−x1)∧ (x1 ∨−x2 ∨
−x3) is satisfiable by setting x1 to false, x2 to true, and x3 to false. (This assignment is also a
certificate for the instance, since it is easy to check that it makes the formula evaluate to true.)
However, if we add a fourth clause (x1 ∨ −x2 ∨ x3), then the formula is no longer satisfiable.
Satisfiability was the first problem shown to be NP-complete (Cook, 1971), but many other
problems have been shown NP-complete since then (often by reducing satisfiability to them).

There are other classes of problems that are even larger4 than NP , and for which natural
problems are sometimes shown to be hard, constituting even stronger evidence that there is no
efficient algorithm for the problem. One of these classes is #P , the class of problems count-
ing how many solutions a particular instance has. (It is required that solutions can be verified
efficiently.) An example problem in #P is counting how many satisfying assignments a CNF for-
mula has. (This problem is in fact #P-complete; see Valiant, 1979.) Another class is PSPACE ,
the class of problems that can be solved using only polynomial space.

4 Technically, for the classes we mention here, all we know is that they are no smaller than NP—they may in fact
coincide with NP . However, exhibiting such a coincidence would again constitute a major upset.
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3. The main reduction and its implications

In this section, we give our main reduction, which maps every instance of satisfiability (given
by a formula in conjunctive normal form) to a finite symmetric two-player normal-form game.
This reduction has no direct complexity implications for the problem of finding one (any) Nash
equilibrium. However, it has significant implications for many related problems. Most signifi-
cantly, it shows that, for many properties, deciding whether an equilibrium with that property
exists is NP-hard. For example, it shows that deciding whether an equilibrium with social wel-
fare at least k isNP-hard (hence it is also hard to find the social-welfare maximizing equilibrium,
arguably a key problem in equilibrium selection). As another example, it shows that deciding
whether a certain pure strategy occurs in the support of at least one Nash equilibrium isNP-hard.
This has indirect implications for the problem of finding one Nash equilibrium: several recent al-
gorithms for that problem operate by guessing the equilibrium supports and subsequently check-
ing whether the guess is correct (Dickhaut and Kaplan, 1991; Porter et al., 2008; Sandholm et al.,
2005). The result above implies that it is NP-hard to determine whether such an algorithm can
safely restrict attention to guesses in which a particular pure strategy is included in the support.

These are not the first results of this nature; Gilboa and Zemel provide a number of NP-
hardness results in the same spirit (Gilboa and Zemel, 1989). Our reduction demonstrates (some-
times stronger versions of) most of their hardness results, as well as some new ones. Significantly,
for the problems that concern an optimization (e.g., maximizing social welfare), we show not
only NP-hardness but also inapproximability: unless P =NP , there is no polynomial-time al-
gorithm that always returns a Nash equilibrium that is close to obtaining the optimal value. We
also use the reduction to show that counting the number of equilibria of a game is #P-hard. (One
may argue that it is impossible to have a good overview of all the Nash equilibria of a game if
one cannot even count them.)

For completeness, we review the following basic definitions.

Definition 1. In a normal-form game, we are given a set of players A, and for each player i ∈ A,
a (pure) strategy set Σi and a utility function ui :Σ1 × Σ2 × . . . × Σ|A| → R.

We will assume throughout that games have finite size.

Definition 2. A mixed strategy σi for player i is a probability distribution over Σi . A special case
of a mixed strategy is a pure strategy, where all of the probability mass is on one element of Σi .

Definition 3. (See Nash, 1950.) Given a normal-form game, a Nash equilibrium (NE) is vector of
mixed strategies, one for each player i, such that no player has an incentive to deviate from her
mixed strategy given that the others do not deviate. That is, for any i and any alternative mixed
strategy σ ′

i , we have E[ui(s1, s2, . . . , si , . . . , s|A|)] � E[ui(s1, s2, . . . , s
′
i , . . . , s|A|)], where each

sj is drawn from σj , and s′
i from σ ′

i .

It is well known that every finite game has at least one Nash equilibrium (Nash, 1950). We are
now ready to present our reduction.5

5 The reduction presented here is somewhat different from the reduction given in the earlier (IJCAI-03) version of this
work. The reason is that the new reduction presented here implies inapproximability results that the original reduction
does not.
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Definition 4. Let φ be a Boolean formula in conjunctive normal form (representing a SAT in-
stance). Let V be its set of variables (with |V | = n), L the set of corresponding literals (a positive
and a negative one for each variable6), and C its set of clauses. The function v :L → V gives the
variable corresponding to a literal, e.g., v(x1) = v(−x1) = x1. We define Gε(φ) to be the follow-
ing finite symmetric 2-player game in normal form. Let Σ = Σ1 = Σ2 = L ∪ V ∪ C ∪ {f }. Let
the utility functions be

• u1(l
1, l2) = u2(l

2, l1) = n − 1 for all l1, l2 ∈ L with l1 	= −l2;
• u1(l,−l) = u2(−l, l) = n − 4 for all l ∈ L;
• u1(l, x) = u2(x, l) = n − 4 for all l ∈ L, x ∈ Σ − L − {f };
• u1(v, l) = u2(l, v) = n for all v ∈ V , l ∈ L with v(l) 	= v;
• u1(v, l) = u2(l, v) = 0 for all v ∈ V , l ∈ L with v(l) = v;
• u1(v, x) = u2(x, v) = n − 4 for all v ∈ V , x ∈ Σ − L − {f };
• u1(c, l) = u2(l, c) = n for all c ∈ C, l ∈ L with l /∈ c;
• u1(c, l) = u2(l, c) = 0 for all c ∈ C, l ∈ L with l ∈ c;
• u1(c, x) = u2(x, c) = n − 4 for all c ∈ C, x ∈ Σ − L − {f };
• u1(x, f ) = u2(f, x) = 0 for all x ∈ Σ − {f };
• u1(f,f ) = u2(f,f ) = ε;
• u1(f, x) = u2(x, f ) = n − 1 for all x ∈ Σ − {f }.

We will show in Theorem 1 that each satisfying assignment of φ corresponds to a Nash equi-
librium of Gε(φ), and that there is one additional equilibrium. The following example illustrates
this.

