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Abstract. The Muller-Satterthwaite theorem states that social choice functions
that satisfy unanimity and monotonicity are also dictatorial. Unlike Arrow’s the-
orem, it does not assume that the function produces a transitive social ordering.
Wilson showed that a voting process under Arrow’s conditions can be interpreted
as a strong and proper simple game—as defined by von Neumann and Morgen-
stern. We show this to be the case also under the Muller-Satterthwaite conditions.
Our main theorem, which we prove using two very different approaches—one
partially automated and one manual—is that a winning coalition coincides with a
blocking coalition under unanimity and monotonicity. This might be of indepen-
dent interest. We also show that this can be used to generate a short proof of the
Muller-Satterthwaite theorem.

1 Introduction

In their seminal book, John von Neumann and Oskar Morgenstern introduced a coop-
erative game-theoretic concept called a simple game [7]. A simple game is uniquely
determined by a collection of winning coalitions. A winning coalition is a set of agents
that are decisive for every pair of outcomes. In other words, if a consensus is reached
among the agents in the coalition that one outcome is preferred over another, then the
former outcome is preferred over the latter in the social ordering. A simple game is
called proper if every winning coalition intersects every other winning coalition. This
is a natural condition because without it, two disjoint coalitions that prefer different
candidates could both be winning, which is essentially a contradiction. A simple game
is called strong if any coalition that intersects every winning coalition is itself winning.

Wilson [11] recognized a strong resemblance between this formulation of simple
games and Arrow’s celebrated formulation of a voting process [1]. In particular, Wilson
showed that, if a voting process satisfies Arrow’s conditions of unanimity (the society
is a winning coalition), independence of irrelevant alternatives (the social ordering on
any two outcomes is independent of agents’ preferences related to other outcomes), and
transitivity of the social ordering, then a coalition is winning if and only if it is blocking.
Blocking is a much weaker notion than that of winning. A coalition is blocking if there
exists some preference profile where the coalition is the exact set of agents that prefer
one outcome to another and the former outcome is preferred over the latter in the social
ordering. Wilson’s equivalence result not only yields Arrow’s famous impossibility the-
orem as a corollary, but also gives a nice interpretation of Arrow’s conditions in terms



of simple game: a voting process defined under these conditions is a proper and strong
simple game!

One natural question is: what if the requirement of transitivity is relaxed? This ques-
tion naturally leads us to think about an alternative formulation of a voting process
that does not produce a social ordering but only a winner. Such voting processes have
been studied extensively; the object of study is a social choice function. The Muller-
Satterthwaite theorem states that social choice functions that satisfy unanimity and
monotonicity are also dictatorial [6]. Since this impossibility theorem is an analog of
Arrow’s theorem in this setting, we are curious whether there is also an analog of Wil-
son’s interpretation in this setting.

In this paper, we answer this question affirmatively. We first introduce the corre-
sponding definitions of winning and blocking coalition for the Muller-Satterthwaite
setting. We then prove, in this setting, that winning and blocking coalitions coincide.
This generalization also enables a short proof of the Muller-Satterthwaite theorem, and
gives a coalitional understanding of the Muller-Satterthwaite axioms.

It is not clear, at least to us, how Wilson’s proof could be applied to our setting. In-
stead, we come up with two approaches to prove our results. One adapts a new method-
ology in computer-aided theorem proving/discovery for social choice to our setting.
The methodology was introduced by Tang and Lin [9, 10] for automatically proving
and discovering impossibility theorems in social choice and for discovering theorems
in two-person games with unique pure Nash equilibrium payoffs. It was later extended
by Geist and Endriss [3] for proving and discovering theorems in ranking sets of objects.
Our second approach is a manual proof that may be of independent interest.

The rest of the paper is organized as follows. In the next section, we introduce the
Muller-Satterthwaite formulation of a voting process and their famous impossibility
theorem. We then state our main theorem in Section 3, and prove it using two different
approaches. In Section 4, we leverage it to generate a new, short proof of the Muller-
Satterthwaite theorem. In Section 5, we connect our main theorem to strong and proper
simple games. Finally, we discuss Wilson’s interpretation in Section 6 and conclude
with some future research ideas in Section 7.

