
Combining local search techniques and path following for bimatrix
games

Nicola Gatti, Giorgio Patrini, Marco Rocco
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Milano, Italy

Tuomas Sandholm
Computer Science Department
Carnegie Mellon University

Pittsburgh, USA

Abstract

Computing a Nash equilibrium (NE) is a cen-
tral task in computer science. An NE is a
particularly appropriate solution concept for
two–agent settings because coalitional devia-
tions are not an issue. However, even in this
case, finding an NE is PPAD–complete. In
this paper, we combine path following algo-
rithms with local search techniques to design
new algorithms for finding exact and approx-
imate NEs. We show that our algorithms
largely outperform the state of the art and
that almost all the known benchmark game
classes are easily solvable or approximable
(except for the GAMUT CovariantGame–
Rand class).

1 Introduction

Finding a Nash equilibrium (NE) of a normal–form
(aka strategic–form aka bimatrix) game is PPAD–
complete [8] even with just two players [6]. Al-
though PPAD ⊆ NP (but PPAD 6⊆ NP–complete
unless NP = co–NP) it is generally believed that
PPAD 6= P. Thus the worst–case complexity of find-
ing an NE is exponential in the size of the game.
This pushed researchers to study approximate solution
concepts, providing some polynomial–time algorithms
that compute solutions with a guaranteed approxima-
tion bound [2, 11, 22]. However, bimatrix games do not
have a fully polynomial–time approximation scheme
unless PPAD ⊆ P [6].

Worst–case complexity, being too pessimistic, is of-
ten a bad indicator of the actual performance of an
algorithm, and average–case complexity is difficult
to determine. A new metric of complexity, called
smoothed complexity, has been gaining interest in re-
cent years [21]. It studies how the introduction of small
perturbations affects the worst–case complexity. Un-
fortunately, finding an NE in two–player games is not

smoothed polynomial unless PPAD ⊆ RP [5].

In this paper, we focus on two–player general–sum
strategic–form games. An NE is a particularly ap-
propriate solution concept in two–agent settings be-
cause coalitional deviations are not an issue. The
main known algorithms are LH [14] based on linear
complementarity mathematical programming (LCP),
PNS [18] based on support enumeration, and MIP
Nash [19] based on mixed–integer linear programming
(MILP). None of these beats the others on all games,
and all of them have worst–case complexity exponen-
tial in the size of the game. In particular, there are
game instances, called hard–to–solve games (HtSG),
that always require exponential time when solved with
LH and PNS [20].

The integration of local search techniques with support
enumeration algorithms, called LS–PNS, can be effec-
tive on games that are hard for all three algorithms
above [3, 4]. (Other local search algorithms, based
on simulated annealing or homotopy, that are slower
but have convergence guarantees, have also been de-
signed [12, 13].) In this paper, we combine local search
techniques with path following algorithms (e.g., LH)
instead. This opens new promising opportunities, al-
lowing a dramatic reduction of the solution space:
path following algorithms work on a solution space
that is O(2.6m) where m is the number of actions per
agent, while the number of supports is O(4m). Our
contributions include the following.

(i) We design new algorithms: (a) an LH version with
random restarts (rrLH)1, (b) a version of the adapta-
tion of the Lemke algorithm (L) proposed in [24] with
random restarts (rrL), (c) a local search algorithm
moving on the best response vertices (LS–v), and (d)
an anytime LH version based on iteratively decreasing
perturbation of the payoff matrices (ip–LH).

1
A similar algorithm is presented in [7]. We extend such algo-

rithm with an iterative deepening cutoff, we theoretically analyze its
properties, and we provide a more thorough experimental analysis,
developing a floating–point implementation that is about two times
faster and developing a new arbitrary–precision implementation.



(ii) We prove that rrLH is asymptotically optimal in
the space of algorithms that randomize over LH paths
(the result can be extended to rrL).

(iii) We experimentally show that LH requires ar-
bitrary precision with some classes of GAMUT
games [17] and HtSG. L requires arbitrary precision
for almost all the game instances.

(iv) rrLH outperforms all our and state–of–the–art
algorithms, requiring an average number of steps
that is linear in the size of the game except for
CovariantGame–Rand and HtSG. rrL works asymptot-
ically as rrLH, but its compute time is usually larger.

(v) LS–v outperforms the other algorithms in approx-
imating hard instances, except HtSG.

(vi) HtSG can be easily approximated by ip–LH even
with a perturbation of 10−10. Thus there must exist
a different worst case for LH unless PPAD ⊆ RP. (In
contrast, CovariantGame–Rand stays hard even when
perturbed, thus it is a possible candidate.)

2 Game model and solution concepts

A bimatrix game is a tuple (N,A,U), where N =
{1, 2} is the set of agents (we denote by i ∈ N a
generic agent); A = (A1, A2) where Ai is the set of
mi = |Ai| actions available to agent i (we denote by
a ∈ A1 ∪ A2 a generic action); U = (U1, U2) where
Ui is the utility matrix of agent i [9]. Without loss of
generality, we assume that maxj,k{Ui(j, k)} = 1 and
minj,k{Ui(j, k)} = 0 for every i ∈ N .