Example 1. The following table shows the game Gε(φ) where φ = (x1 ∨ −x2) ∧ (−x1 ∨ x2).

x1 x2 +x1 −x1 +x2 −x2 (x1 ∨ −x2) (−x1 ∨ x2) f

x1 −2,−2 −2,−2 0,−2 0,−2 2,−2 2,−2 −2,−2 −2,−2 0,1
x2 −2,−2 −2,−2 2,−2 2,−2 0,−2 0,−2 −2,−2 −2,−2 0,1
+x1 −2,0 −2,2 1,1 −2,−2 1,1 1,1 −2,0 −2,2 0,1
−x1 −2,0 −2,2 −2,−2 1,1 1,1 1,1 −2,2 −2,0 0,1
+x2 −2,2 −2,0 1,1 1,1 1,1 −2,−2 −2,2 −2,0 0,1
−x2 −2,2 −2,0 1,1 1,1 −2,−2 1,1 −2,0 −2,2 0,1
(x1 ∨ −x2) −2,−2 −2,−2 0,−2 2,−2 2,−2 0,−2 −2,−2 −2,−2 0,1
(−x1 ∨ x2) −2,−2 −2,−2 2,−2 0,−2 0,−2 2,−2 −2,−2 −2,−2 0,1
f 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 ε, ε

The only two solutions to the SAT instance defined by φ is to either set both variables to
true, or both to false. The only equilibria of the game Gε(φ) are those where: (1) both players
randomize uniformly over {+x1,+x2}; (2) both players randomize uniformly over {−x1,−x2};
(3) both players play f .

We are now ready to prove the result in general.

6 Thus, if xi is a variable, +xi and −xi are literals. Often, the + is dropped from the positive literal (especially when
writing CNF formulas), but it is helpful for distinguishing positive literals from variables.
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Theorem 1. If (l1, l2, . . . , ln) (where v(li) = xi ) satisfies φ, then there is a Nash equilibrium of
Gε(φ) where both players play li with probability 1

n
, with expected utility n − 1 for each player.

The only other Nash equilibrium is the one where both players play f , and receive expected
utility ε each.

Proof. We first demonstrate that these combinations of mixed strategies indeed do constitute
Nash equilibria. If (l1, l2, . . . , ln) (where v(li) = xi ) satisfies φ and the other player plays li with
probability 1

n
, playing one of these li as well gives utility n − 1. On the other hand, playing the

negation of one of these li gives utility 1
n
(n − 4) + n−1

n
(n − 1) < n − 1. Playing some variable

v gives utility 1
n
(0) + n−1

n
(n) = n − 1 (since one of the li that the other player sometimes plays

has v(li) = v). Playing some clause c gives utility at most 1
n
(0) + n−1

n
(n) = n − 1 (since at

least one of the li that the other player sometimes plays occurs in clause c, since the li satisfy φ).
Finally, playing f gives utility n−1. It follows that playing any one of the li that the other player
sometimes plays is an optimal response, and hence that both players playing each of these li with
probability 1

n
is a Nash equilibrium. Clearly, both players playing f is also a Nash equilibrium

since playing anything else when the other plays f gives utility 0.
Now we demonstrate that there are no other Nash equilibria. If the other player always

plays f , the unique best response is to also play f since playing anything else will give util-
ity 0. Otherwise, given a mixed strategy for the other player, consider a player’s expected utility
given that the other player does not play f . (That is, the probability distribution over the other
player’s strategies is proportional to the probability distribution constituted by that player’s mixed
strategy, except f occurs with probability 0.) If this expected utility is less than n − 1, the player
is strictly better off playing f (which gives utility n − 1 when the other player does not play f ,
and also performs better than the original strategy when the other player does play f ). So this
cannot occur in equilibrium.

As we pointed out, here are no Nash equilibria where one player always plays f but the other
does not, so suppose both players play f with probability less than one. Consider the expected
social welfare (E[u1 + u2]), given that neither player plays f . It is easily verified that there is no
outcome with social welfare greater than 2n−2. Also, any outcome in which one player plays an
element of V or C has social welfare at most n − 4 + n < 2n − 2. It follows that if either player
ever plays an element of V or C, the expected social welfare given that neither player plays f is
strictly below 2n−2. By linearity of expectation it follows that the expected utility of at least one
player is strictly below n − 1 given that neither player plays f , and by the above reasoning, this
player would be strictly better off playing f instead of her randomization over strategies other
than f . It follows that no element of V or C is ever played in a Nash equilibrium.

So, we can assume both players only put positive probability on strategies in L ∪ {f }. Then,
if the other player puts positive probability on f , playing f is a strictly better response than
any element of L (since f does as at least as well against any strategy in L, and strictly better
against f ). It follows that the only equilibrium where f is ever played is the one where both
players always play f .

Now we can assume that both players only put positive probability on elements of L. Suppose
that for some l ∈ L, the probability that a given player plays either l or −l is less than 1

n
. Then the

expected utility for the other player of playing v(l) is strictly greater than 1
n
(0)+ n−1

n
(n) = n−1,

and hence this cannot be a Nash equilibrium. So we can assume that for any l ∈ L, the probability
that a given player plays either l or −l is precisely 1

n
.
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If there is an element of L such that player 1 puts positive probability on it and player 2 on
its negation, both players have expected utility less than n − 1 and would be better off switching
to f . So, in a Nash equilibrium, if player 1 plays l with some probability, player 2 must play l

with probability 1
n

, and thus player 1 must play l with probability 1
n

. Thus we can assume that
for each variable, exactly one of its corresponding literals is played with probability 1

n
by both

players. It follows that in any Nash equilibrium (besides the one where both players play f ),
literals that are sometimes played indeed correspond to an assignment to the variables.

All that is left to show is that if this assignment does not satisfy φ, it does not correspond to
a Nash equilibrium. Let c ∈ C be a clause that is not satisfied by the assignment, that is, none of
its literals are ever played. Then playing c would give utility n, and both players would be better
off playing this. �

From Theorem 1, it follows that there exists a Nash equilibrium in Gε(φ) where each player
gets utility n − 1 if and only if φ is satisfiable; otherwise, the only equilibrium is the one where
both players play f and each of them gets ε. Suppose n − 1 > ε. Then, any sensible definition
of welfare optimization would prefer the first kind of equilibrium. Because determining whether
φ is satisfiable is NP-hard, it follows that determining whether a “good” equilibrium exists
is NP-hard for any such definition. Additionally, the first kind of equilibrium is, in various
senses, an optimal outcome for the game, even if the players were to cooperate; hence, finding
out whether such an optimal equilibrium exists is NP-hard. More significantly, given that n − 1
is significantly larger than ε, there is no efficient algorithm that always returns an equilibrium
that is “close” to optimal (assuming P 	= NP): either an optimal equilibrium is found, or we
have to settle for the equilibrium that gives each player ε.