2 The Muller-Satterthwaite formulation and impossibility
theorem

A voting model is a tuple (N,O), where N is a finite set of individuals (agents) and O a
finite set of outcomes (alternatives). An agent’s preference ordering is a linear ordering
of O, and a preference profile > of (N,O) is a tuple (>1, ..., >n), where >i is agent i’s
preference ordering, and n = |N |. In what follows, when N is clear from the context,
we also call > a preference profile of O. Similarly, when O is clear from the context,
we also call > a preference profile of N .

Definition 1. Given a voting model (N,O), a social choice function is a function C :
Ln → O, where L is the set of linear orders on O, and n the number of agents in N .

Instead of the conditions of unanimity, independence of irrelevant alternatives, and
non-dictatorship in Arrow’s theorem, Muller and Satterthwaite considered the following
three corresponding conditions that are desirable for any social choice function.



The first condition states that an alternative that is dominated by another should
never be selected:

Definition 2. A social choice function C is weakly unanimous if for every preference
profile >, if there is a pair of alternatives a1, a2 such that a1 >i a2 for every agent i,
then C(>) 6= a2.

The second condition states that if a social choice function selects an outcome for a
preference profile, then it will also select this outcome for any other preference profile
that does not decrease the relative ranking of this outcome:

Definition 3. A social choice function C is monotonic if, for every preference profile >
such that C(>) = a, if >′ is another profile such that a >′i a

′ whenever a >i a
′ for

every agent i and every alternative a′, then C(>′) = a as well.

The third condition states there should not be a dictator:

Definition 4. An agent i is a dictator in a social choice function C if C always selects
i’s top choice: for every preference profile >, C(>) = a iff for all a′ ∈ O that is
different from a, a >i a

′. C is non-dictatorial if it has no dictator.

A social choice function is dictatorial if there is a dictator.
The Muller-Satterthwaite theorem states that the three desiderata above cannot co-

exist in any social choice function:

Theorem 1. (Muller-Satterthwaite [6]) For any voting model (N,O) such that |O| ≥
3, any social choice function that is weakly unanimous and monotonic is also dictato-
rial.

3 Our main theorem

In this section, we define the notions of winning coalition and blocking coalition in our
setting. We then state and prove our main theorem.

Definition 5. A coalition S is winning if, for any profile > in which every agent in S
ranks some alternative a on top of his preference, C(>) = a.

Definition 6. A coalition S is blocking if there exist some profile > such that C(>) = a
and a is ranked on the top by all the agents in S and ranked on the bottom by all the
agents in N \ S.

We are now ready to state our main theorem:

Theorem 2. For any voting model (N,O) such that |O| ≥ 3, under weak unanimity
and monotonicity, a coalition is winning iff it is blocking.

Proof. The “only if” part is straightforward. Let S be a winning coalition. Construct a
profile such that an alternative a is ranked on the top by all the agents in S and ranked on
the bottom by all the agents in N \ S. According to the definition of winning coalition,
we have C(>) = a. It follows that S is also blocking.



We now provide two proofs of the “if” part, which is less straightforward. The first
one uses Tang and Lin’s framework of computer aided proofs for impossibility theorems
in social choice theory [9]. The second one is a manual proof of potential independent
interest.

For ease of presentation, we use the following notation.

– For any set S, we use S−a to denote S \ {a}, i.e., the set S without element a.
– We extend the above notation to tuples as well: if t = (t1, ..., tn), then we use t−i

to denote the tuple (t1, ..., ti−1, ti+1, ..., tn). Furthermore, we use (t−i, s) to denote
the result of replacing ith item in t by s: (t−i, s) = (t1, ..., ti−1, s, ti+1, ..., tn). We
use t−{i,j} to denote (t−i)−j .