We denote by xi the strategy (vector of probabili-
ties) of agent i and by xi,a the probability with which
agent i plays action a ∈ Ai. We denote by ∆i the
space of strategies over action space Ai, i.e., vectors
where the probabilities sum to 1. Given strategy xi,
the support Si is the set of actions a ∈ Ai played with
a non–zero probability in xi.

The central solution concept is NE. A profile of strate-
gies (x1,x2) is an NE if and only if, for each i ∈ N ,
xT
i Uix−i ≥ x′T

i Uix−i for every x′
i ∈ ∆i. The problem

of finding an NE can be expressed as an LCP:

xi ≥ 0 ∀i ∈ {1, 2} (1)

1vi − Uix−i ≥ 0 ∀i ∈ {1, 2} (2)

x
T
i (1vi − Uix−i) = 0 ∀i ∈ {1, 2} (3)

1
T
xi = 1 ∀i ∈ {1, 2} (4)

Here vi is the expected utility of agent i. Con-
straints (1) and (4) state that every xi ∈ ∆i. Con-
straints (2) state that no pure strategy of agent i gives
expected utility greater than vi. Constraints (3) state
that each agent plays only optimal actions.

The most common approximate solution concept is
ǫ–Nash equilibrium (ǫ–NE): (x1,x2) is an ǫ–NE if,
for each i ∈ N , xT

i Uix−i ≥ x′T
i Uix−i − ǫ for ev-

ery x′
i ∈ ∆i. Informally, (x1,x2) is an ǫ–NE if at

most each player loses a utility of ǫ w.r.t. playing
her best response. Other approximate solution con-
cepts that we use in this paper are ǫ–Well Supported–
Nash equilibrium (ǫWS–NE) and regret–Nash equilib-
rium (r–NE). (x1,x2) is an ǫWS–NE if, for each i ∈ N ,
eTk Uix−i ≥ eTj Uix−i − ǫ for every k ∈ Si, j ∈ Ai (ek
is a vector of 0 but 1 in position k). Thus playing
singularly each action of the support, the agent loses
a utility of at most ǫ w.r.t. playing the her best re-
sponse. Finally, (x1,x2) is an r–NE if, for each i ∈ N ,
r =

∑
i={1,2}

∑
l∈Si

ri,l and eTk Uix−i ≥ eTj Uix−i−ri,k
for every k ∈ Si, j ∈ Ai.

3 Randomizing over paths

In this section we develop NE algorithms that random-
ize over almost complementary paths.

3.1 Randomizing over Lemke–Howson (LH)
paths

For every agent i, define the best response polyhedron
Pi = {x̃i ∈ R

mi |U−ix̃i ≤ 1, x̃i ≥ 0}. Let Vi be the
vertices of Pi. The space Θ of solutions traversed by
LH is a subset of pairs of vertices of V = V1 × V2.
Let s−i be the slack variables of U−ix̃i + s−i = 1.
Variables si,a and xi,a are called complementary. A
basic solution of the tableaux associated with P1 and
P2 is complementary if the basis contains exactly one
complementary variable for all i and a, while it is al-
most complementary if both variables of a single pair
of complementary variables are in the basis. A com-
pletely complementary solution is an NE.

The initial solution of the LH algorithm [14] is gener-
ated by starting from the artificial solution (0,0) (cor-
responding to the case in which all the slack variables
si, for every i, are in the basis), and putting in the
basis of one of the two tableaux a variable xi,a associ-
ated with some action a ∈ A1 ∪ A2. Thus, there are
m1+m2 different possible initial solutions. LH follows
a path of almost complementary solutions by repeat-
edly applying complementary pivoting steps. At each
step, the current basis is changed by putting in the ba-
sis the variable that is complementary to the variable
that has left the basis in the previous step, until a com-
pletely complementary solution has been found. The
leaving variable is determined by the minimum ratio
test [15] and it is unique except for degenerate games;
however, degeneracy can be removed by introducing
lexicographic perturbation [24].

For each initial solution, there is a different path lead-
ing to a (potentially different) NE: LH partitions the
solution space in m1 +m2 different paths. If the path
that the algorithm is following is an exponentially long
one, it may be convenient to have restart.

We observe that any random restart policy over the
solutions traversed by the LH algorithm can be for-
mulated as a two–stage randomization policy: (1) ran-



domization over the m1 + m2 possible paths and (2)
randomization, given a path, over its solutions. We ini-
tially present an algorithm, called rrLH, that adopts
only a blind randomization of type (1) and, subse-
quently, we investigate randomization of type (2).

rrLH is described in Algorithm 1. It randomly chooses
one of the paths (Step 2) and follows it (Step 4) until
an NE is found; if the length (in terms of number of
pivoting steps) of the path is larger than a given cut-
off and there is a path that has not been visited till
cutoff (Steps 5, 6, and 8), the algorithm restarts with
a new path, otherwise (Step 7) cutoff is updated in an
iterative deepening fashion and a restart is done.