In the remainder of this section, we prove a variety of corollaries of Theorem 1 that illustrate
these and other points. We start with corollaries that do not involve an optimization problem.
All of these corollaries show NP-completeness of a problem, meaning that the problem is both
NP-hard and in NP . Technically, only the NP-hardness part is a corollary of Theorem 1 in
each case. Membership in NP follows because, for the case of two players, if an equilibrium
with the desired property exists, then the supports in this equilibrium constitute a polynomial-
length certificate. This is because given the supports, the remainder of the problem can be solved
using linear programming (and linear programs can be solved in polynomial time; see Khachiyan,
1979).

Corollary 1. Even in symmetric 2-player games, it is NP-complete to determine whether there
exists a Pareto-optimal Nash equilibrium. (A distribution over outcomes is Pareto-optimal if there
is no other distribution over outcomes such that every player has at least the same expected
utility, and at least one player has strictly greater expected utility.)

Proof. For ε < 1 and n � 2, any Nash equilibrium in Gε(φ) corresponding to a satisfying assign-
ment is Pareto-optimal, whereas the Nash equilibrium that always exists is not Pareto-optimal.
Thus, a Pareto optimal Nash equilibrium exists if and only if φ is satisfiable. �
Corollary 2. (Gilboa and Zemel, 1989) Even in symmetric 2-player games, it is NP-complete
to determine whether there is more than one Nash equilibrium.

Proof. For any φ, Gε(φ) has additional Nash equilibria (besides the one that always exists) if
and only if φ is satisfiable. �
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Corollary 3. (Gilboa and Zemel, 1989)7 Even in symmetric 2-player games, it is NP-complete
to determine whether there is a Nash equilibrium where player 1 sometimes plays a given
x ∈ Σ1.

Proof. For any φ, in Gε(φ), there is a Nash equilibrium where player 1 sometimes plays +x1 if
and only if there is a satisfying assignment to φ with x1 set to true. But determining whether this
is the case is NP-complete. �
Corollary 4. (Gilboa and Zemel, 1989)8 Even in symmetric 2-player games, it is NP-
complete to determine whether there is a Nash equilibrium where player 1 never plays a given
x ∈ Σ1.

Proof. For any φ, in Gε(φ), there is a Nash equilibrium where player 1 never plays f if and
only if φ is satisfiable. �
Definition 5. A strong Nash equilibrium (Aumann, 1959) is a vector of mixed strategies for the
players so that no nonempty subset of the players can change their strategies to make all players
in the subset better off.

Corollary 5. Even in symmetric 2-player games, it is NP-complete to determine whether a
strong Nash equilibrium exists.

Proof. For ε < 1 and n � 2, any Nash equilibrium in Gε(φ) corresponding to a satisfying as-
signment is a strong Nash equilibrium, whereas the Nash equilibrium that always exists is not
strong. Thus, a strong Nash equilibrium exists if and only if φ is satisfiable. �

The next few corollaries concern optimization problems, such as maximizing social welfare,
or maximizing the number of pure strategies in the supports of the equilibrium. For such prob-
lems, an important question is whether they can be approximately solved. For example, is it
possible to find, in polynomial time, a Nash equilibrium that has at least half as great a social
welfare as the social-welfare maximizing Nash equilibrium? Or—a nonconstructive version of
the same problem—can we, in polynomial time, find a number k such that there exists a Nash
equilibrium with social welfare at least k, and there is no Nash equilibrium with social wel-
fare greater than 2k? (The latter problem does not require constructing a Nash equilibrium, so
it is conceivable that there is a polynomial-time algorithm for this problem even if it is hard to
construct any Nash equilibrium.) We will not give approximation algorithms in this subsection;
rather, we will derive certain inapproximability results from Theorem 1. In each case, we will
show that even the nonconstructive problem is hard (and therefore the constructive problem is
hard as well).

Before presenting our results, we first make one subtle technical point, namely that it is un-
reasonable to expect an approximation algorithm to work even when the game has some negative
utilities in it. For suppose we had an algorithm that approximated (say) social welfare to some
positive ratio, even when there are some negative utilities in the game. Then we can “boost” its

7 Gilboa and Zemel (1989) only stated weaker versions of Corollaries 3 and 4, but their proof technique can in fact be
used to prove the results in their full strength.

8 See previous footnote.
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results, as follows. Suppose the algorithm returns a social welfare of 2r on a game, and suppose
this is less than the social welfare of the best Nash equilibrium. If we subtract r from all utilities
in the game, the game remains the same for all strategic purposes (it has the same set of Nash
equilibria). But now the result returned by the approximation algorithm on the original game cor-
responds to a social welfare of 0, which does not satisfy the approximation ratio. It follows that
running the approximation algorithm on the transformed game must give a better result (which
we can easily transform back to the original game).

For this reason, we require our hardness results to only use reductions to games where 0 is
the lowest possible utility in the game. Strictly speaking, our main reduction does not have this
property, as can be seen from Example 1. Nevertheless, Gε(φ) does have this property whenever
n � 4. (We recall that n is the number of variables in φ.) Hence, our reduction does in fact suffice,
because satisfiability remains an NP-hard problem even under the restriction n � 4.9

We are now ready to present the remaining corollaries.

Corollary 6. Unless P = NP , there does not exist a polynomial-time algorithm that approxi-
mates (to any positive ratio) the maximum social welfare obtained in a Nash equilibrium, even
in symmetric 2-player games. (This holds even if the ratio is allowed to be a function of the size
of the game.)

Proof. Suppose such an algorithm did exist. For any formula φ (with number of variables n � 4),
consider the game Gε(φ) where ε is set so that 2ε < r(2n − 2) (here, r is the approximation
ratio that the algorithm guarantees for games of the size of Gε(φ)). If φ is satisfiable, then by
Theorem 1, there exists an equilibrium with social welfare 2n − 2, and thus the approximation
algorithm should return a social welfare of at least r(2n − 2) > 2ε. Otherwise, by Theorem 1,
the only equilibrium has social welfare 2ε, and thus the approximation algorithm should return a
social welfare of at most 2ε. Thus we can use the algorithm to solve arbitrary SAT instances. �
Corollary 7. Unless P = NP , there does not exist a polynomial-time algorithm that approxi-
mates (to any positive ratio) the maximum egalitarian social welfare obtained in a Nash equilib-
rium, even in symmetric 2-player games. (This holds even if the ratio is allowed to be a function
of the size of the game. The egalitarian social welfare is the expected utility of the worse-off
player.)