– If > is a linear ordering of O, and a ∈ O, then we let >−a be the restriction of >
on O−a: for any a′, a′′ ∈ O−a, a′ >−a a′′ iff a′ > a′′. On the other hand, if > is
a linear ordering of O−a for some a ∈ O, then we let >+a be the extension of >
to O such that for any a′ ∈ O−a, a′ >+a a. Thus if > is a linear ordering of O,
and a ∈ O, then >+a

−a is (>−a)+a, i.e., the result of moving a to the bottom of the
ordering. These notations extend to tuples of orderings. Thus if > is a preference
profile of (N,O−a), then

>+a = (>1, ..., >n)
+a = (>+a

1 , ..., >+a
n ),

which will be a preference profile of (N,O).

The following example explains the last item of our notation above. Given (N =
{1, 2}, O = {a, b, c}) and preference profile > as follows:

a b
c a
b c

Then, >−a is a profile on (N = {1, 2}, O = {b, c}):
c b
b c

Finally, (>−a)+a is a profile on (N = {1, 2}, O = {a, b, c}), where a is at the bottom
of every agent’s preference ordering:

c b
b c
a a

3.1 The first proof: A computer-aided approach
In this first proof, we use induction to prove the “if”-part.

The overall proof is a contrapositive argument. We start by arguing that if it is
possible for something (“blocking but not winning” in our setting) to happen in the
large, then it is possible also in the small. But then we prove that it is impossible in the
small. This implies impossibility in the large.

Below, we first discuss the inductive step on the number of candidates and then the
inductive step on the number of agents. Finally, we prove the base case where there are
two agents and three candidates using a computer program.



The inductive case The inductive case consists of the following two lemmas. The first
gives the inductive step on the number of candidates and the second gives the inductive
step on the number of agents.

Lemma 1. If there is a social choice function for n individuals and m+ 1 alternatives
that is weakly unanimous, monotonic and there exists a coalition that is blocking but not
winning, then there is also a social choice function for n individuals and m alternatives
that satisfies these three conditions, for all n ≥ 2,m ≥ 3.

Proof. Let (N,O) be a voting model such that |N | = n and |O| = m + 1, and C a
social choice function that satisfies the three conditions in the lemma. For any a ∈ O,
we define Ca to be a social choice function that is the “restriction” of C on O−a: for any
preference profile > of O−a, Ca(>) = C(>+a). In other words, Ca is defined by first
adding a to everyone’s least preferred position and then calling C on this new profile.

It is straightforward to check that for any candidate a ∈ O, Ca is well-defined and
satisfies weak unanimity and monotonicity. We now prove that there exists a candidate
d such that there exists a blocking coalition that is not winning in Cd (which operates
on the restricted candidate set that does not contain d). Let S be such a coalition for C.
By the definition of blocking coalition, there is a profile > on C such that a is ranked
on the top by all the agents in S and ranked on the bottom by the remaining agents
and C(>) = a. By the definition of winning coalition, there is a profile >′ on C such
that b is ranked on the top by all the agents in S and C(>′) = c 6= b (otherwise,
C would violate the third condition). Since there are |O| = m + 1 ≥ 4 candidates,
we can find a candidate d distinct from a, b, c. Since C(>) = a, by monotonicity, we
have C((>−d)

+d) = a. By the definition of Cd, this is equivalent to Cd(>−d) = a.
Similarly, since C(>′) = c 6= b, by monotonicity, we have C((>′−d)

+d) = c. Thus, we
have Cd(>

′
−d) = c 6= b. In other words, >−d and >′−d are the witnesses of S being a

blocking but not winning in Cd. Therefore, we conclude that Cd satisfies all the three
conditions in the lemma.

We will now present the inductive step on the number of agents.

Lemma 2. If there is a social choice function for n+ 1 individuals and m alternatives
that is weakly unanimous, monotonic and there exists a coalition that is blocking but not
winning, then there is also a social choice function for n individuals and m alternatives
that satisfies these three conditions, for all n ≥ 2,m ≥ 3.