Proof. The proof is similar to that of Corollary 6. �
Corollary 8. Unless P = NP , there does not exist a polynomial-time algorithm that approxi-
mates (to any positive ratio) the maximum utility for player 1 obtained in a Nash equilibrium,

9 Incidentally, the Gilboa and Zemel (1989) reduction uses negative utilities, and, unlike in the reduction in this paper,
those utilities become more negative as the size of the instance increases. Specifically, their game contains utilities of
−nk2 (their reduction is from CLIQUE, where an instance consists of a graph with n vertices and a target clique size of
k). Of course, we can add nk2 to every utility in their game so that all utilities become nonnegative, and doing this will
not change the game strategically. If we do this, then, in the resulting game, there exists a Nash equilibrium with utility
nk2 + 1 + 1/(nk2) for each player if there is a clique of size k, but in any case there exists a Nash equilibrium with
utility nk2 for each player. Hence, the reduction by Gilboa and Zemel does not imply any (significant) inapproximability.
Similarly, our earlier (IJCAI-03) reduction contained utilities of 2 − n, and could therefore not be used to obtain any
(significant) inapproximability result.
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even in symmetric 2-player games. (This holds even if the ratio is allowed to be a function of the
size of the game.)

Proof. The proof is similar to that of Corollary 6. �
The next few corollaries use the notation o(x), which refers to functions that grow slower than

linearly in x, and Ω(x), which refers to functions that grow at least as fast as linearly in x. The
corollaries state that it is hard to maximize (even approximately) the number of pure strategies
played with positive probability (respectively, for both players together, for the player with the
smaller support, and for one player only) in a Nash equilibrium.

Corollary 9. Unless P = NP , there does not exist a polynomial-time algorithm that approxi-
mates (to any ratio 1/o(|Σ |)) the maximum number, in a Nash equilibrium, of pure strategies in
the players’ strategies’ supports, even in symmetric 2-player games.

Proof. Suppose such an algorithm did exist. For any formula φ, consider the game Gε(φ) where
ε is set arbitrarily. If φ is not satisfiable, then by Theorem 1, the only equilibrium has only one
pure strategy in each player’s support, and thus the algorithm can return a number of strategies
of at most 2. On the other hand, if φ is satisfiable, then by Theorem 1, there is an equilibrium
where each player’s support has size Ω(|Σ |). (This is assuming that n, the number of variables
in φ, is Ω(|Σ |). This is only true if the number of clauses in φ is at most linear in the number
of variables, but it is known that SAT remains NP-hard under this restriction—for example,
SAT is known to remain NP-hard even if each variable occurs in at most 3 clauses.) Because
by assumption our algorithm has an approximation ratio of 1/o(|Σ |), this means that for large
enough |Σ |, the algorithm must return a support size strictly greater than 2. Thus we can use the
algorithm to solve arbitrary SAT instances (given that the instances are large enough to produce
large enough |Σ |). �
Corollary 10. Unless P =NP , there does not exist a polynomial-time algorithm that approx-
imates (to any ratio 1/o(|Σ |)) the maximum number, in a Nash equilibrium, of pure strategies
in the support of the player that uses fewer pure strategies than the other, even in symmetric
2-player games.

Proof. The proof is similar to that of Corollary 9. �
Corollary 11. Unless P =NP , there does not exist a polynomial-time algorithm that approxi-
mates (to any ratio 1/o(|Σ |)) the maximum number, in a Nash equilibrium, of pure strategies in
player 1’s support, even in symmetric 2-player games.

Proof. The proof is similar to that of Corollary 9. �
Versions of Corollaries 7 and 10 that do not mention inapproximability were proven by Gilboa

and Zemel (1989).
The final corollary goes beyond NP-hardness, to #P-hardness. Determining whether equi-

libria with certain properties exist is not always sufficient: sometimes, we are interested in
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characterizing all the equilibria of a game. One rather weak such characterization is the num-
ber of equilibria.10 We can use Theorem 1 to show that determining this number is #P-hard.

Corollary 12. Even in symmetric 2-player games, counting the number of Nash equilibria is
#P-hard.

Proof. The number of Nash equilibria in our game Gε(φ) is the number of satisfying assign-
ments of φ, plus one. Counting the number of satisfying assignments to a CNF formula is
#P-hard (Valiant, 1979). �

In a sense, the most interesting #P-hardness results are the ones where the corresponding
existence problem (does there exist at least one solution?) and search problem (construct one
solution, if one exists) are easy. This is the case, for example, for the problem of counting the
perfect matchings in a bipartite graph (Valiant, 1979). For the problem of counting the Nash
equilibria in a finite normal-form game, the corresponding existence problem is trivial (at least
one Nash equilibrium always exists, so the answer is always “yes”), but the search problem is
PPAD-complete.

4. Pure-strategy Nash equilibria in Bayesian games

Equilibria in pure strategies are particularly desirable because they avoid the uncomfortable
requirement that players randomize over strategies among which they are indifferent. In normal-
form games, it is easy to determine the existence of pure-strategy equilibria: one can simply
check, for each combination of pure strategies, whether it constitutes a Nash equilibrium. This
trivial algorithm runs in time that is polynomial in the size of the normal form. However, this
approach is not computationally efficient in Bayesian games where the players have private in-
formation about their own preferences (this private information is known as the player’s type). In
such games, players can condition their actions on their types, resulting in a strategy space that
is exponential in the number of types (whereas the natural representation of the Bayesian game
is not exponential in the number of types).

In this section, we show that determining whether a pure-strategy Bayes–Nash equilibrium
exists is in fact NP-complete even in symmetric two-player Bayesian games. (A mixed-strategy
equilibrium always exists, although constructing one isPPAD-hard because normal-form games
are a special case of Bayesian games.) First, we review the standard definitions of Bayesian
games and Bayes–Nash equilibrium.

Definition 6. In a Bayesian game, we are given a set of players A; for each player i, a set of types
Θi ; a commonly known prior distribution φ over Θ1 × Θ2 × . . . × Θ|A|; for each player i, a set
of actions Σi ; and for each player i, a utility function ui :Θi × Σ1 × Σ2 × . . . × Σ|A| → R.

We emphasize again that we only consider finite games; in particular, we only consider finite
type spaces.

10 The number of equilibria in normal-form games has been studied both in the worst case (McLennan and Park, 1999)
and in the average case (McLennan, 2005).
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Definition 7. (See Harsanyi, 1967–1968.) Given a Bayesian game, a Bayes–Nash equilibrium
(BNE) is a vector of probability distributions over actions, one distribution (over Σi ) for each
pair i, θi ∈ Θi , such that no player has an incentive to deviate, for any of her types, given that the
others do not deviate. That is, for any i, θi ∈ Θi , and any alternative probability distribution σ ′

i,θi

over Σi , we have

Eθ−i |θi

[
E

[
ui(θi, s1,θ1 , s2,θ2 , . . . , si,θi

, . . . , s|A|,θ|A|)
]]

� Eθ−i |θi

[
E

[
ui(θi, s1,θ1 , s2,θ2 , . . . , s

′
i,θi

, . . . , s|A|,θ|A|)
]]

where each si,θi
is drawn from σi,θi

, and s′
i,θi

from σ ′
i,θi

.

A Bayesian game can be converted to a normal-form game as follows. For every player i, let
every mapping s′

i : Θi → Σi be a pure strategy in the new normal-form game. Then, the utility
function for the normal-form game is given by u′

i (s
′
1, . . . , s

′|A|) = Eθ1,...,θ|A| [ui(θi, s
′
1(θ1), . . . ,

s′|A|(θ|A|)]. Assuming that no type receives 0 probability under the prior, the Nash equilibria of
this normal-form game correspond exactly to the Bayes–Nash equilibria of the original game.
However, the normal-form game is exponentially larger (player i has |Σi ||Θi | pure strategies in
it), so this conversion is of little use for solving computational problems efficiently.

We can now define the computational problem.

Definition 8 (PURE-STRATEGY-BNE). We are given a Bayesian game. We are asked whether
there exists a BNE where every distribution σi,θi

places all its mass on a single action.

To show our NP-hardness result, we will reduce from the NP-complete SET-COVER prob-
lem.

Definition 9 (SET-COVER). We are given a set S = {s1, . . . , sn}, subsets S1, S2, . . . , Sm of S with⋃
1�i�m Si = S, and an integer k. We are asked whether there exist c1, c2, . . . , ck ∈ {1, . . . ,m}

such that
⋃

1�i�k Sci
= S.

Theorem 2. PURE-STRATEGY-BNE is NP-complete, even in symmetric 2-player games where
the priors over types are uniform.

Proof. To show membership in NP , we observe that, given an action for each type for each
player, it is easy to verify whether these constitute a BNE: we merely need to check that for each
player i, for each type θi , the corresponding action maximizes i’s expected utility (with respect
to θi , given the (conditional) distribution over −i’s types and given −i’s strategy). This is done
by computing the expected utility for θi for each possible action for i. (As an aside, we cannot
simply examine every (pure) strategy for each player, since there are exponentially many pure
strategies. Effectively, the above only examines the strategies that deviate for only a single type,
and this is sufficient.)

To showNP-hardness, we reduce an arbitrary SET-COVER instance to the following PURE-
STRATEGY-BNE instance. Let there be two players, with Θ = Θ1 = Θ2 = {θ1, . . . , θk}. The
priors over types are uniform. Furthermore, Σ = Σ1 = Σ2 = {S1, S2, . . . , Sm, s1, s2, . . . , sn}. The
utility functions we choose actually do not depend on the types, so we omit the type argument in
their definitions. They are as follows:

• u1(Si, Sj ) = u2(Sj , Si) = 1 for all Si and Sj ;
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• u1(Si, sj ) = u2(sj , Si) = 1 for all Si and sj /∈ Si ;
• u1(Si, sj ) = u2(sj , Si) = 2 for all Si and sj ∈ Si ;
• u1(si , sj ) = u2(sj , si) = −3k for all si and sj ;
• u1(sj , Si) = u2(Si, sj ) = 3 for all Si and sj /∈ Si ;
• u1(sj , Si) = u2(Si, sj ) = −3k for all Si and sj ∈ Si .

We now show the two instances are equivalent. First suppose there exist c1, c2, . . . , ck ∈
{1, . . . ,m} such that

⋃
1�i�k Sci

= S. Suppose both players play as follows: when their type
is θi , they play Sci

. We claim that this is a BNE. For suppose the other player employs this
strategy. Then, because for any sj , there is at least one Sci

such that sj ∈ Sci
, we have that the

expected utility of playing sj is at most 1
k
(−3k)+ k−1

k
3 < 0. It follows that playing any of the Sj

(which gives utility 1) is optimal. So there is a pure-strategy BNE.
On the other hand, suppose that there is a pure-strategy BNE. We first observe that in no

pure-strategy BNE, both players play some element of S for some type: for if the other player
sometimes plays some sj , the utility of playing some si is at most 1

k
(−3k) + k−1

k
3 < 0, whereas

playing some Si instead guarantees a utility of at least 1. So there is at least one player who
never plays any element of S. Now suppose the other player sometimes plays some sj . We know
there is some Si such that sj ∈ Si . If the former player plays this Si , this will give her a utility
of at least 1

k
2 + k−1

k
1 = 1 + 1

k
. Since she must do at least this well in the equilibrium, and she

never plays elements of S, she must sometimes receive utility 2. It follows that there exist Sa and
sb ∈ Sa such that the former player sometimes plays Sa and the latter sometimes plays sb . But
then, playing sb gives the latter player a utility of at most 1

k
(−3k) + k−1

k
3 < 0, and she would be

better off playing some Si instead. This contradiction implies that no element of S is ever played
in any pure-strategy BNE.

Now, in our given pure-strategy equilibrium, consider the set of all the Si that are played by
player 1 for some type. Clearly there can be at most k such sets. We claim they cover S. For if
they do not cover some element sj , the expected utility of playing sj for player 2 is 3 (because
player 1 never plays any element of S). But this means that player 2 (who never plays any element
of S either) is not playing optimally. This contradiction implies that there exists a set cover. �
5. Pure-strategy Nash equilibria in stochastic (Markov) games

We now shift our attention from one-shot games to games with multiple stages. There has
already been some research into the complexity of playing repeated and sequential games. For
example, determining whether a particular automaton is a best response is NP-complete (Ben-
Porath, 1990); it is NP-complete to compute a best-response automaton when the automata
under consideration are bounded (Papadimitriou, 1992); the problem of whether a given player
with imperfect recall can guarantee herself a given payoff using pure strategies is NP-complete
(Koller and Megiddo, 1992); and in general, best-responding to an arbitrary strategy can even
be noncomputable (Knoblauch, 1994; Nachbar and Zame, 1996). In this section, we present a
PSPACE-hardness result on the existence of a pure-strategy equilibrium.