Proof. Let (N,O) be a voting model such that |N | = n+1 and |O| = m, and C a social
choice function that satisfies the three conditions in the lemma. For any pair of agents
i 6= j ∈ N , we define Ci,j to be the following social choice function for (N−i, O): for
any preference profile > of (N,O), Ci,j(>−i) = C(>−i, >j). Again, it can be easily
seen that for any pair of agents i 6= j, Ci,j is weakly unanimous and monotonic. We
now prove that there exists two agents, i, j, such that there exist a blocking coalition
that is not winning in Ci,j . Let S be such a coalition for C. Again, we know that there
is a profile > on C such that a is ranked on the top by all the agents in S and ranked
on the bottom by the remaining agents and C(>) = a. Also, there is a profile >′ on C
such that b is ranked on the top by all the agents in S and C(>′) = c 6= b. Since there



are at least 2+ 1 = 3 agents, we have either |S| ≥ 2 or |N \S| ≥ 2. If |S| ≥ 2, for any
two agents i, j ∈ S, by monotonicity, we have C(>−i, >j) = C(>) = a. Similarly,
we have C(>′−{i,j}, >

′′
j , >

′′
j ) = C(>′) = c 6= b, where >′′j is obtained by moving c

to the second place (next to b) in >′j while maintaining the other candidates’ positions.
In other words, >−i and (>′−{i,j}, >

′′
j ) are the witnesses of S \ {i} being blocking but

not winning in Ci,j . If |N \ S| ≥ 2, we can arbitrarily select two agents, i, j, from
N \ S and similar arguments go through. Therefore, we conclude that Ci,j satisfies all
the three conditions in the lemma.

Given the two lemmas above, a contrapositive argument completes the inductive
step. We start by arguing that if it is possible for something (“blocking but not winning”
in our setting) to happen in the large, then it is possible also in the small. But then we
prove that it is impossible in the small. This implies impossibility in the large. What
remains to be done is to prove the base case, namely that “blocking but not winning”
cannot happen in the small.

The base case We now turn to the proof of the base case, and as we mentioned earlier,
we use a computer program to do that.

The base case says that when |N | = 2 and |O| = 3, there is no social choice
function on (N,O) that is weakly unanimous, monotonic, and there exists a coalition
that is blocking but not winning. The brute-force approach is to generate all possible
social choice functions in (N,O) and check all of them one by one for these three
conditions. However, there are too many such functions for this to be feasible: there are
3! = 6 linear orderings of O, resulting in 6× 6 = 36 preference profiles of (N,O), and
336 possible social choice functions.

What we did instead is to generate all functions that satisfy the monotonicity con-
dition, and then check whether any of them satisfy the other two conditions. Similar
to Tang and Lin’s verification of the base case of Arrow’s theorem (cf. [9, p. 1045]),
we do so through a constraint satisfaction problem (CSP) formulation [8]. Consider the
voting model (N = {1, 2}, O = {a, b, c}) in our base case. We define a CSP for it by
introducing 36 variables x1, ..., x36, one for each preference profile of the voting model.
The domain of these variables is the set of all possible winners, i.e, {a, b, c}, and the
constraints are the instantiations of the monotonicity condition on the voting model.
As can be easily seen, there is a one-to-one correspondence between the social choice
functions of the voting model and the assignments of the CSP. Furthermore, a solution
to the CSP corresponds to a social choice function that satisfies the monotonicity con-
dition, and vice versa. To solve this CSP, we use a depth-first search that backtracks
whenever the current partial assignment violates the monotonicity constraint (see the
pseudocode called “Procedure 1” below). Our program returns 17 monotonic functions
(2 dictatorial functions, 3 constant functions, and 12 others), none of which satisfy the
second and third conditions simultaneously.

3.2 The second proof: A manual approach

As our second proof of the “if”-part, we give a concise manual proof—in contrast to
the computer-aided proof above.