Markov (or stochastic) games constitute an important type of multi-stage games. In such
games, there is an underlying set of states, and the game shifts between these states from stage
to stage (Fudenberg and Tirole, 1991; Shapley, 1953; Sobel, 1971). At every stage, each player’s
payoff depends not only on the players’ actions, but also on the state. Furthermore, the probability
of transitioning to a given state is determined by the current state and the players’ current actions.
It should be noted that PSPACE-hardness results are known for alternating-move games such as
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generalized Go (Lichtenstein and Sipser, 1980) or QSAT (Stockmeyer and Meyer, 1973); how-
ever, if we were to formulate such a game as a Markov game, we would require an exponential
number of states, so these results do not imply PSPACE-hardness for (straightforwardly repre-
sented) Markov games. Still, one might suspect that Markov games are hard to solve because the
strategy spaces are extremely rich. However, in this section we show PSPACE-hardness for a
variant where the strategy spaces are quite simple: in this variant, the players cannot condition
their actions on events in the game.

Definition 10. A Markov game consists of

• A set of players A;
• A set of states S, among which the game transits, one of which is the starting state;
• For each player i, a set of actions Σi that can be played in any state;
• A transition probability function p :S × Σ1 × . . . × Σ|A| × S → [0,1], where p(s1, a1, . . . ,

a|A|, s2) gives the probability of the game being in state s2 in the next stage, given that the
current state of the game is s1 and the players play actions a1, . . . , a|A|;

• For each player i, a payoff function ui :S × Σ1 × . . .Σ|A| → R, where ui(s, a1, . . . , a|A|)
gives the payoff to player i when the players play actions a1, . . . , a|A| in state s;

• A discount factor δ such that the total utility of player i is
∑∞

k=0 δkui(s
k, ak

1, . . . , ak
|A|), where

sk is the state of the game at stage k and the players play actions ak
1, . . . , ak

|A| in stage k.

In general, a player is not always aware of the current state of the game, the actions the
others played in previous stages, or even the payoffs that the player has accumulated. In the
extreme case, players never receive any information about any of these. We call such a Markov
game unobserved. It is relatively easy to specify a pure strategy in an unobserved Markov game,
because there is nothing on which the player can condition her actions. Hence, a strategy for
player i is “simply” an infinite sequence of actions {ak

i }. In spite of this apparent simplicity of
the game, we show that determining whether pure-strategy equilibria exist is extremely hard. We
do not need to worry about issues of credible threats and subgame perfection in this setting, so
we can simply use Nash equilibrium as our solution concept.

Definition 11 (PURE-STRATEGY-UNOBSERVED-MARKOV-NE). We are given an unobserved
Markov game. We are asked whether there exists a Nash equilibrium where all the strategies are
pure.

We show that this computational problem is PSPACE-hard, by reducing from PERIODIC-
SAT, which is PSPACE-complete (Orlin, 1981).

Definition 12 (PERIODIC-SAT). We are given a CNF formula φ(0) over the variables
{x0

1 , . . . , x0
n} ∪ {x1

1 , . . . , x1
n}. For any k ∈ N, let φ(k) be the same formula, except that all the

superscripts are incremented by k (so that each φ(k) is implicitly defined by φ(0)). We are asked
whether there exists an assignment of truth values to the variables

⋃
k∈N

{xk
1 , . . . , xk

n} such that
φ(k) is satisfied for every k ∈ N.

Theorem 3. PURE-STRATEGY-UNOBSERVED-MARKOV-NE isPSPACE-hard, even when the
game is symmetric and 2-player, and the transition process is deterministic.
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Proof. We reduce an arbitrary PERIODIC-SAT instance to the following symmetric 2-
player PURE-STRATEGY-UNOBSERVED-MARKOV-NE instance. The state space is S =
{si}1�i�n ∪ {t1

i,c}1<i�2n;c∈C ∪ {t2
i,c}1<i�2n;c∈C ∪ {r}, where C is the set of clauses in φ(0).

s1 is the starting state. Furthermore, Σ = Σ1 = Σ2 = {t, f } ∪ C. The transition probabilities are
given by

• p(si, x
1, x2, si+1(mod n)) = 1 for 1 < i � n and all x1, x2 ∈ Σ ;

• p(s1, b
1, b2, s2) = 1 for all b1, b2 ∈ {t, f };

• p(s1, c, b, t1
2,c) = 1 for all b ∈ {t, f } and c ∈ C;

• p(s1, b, c, t2
2,c) = 1 for all b ∈ {t, f } and c ∈ C;

• p(s1, c
1, c2, r) = 1 for all c1, c2 ∈ C;

• p(t
j
i,c, x

1, x2, t
j

i+1,c) = 1 for all 1 < i < 2n, j ∈ {1,2}, c ∈ C, and x1, x2 ∈ Σ ;

• p(t
j

2n,c, x
1, x2, r) = 1 for all j ∈ {1,2}, c ∈ C, and x1, x2 ∈ Σ ;

• p(r, x1, x2, r) = 1 for all x1, x2 ∈ Σ .

Some of the utilities obtained in a given stage are as follows (we do not specify utilities
irrelevant to our analysis):

• u1(si , x
1, x2) = u2(si , x

2, x1) = 0 for 1 < i � n and all x1, x2 ∈ Σ ;
• u1(s1, b

1, b2) = u2(s1, b
2, b1) = 0 for all b1, b2 ∈ {t, f };

• u1(s1, c, b) = u2(s1, b, c) = 1 for all b ∈ {t, f } and c ∈ C, when setting variable x0
1 to b does

not satisfy c;
• u1(s1, c, b) = u2(s1, b, c) = −1 for all b ∈ {t, f } and c ∈ C, when setting variable x0

1 to b

does satisfy c;
• u1(s1, c

1, c2) = u2(s1, c
2, c1) = −1 for all c1, c2 ∈ C;

• u1(t
1
kn+i,c, x, b) = u2(t

2
kn+i,c, b, x) = 0 for k ∈ {0,1}, 1 � i � n, all c ∈ C and b ∈ {t, f }

such that setting variable xk
i to b does not satisfy c, and all x ∈ Σ ;

• u1(t
1
kn+i,c, x, b) = u2(t

2
kn+i,c, b, x) = −4 for k ∈ {0,1}, 1 � i � n, all c ∈ C and b ∈ {t, f }

such that setting variable xk
i to b does satisfy c, and all x ∈ Σ ;

• u1(t
1
kn+i,c, x, c′) = u2(t

2
kn+i,c, c

′, x) = 0 for k ∈ {0,1}, 1 � i � n, all c, c′ ∈ C, and all x ∈ Σ .