Procedure 1 Solving CSP By DFS
DFS(assignment)
if assignment is complete then

return assignment
end if
select an unassigned variable xi

for l ∈ {a, b, c} do
if xi = l is consistent with every variable assigned so far under monotonicity then

assignment← assignment ∪ {xi = l}
result← DFS(assignment)
if result 6= failure then

return result
end if
assignment← assignment \ {xi = l} // backtrack

end if
end for
return failure

Proof. For the if part, let S be a blocking coalition and > be the corresponding profile
where C(>) = a and a is ranked on the top in S and ranked on the bottom in N \ S.
According to monotonicity, for any profile >′ such that a is ranked on the top in S and
ranked on the bottom in N \ S, we have C(>′) = a. We prove that for any profile >′′

where any alternative b is ranked on the top in S, C(>′′) = b.
Consider a profile >1 where b is ranked on the top in S and ranked on the bottom in

N \ S, while a is ranked on the bottom in S and ranked immediately above b in N \ S.
Written out explicitly, >1 is as follows:

b · · · b · · · · · · · · ·
...

...
... a · · · a

a · · · a b · · · b

If C(>1) = b for all such >1 and all such b, we are done since by monotonicity,
we can reach our goal above. If C(>1) = a, an immediate contradiction occurs since
a must be Pareto dominated by some alternative c since there are more than two al-
ternatives. Thus, the only interesting case to consider is when C(>1) = c for some
c 6∈ {a, b}. Again, this is possible since we have at least 3 outcomes. Without loss of
generality, let c be ranked second in S after b and ranked on the top in N \ S.

Consider another profile >2 where b is ranked on the top, followed by a, followed
by c in S, while in N \ S, a is ranked on the bottom, b is ranked immediately above a
and c is ranked on the top. >2 is as follows:

b · · · b c · · · c
a · · · a · · · · · · · · ·
c · · · c · · · · · · · · ·
...

...
... b · · · b

...
...

... a · · · a



Clearly, C(>2) 6= a since a is Pareto dominated by b. Also, C(>2) 6= b, since
otherwise it will contradict with C(>1) = c after applying monotonicity twice (that is,
move a to the bottom of S in >1 and move b to the bottom of N \ S in >2). Clearly,
C(>2) 6= d for all d 6∈ {a, b, c} since d is Pareto dominated by c. Therefore, we must
have C(>2) = c. However, by monotonicity, when moving a above b in S in >2, c must
still be the winner, contradicting the fact that a wins in all profiles where a is ranked on
the top in S and ranked on the bottom in N \ S.

We conclude that C(>1) = b for any such >1 and b. By definition, S is a winning
coalition.

4 A short proof of the Muller-Satterthwaite theorem

Our main theorem above (Theorem 2) enables a new, short proof of the Muller-Satterthwaite
theorem. See [5, 2] for different proofs that also use coalitional approaches.

Corollary 1. (Muller-Satterthwaite theorem) For any voting model (N,O) such that
|O| ≥ 3, under weak unanimity and monotonicity, there is a winning coalition that
contains only one agent.

Proof. Suppose that S is a minimum winning coalition, and it has at least two agents.
We can partition N into three disjoint sets: S1, S2 and T where S1∪S2 = S and S1, S2

are non-empty. Introduce the following notation: we denote by (abc, def, ghi) a profile
where in S1, a is ranked on the top, b is ranked second, and c is ranked on the bottom;
in S2 d is ranked on the top, e is ranked second, and f is ranked on the bottom; in T (if
not empty), g is ranked on the top, h is ranked second, and i is ranked on the bottom.
Such preference profiles are as follows:

a · · · a d · · · d g · · · g
b · · · b e · · · e h · · · h
...

...
...

...
...

...
...

...
...

c · · · c f · · · f i · · · i

Now consider a profile >= (abc, bca, cab). > is as follows:

a · · · a b · · · b c · · · c
b · · · b c · · · c a · · · a
...

...
...

...
...

...
...

...
...

c · · · c a · · · a b · · · b

It is easy to show that C(>) 6= c and C(>) 6= d, where d 6∈ {a, b, c}. Suppose C(>
) = c; we have C(>′= (bac, bca, cab)) = c, contradicting the fact that S is winning.
Similarly, suppose C(>) = d; we have C(>′= (bac, bca, cab)) = d, contradicting the
fact that S is winning. We now consider the remaining two cases.



– Case 1. C(>) = a. It follows from monotonicity that C(>1= (acb, bca, cab)) = a.
>1 is as follows:

a · · · a b · · · b c · · · c
c · · · c c · · · c a · · · a
...

...
...

...
...

...
...

...
...

b · · · b a · · · a b · · · b

Similarly, it also follows from monotonicity that C(>2= (acb, bca, acb)) = a. >2

is as follows:
a · · · a b · · · b a · · · a
c · · · c c · · · c c · · · c
...

...
...

...
...

...
...

...
...

b · · · b a · · · a b · · · b

The equation above implies that S1 ∪T is blocking, and thus by our main theorem,
winning. Consider another profile >3= (acb, bca, cba). >3 is as follows:

a · · · a b · · · b c · · · c
c · · · c c · · · c b · · · b
...

...
...

...
...

...
...

...
...

b · · · b a · · · a a · · · a

• Subcase 1. C(>3) = a. Here, S1 is blocking, and thus winning, contradicting
our assumption that S is minimum.
• Subcase 2. C(>3) = b. By monotonicity, we have C(cab, bac, cba) = b as

well, contradicting our conclusion earlier that S1 ∪ T is winning.
• Subcase 3. C(>3) = c. This immediately contradicts C(>1) = a by mono-

tonicity.
• Subcase 4. C(>3) = d. We have
C(cab, cba, cba) = d, contradicting the fact that S is winning.

We conclude that Case 1 is impossible.
– Case 2. C(>) = b. It follows from monotonicity that C(>4= (abc, bac, cab)) = b.
>4 is as follows:

a · · · a b · · · b c · · · c
b · · · b a · · · a a · · · a
...

...
...

...
...

...
...

...
...

c · · · c c · · · c b · · · b

Similarly, it also follows from monotonicity that C(>5= (abc, bac, acb)) = b. >5

is as follows:

a · · · a b · · · b a · · · a
b · · · b a · · · a c · · · c
...

...
...

...
...

...
...

...
...

c · · · c c · · · c b · · · b



This equation ensures that S1 ∪ T is not winning. Consider another profile >6=
(acb, bac, cab). >6 is as follows:

a · · · a b · · · b c · · · c
c · · · c a · · · a a · · · a
...

...
...

...
...

...
...

...
...

b · · · b c · · · c b · · · b

• Subcase 1. C(>6) = a. This immediately contradicts C(>4) = b by mono-
tonicity.

• Subcase 2. C(>6) = b. This implies that S2 is blocking, and thus winning as
well, contradicting the fact that S is a minimum winning coalition.

• Subcase 3. C(>6) = c. By monotonicity, we have C(cab, bac, cab) = c. This
implies that S1 ∪ T is blocking, and thus winning. A contradiction.

• Subcase 4. C(>6) = d. We have C(acb, abc, cba) = d 6= a, contradicting the
fact that S is winning.

We conclude that Case 2 is impossible as well.

Therefore, we have |S| = 1.

5 The Muller-Satterthwaite setting can be interpreted as a proper,
strong simple game

Recall from the introduction that a simple game is uniquely determined by a collec-
tion of winning coalitions. A simple game is called proper if every winning coalition
intersects every other winning coalition. This is a natural condition because without it,
two disjoint coalitions that prefer different candidates could both be winning. A simple
game is called strong if any coalition that intersects every winning coalition is itself
winning.

Wilson showed that a voting process under Arrow’s conditions can be interpreted
as a strong and proper simple game [11]. As an analog to Wilson’s contribution, in this
section we show this to be the case also under the Muller-Satterthwaite conditions—
which, unlike Arrow’s setting, do not assume that the social choice function produces a
transitive social ordering.

The following theorem states this. The “if” part proves that it is a proper simple
game. The “only if” part proves that it is a strong simple game.

Theorem 3. Assume a social choice function

1. satisfies monotonicity, and
2. has the property that a coalition is blocking iff it is winning.

Then, a coalition is winning iff it intersects every winning coalition.



Proof. The “only if” part is straightforward. Suppose for contradiction that two winning
coalitions do not intersect. We can easily construct a profile where one winning coalition
unanimously prefers one candidate and the other coalition prefers another candidate.
This leads to a conflict in determining the value of the social choice function.