Additionally, the game played in state r is some symmetric zero-sum game without a pure-
strategy equilibrium (for example, a generalization of rock-paper-scissors) with very small pay-

offs. Finally, the discount factor is δ = ( 1
2 )

1
2n+1 (so that δ2n > 1

2 ).
We start our analysis with a few observations. First, there can be no pure-strategy equilibrium

in which state r is reached at some point, because (since r is an absorbing state) this would
require that some pure-strategy equilibrium of the game in state r were played whenever state r

occurred. (Otherwise, a player who is not best-responding in one of these stages could simply
switch to a best response in this stage, and because the game is unobserved, the rest of the game
would remain unaffected, so this would give higher utility. This is using the fact that in a pure-
strategy equilibrium, on the path of play, every player always knows the current state, because
the transition process is deterministic.) But such an equilibrium does not exist. Second, if we
ever reach one of the t

j
i,c states, we will inevitably reach state r at some point after this. It follows

that all pure-strategy Nash equilibria never leave the si states.
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Now suppose an assignment satisfying the periodic SAT formula exists. Let both players play
as follows: in stage kn + i (with 1 � i � n), b ∈ {t, f } is played, where b is the value that the
variable xk

i is set to. Clearly, both players receive utility 0 with these strategies. Does either player
have an incentive to deviate? The only deviation of any significance is to play some c ∈ C when
the current state is s1. So, without loss of generality (because of the symmetry of the game), say
player 2 deviates to playing c ∈ C in stage kn + 1 (when the state is s1). We know that in the
satisfying assignment, some variable xl

i among xk
1 , . . . , xk

n, xk+1
1 , . . . , xk+1

n is set to some b such
that setting xl−k

i to b satisfies c. If it is xk
1 , which is set to b, then in stage kn+1 player 1 plays b,

and player 2 gets payoff −1 in this stage since we are in state s1 and setting x0
1 to b satisfies c.

Otherwise, if it is xl
i with l = k + 1 or i 	= 1, which is set to b, then player 2 will get payoff 1

in stage kn + 1, but in stage ln + i player 1 plays b, and player 2 gets payoff −4 in this stage
since we are in state t2

(l−k)n+i,c and setting xl−k
i to b satisfies c. The discounting is insignificant

enough that this more than cancels out the 1 earned in stage kn + 1. Player 2 will get (at most) 0
in the other stages up to the first stage in state r , and given that we made the payoffs in the game
in state r sufficiently small relative to δ, player 2 will not earn enough in the remaining stages to
cancel out her losses so far. So there is no incentive to deviate. Thus, a pure-strategy NE exists.

On the other hand, suppose that no assignment satisfying the periodic SAT formula exists. Let
us investigate whether a Nash equilibrium could exist. We know that in such a Nash equilibrium
we never leave the si , so both players receive utility 0, and no c is ever played in a stage with
state s1. Since playing a c in one of the other stages can have no deterrent value, we may suppose
that only elements of {t, f } are played. Now consider the following assignment to the xk

i : if
player 1 plays b in stage kn + i, xk

i is set to b. Since no assignment satisfying the periodic SAT
formula exists, we know there is some clause c and some k such that no variable xl

i among
xk

1 , . . . , xk
n, xk+1

1 , . . . , xk+1
n is set to some b such that setting xl−k

i to b satisfies c. But then, if
player 2 deviates to play this c in stage kn + 1, she will receive payoff 1 in this stage, and
payoff 0 in all the remaining stages up to the first stage in state r . Furthermore, player 2 can
guarantee herself at least payoff 0 in each stage in state r , as this state corresponds to a zero-
sum symmetric game. It follows that this deviation gives player 2 positive utility and is hence
beneficial. Thus, no pure-strategy NE exists. �

A slightly simpler argument of a similar nature shows a weaker form of hardness for the case
where the game is restricted to have only finitely (linearly) many stages:

Theorem 4. PURE-STRATEGY-UNOBSERVED-MARKOV-NE isNP-hard, even when the game
is symmetric, 2-player, the transition process is deterministic, the number of stages in the game
is finite (in fact, linear in the number of states), and there is no discounting (δ = 1).

Proof. We reduce an arbitrary SAT instance to the following PURE-STRATEGY-UNOBSERVED-
MARKOV-NE instance. The state space is S = {s1} ∪ {s1

i,c}1<i�n;c∈C ∪ {s2
i,c}1<i�n;c∈C ∪ {r}

(where n is the number of variables). s1 is the starting state. Furthermore, Σ = Σ1 = Σ2 =
{t, f } ∪C. The game always ends after n stages. (If desired, the information of how many stages
we have had can be captured in the state without incurring an exponential blowup.) The transition
probabilities are:

• p(s1, b
1, b2, r) = 1 for all b1, b2 ∈ {t, f };

• p(s1, c, b, s1
2,c) = 1 for all b ∈ {t, f } and c ∈ C;



Author's personal copy

638 V. Conitzer, T. Sandholm / Games and Economic Behavior 63 (2008) 621–641

• p(s1, b, c, s2
2,c) = 1 for all b ∈ {t, f } and c ∈ C;

• p(s1, c
1, c2, r) = 1 for all c1, c2 ∈ C;

• p(s
j
i,c, x

1, x2, s
j

i+1,c) = 1 for all 1 < i < n, j ∈ {1,2}, c ∈ C, and x1, x2 ∈ Σ ;

• p(r, x1, x2, r) = 1 for all x1, x2 ∈ Σ .

The utility functions are as follows:

• u1(s1, c, b) = u2(s1, b, c) = 1 for all b ∈ {t, f } and c ∈ C, when setting variable x1 to b does
not satisfy c;

• u1(s1, c, b) = u2(s1, b, c) = −1 for all b ∈ {t, f } and c ∈ C, when setting variable x1 to b

does satisfy c;
• u1(s1, b, c) = u2(s1, c, b) = 1 for all b ∈ {t, f } and c ∈ C, when setting variable x1 to b does

satisfy c;
• u1(s1, c

1, c2) = u2(s1, c
2, c1) = −1 for all c1, c2 ∈ C;

• u1(s
1
i,c, x, b) = u2(s

2
i,c, b, x) = −2 for all 1 < i � n, all c ∈ C and b ∈ {t, f } such that setting

variable xi to b does satisfy c, and all x ∈ Σ ;
• u1(s

2
i,c, b, x) = u2(s

1
i,c, x, b) = 1 for all 1 < i � n, all c ∈ C and b ∈ {t, f } such that setting

variable xi to b does satisfy c, and all x ∈ Σ ;
• All other utilities are 0.

We now proceed to show that the instances are equivalent. First suppose there exists an as-
signment of truth values to the variables such that every clause is satisfied. Then, if variable xi

is set to bi ∈ {t, f } in this assignment, let each player play bi in the ith stage. This will give
both players a total utility of 0. The only deviation for a player that may change this is to play
some clause c in the first stage. However, some variable xi occurring in that clause must be set
to a value that satisfies c. If it is x1, the deviating player will receive utility −1 in the first stage,
and no positive utilities after that. Otherwise, it is some xi with i > 1, and the deviating player
will receive 1 in the first stage, but −2 in the ith stage, and no positive utilities anywhere else. It
follows that there is no incentive to deviate, and this is a pure-strategy Nash equilibrium.

Now suppose there exists a pure strategy Nash equilibrium. If both players play a clause in
the first stage, then both players would receive a utility of −1, and either player would be better
off playing some b ∈ {t, f } in the first stage, to get a total utility of at least 0. So this cannot be
the case in a pure-strategy equilibrium. If only one player plays a clause c in the first stage, any
best response for the other player plays a truth value in the first stage, and plays bi in stage i

whenever setting xi to bi satisfies c. But then, the clause-playing player receives negative utility
overall, and is better off playing some b ∈ {t, f } in the first stage, to get a total utility of at least 0.
So this also cannot be the case in a pure-strategy equilibrium. It follows that in any pure-strategy
equilibrium, both players play a truth value in the first stage, and thus both players receive a total
utility of 0. However, if there were no satisfying solution to the SAT instance, then there must be
some clause c such that whenever setting xi to bi satisfies c, player 2 does not play bi in stage i.
But then, player 1 is better off playing c in the first stage, to get a total utility of 1, contradicting
the fact that we have a pure-strategy Nash equilibrium. It follows that there exists a satisfying
solution to the SAT instance. �

It is instructive to compare these two hardness results to known hardness results for par-
tially observable Markov decision processes (POMDPs). A Markov decision process is a Markov
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game with a single player. A partially observable Markov decision process is a Markov decision
process in which the current state is not directly observable, but a player may observe noisy
signals about the state. Papadimitriou and Tsitsiklis (1987) show that computing the optimal pol-
icy (strategy) for a POMDP is PSPACE-hard even with a finite horizon. (In fact, they show
this for a special kind of POMDP in which the states are partitioned, and the player always ob-
serves the element of the partition to which the current state belongs.) Unlike Theorem 3, their
reduction makes use of both probabilistic transitions and nontrivial observations about the cur-
rent state. Papadimitriou and Tsitsiklis also mention that their reduction can be modified to show
NP-hardness for the unobserved case, leading to a result that is more similar to our Theorem 4
(though neither result directly implies the other).

6. Conclusions and future research

We provided a single reduction that demonstrates that in normal-form games:

(1) it isNP-complete to determine whether Nash equilibria with certain natural properties exist
(these results are similar to those obtained by Gilboa and Zemel, 1989),

(2) more significantly, the problems of maximizing certain properties of a Nash equilibrium are
inapproximable (unless P =NP), and

(3) it is #P-hard to count the Nash equilibria.

We also showed that determining whether a pure-strategy Bayes–Nash equilibrium exists in a
Bayesian game is NP-complete, and that determining whether a pure-strategy Nash equilibrium
exists in a Markov (stochastic) game is PSPACE-hard even if the game is unobserved (and that
this remainsNP-hard if the game has finite length). All of our hardness results hold even if there
are only two players and the game is symmetric.

This paper is undoubtedly not the last word on computing game-theoretic solutions. So-
lution concepts other than Nash equilibrium are also receiving attention: examples include
CURB sets (Benisch et al., 2006), (iterated) dominance (Conitzer and Sandholm, 2005a;
Gilboa et al., 1993), other elimination criteria (Conitzer and Sandholm, 2005b), and correlated
equilibria (Gilboa and Zemel, 1989; Papadimitriou, 2005). There is also a significant body of re-
search on solving extensive-form games (Gilpin et al., 2007; Gilpin and Sandholm, 2007; Koller
and Megiddo, 1992; Koller et al., 1996; Miltersen and Sørensen, 2006; Romanovskii, 1962;
von Stengel, 1996; von Stengel et al., 2002).

Another topic of interest is how the game is represented, that is, in what form the game
is presented to the solver. A polynomial-time algorithm for normal-form games is of little use
if the normal form is too large for the computer to store. In this case, the computer needs to
operate directly on a more concise representation of the game. Examples of such representations
(other than the extensive form) include graphical games (Kearns et al., 2001), action-graph games
(Bhat and Leyton-Brown, 2004; Leyton-Brown and Tennenholtz, 2003), and multiagent influence
diagrams (Koller and Milch, 2001). While changing the way the game is represented does not
change it strategically,11 it does affect the computational complexity of solving the game (Gottlob
et al., 2003; Schoenebeck and Vadhan, 2006). However, as long as the representation can capture

11 This is assuming that no strategic information is added or lost in the conversion. For example, converting an extensive-
form game to a normal-form game does change the game strategically, but this is because information is lost in the
conversion.
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any game, the computational problem cannot become any easier than under the straightforward
representation. Therefore, our hardness results apply to such other representations as well.

Finally, we should consider the implications of complexity results in game theory for the mod-
eling of human behavior. It seems unreasonable to expect humans to play according to solutions
that are too hard for computers to find, so perhaps we should consider new solution concepts.
On the other hand, as rationality and computational resources increase, it seems that the standard
concepts should result in the limit.
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