The “if” part is more involved. We are trying to prove that if a coalition S intersects
every winning coalition, S is winning. Suppose for contradiction that there exist a pro-
file > such that some candidate a is ranked on the top by S and ranked last by N \ S,
and we have C(>) = b 6= a.

Now consider a profile >1 obtained from > by moving b up to the second place in
S and to the top in N \ S, and by moving a to the second place in N \ S. Clearly, by
monotonicity, C(>1) = b. >1 is as follows:

a · · · a b · · · b
b · · · b a · · · a
...

...
...

...
...

...

Let us consider another profile >2, where a is ranked on the top by all the agents and
b is ranked last by S and second by N \ S, while the remaining candidates are ranked
exactly the same as in >1. Clearly, N is winning (start from any profile and move the
winner to the top of everyone’s preference will maintain its winning position; this new
profile is an instance that N is blocking, and thus winning as well). Thus, C(>2) = a.
>2 is as follows:

a · · · a a · · · a
...

...
... b · · · b

b b b
...

...
...

Now switch the position of a and b in N \ S, that is, b is now ranked on the top
and a is ranked second in N \ S. Denote the resulting profile by >3. We now show
that C(>3) = a. By monotonicity, the only other possibility is C(>3) = b. However,
this implies that N \ S is a blocking coalition, and thus a winning coalition as well,
contradicting the fact that S intersects every winning coalition. >3 is as follows:

a · · · a b · · · b
...

...
... a · · · a

b b b
...

...
...

Finally, in >3, we move b to the second place in S and obtain >4. We still have
C(>4) = a. >4 is as follows:

a · · · a b · · · b
b · · · b a · · · a
...

...
...

...
...

...

We observe that >4=>1. This contradicts our earlier conclusions C(>1) = b 6=
a = C(>4).



Naturally, the result in this section also begets an open problem worth further con-
sideration: What are necessary and sufficient conditions that guarantee properness and
strongness?

6 Discussion

Wilson [11] defined notions of winning and blocking coalitions in Arrow’s setting for
social-welfare functions. A winning coalition in that setting is defined to be a set of
agents that are decisive on every pair alternatives, for all profiles. A blocking coalition
in that setting is a set of agents that are decisive on some pair of alternatives, for some
profile. He then proved that, under a set of conditions that are essentially equivalent
to Arrow’s unanimity, independence of irrelevant alternatives, and transitivity of social
ordering, a blocking coalition is also a winning coalition. It is easy to see that a coalition
that is winning in Wilson’s sense implies it is winning in our setting. Also, a coalition
that is blocking in our setting implies it is blocking in Wilson’s setting.

One might (therefore) wonder whether Wilson’s result could imply our Theorem 2.
The answer is negative, since we work in a more general social choice setting, which
does not impose transitivity on the social ordering, and thus does not satisfy one of
Wilson’s assumptions. (Wilson’s proof made critical use of the transitivity assumption.
It also assumed that there are at least 5 alternatives. It is not clear, at least to us, how to
adapt that proof for our purposes. For an interesting characterization of transitivity in
proper simple games, see [4].)

7 Conclusions and future research

The Muller-Satterthwaite theorem states that social choice functions that satisfy una-
nimity and monotonicity are also dictatorial. Unlike Arrow’s theorem, it does not as-
sume that the function produces a transitive social ordering. Wilson showed that a vot-
ing process under Arrow’s conditions can be interpreted as a strong and proper simple
game—as defined by von Neumann and Morgenstern. We showed this to be the case
also under the Muller-Satterthwaite conditions. Our main theorem, which we proved
using two very different approaches—one partially automated and one manual—is that
a winning coalition coincides with a blocking coalition under unanimity and mono-
tonicity. This might be of independent interest. We also showed that this can be used to
generate a short proof of the Muller-Satterthwaite theorem.

For future research, it would be interesting to think about necessary and sufficient
conditions (to replace weak unanimity and monotonicity, which together form a suf-
ficient condition) under which our main theorem holds (a coalition is winning iff it is
blocking). We conjecture that those conditions will set the boundary between impossi-
bility and possibility of existence of reasonable voting systems.
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