Algorithm 1 Lemke–Howson with random restart
(rrLH)

1: cutoff = cutoff0

2: randomly choose one path non–visited till cutoff
3: repeat
4: apply complementary pivoting
5: if the path is longer than cutoff then
6: if all the paths are visited till cutoff then
7: cutoff = cutoff + cutoff0

8: go to Step 2
9: until a completely complementary solution is found

10: return current solution

(To improve the efficiency of the algorithm, we save the
variables of the current basis before making a restart
and, when a path is re–visited, we derive the last vis-
ited basis by matrix inversion and we restart from it.)
The advantages of rrLH are simplicity and complete-
ness. The potential drawbacks are that the number
of possible paths is limited and that the algorithm is
forced to move along fixed paths. Call l∗ the short-
est LH path. The compute time of rrLH is linear in
l∗. When l∗ is known or it is possible to estimate a
tight upper bound, cutoff 0 can be conveniently fixed.
Assigning, e.g., cutoff 0= l∗, we have that the worst
case compute time is l∗(m1 + m2), while the average
is l∗(m1+m2+1)/2. Thus, if l∗ grows in length expo-
nentially in m1+m2, also rrLH compute time grows in
length exponentially. Adopting a non–blind random-
ization of type (1) would keep the compute time, even
in the best case, linear in l∗ and hence is useless.

We focus on randomization of type (2). This type of
randomization cannot be efficiently achieved with LH.
Indeed, differently from what happens with support–
enumeration algorithms [3, 4] where it is possible to
start from any support profile, no every possible al-
most complementary basis corresponds to a feasible
starting solution for LH: some sets of almost com-
plementary variables are not feasible basic solutions,
while the feasible ones can belong to LH paths or
not, and in this latter case they may belong to cyclic
paths that do not lead to any equilibrium (the mem-
bership of a solution to a path can be discovered only
during the traversing of the path itself and therefore,
if the algorithm starts from an arbitrary solution, it

cannot know the path over which it is moving and
cannot distinguish paths from cycles). Thus, an ini-
tial solution must be searched by using pivoting and
the number of pivoting steps may be exponential in
m1 +m2. However, we show that any algorithm with
randomization of type (2) has a compute time that
is asymptotically the same of our rrLH and therefore
rrLH is (asymptotically) optimal in the space of the al-
gorithms making random restarts over the LH paths.
This holds even dropping completeness and consider-
ing algorithms that find an NE with a probability p.
Initially, we state the following lemma.

Lemma 1. The best cutoff of a generic randomized al-
gorithm that finds the terminal vertex of an l–step–long
path with probability p and is able to position blindly
in every vertex of the path is l · p.

Proof. The best configuration of the algorithm can
be obtained by minimizing the number of steps of the
algorithm (i.e., cutoff · res, where res is the number
of restarts), under the constraint that the probability
to find the terminal is p, i.e., p = 1− (1− cutoff/l)res,
res ≥ 1, and cutoff ≥ 1. From p = 1−(1−cutoff/l)res it
follows that res = log(1−p)/ log(1−cutoff/l) ≥ 1, thus
log(1−p) ≥ log(1− cutoff/l), that means p ≤ cutoff/l.
res · cutoff can be rewritten as log(1 − p)/ log(1 −
cutoff/l) · cutoff. After having removed the negative
constant log(1 − p) the objective is to maximize the
monotonic decreasing function cutoff/ log(1−cutoff/l)
under the constraint p ≤ cutoff/l. The optimum is
cutoff = l · p and res = 1. �

From Lemma 1 it follows that, even when it is possible
to perform a blind randomization over the solutions
composing a single path, like stage (2) prescribes, the
optimal configuration of the algorithm is such that this
path is traversed only once without making restarts
(i.e. res = 1). Thus, this path can be safely removed
from the set of the available paths at stage (1). From
Lemma 1, we can easily derive the following lemma.

Lemma 2. The worst case compute time of a ran-
domized algorithm finding the terminal vertex of an
l–step–long path and able to position blindly in every
vertex of the path is l, while the average time is l/2.

Finally, we show that including randomization of
type (2) the compute time keeps to be linear in l∗

as stated by Lemma 3. From Lemma 2 we can state
the following.

Lemma 3. LH with blind randomization policy of
type (2) has a compute time O(l∗).

We can evaluate for specific interesting cases the ra-
tio between the average compute time of an algorithm
Π adopting randomization of type (2) and the one of
an algorithm Π′ that does not. Assign cutoff = l∗

and assume, for simplicity, that the length of all the
non–shortest paths is l > l∗ and m1 = m2 = m.



The average compute time of Π is (2m + 1)/2 · l∗.
The average case compute time of Π′ is given by
1/2m·l∗/2·

∑2m
k=0(1−l∗/2)k+(l∗)2/2l·1/2n·

∑2m−1
k=0 (1−

l∗/l)k(2m − 1 − k). The two opposite possible situa-
tions are: l∗/l → 1 and l∗/l → 0. In the best situation
l∗/l → 1 the average compute time is l∗/2 and there-
fore randomization of type (2) reduces the compute
time by 2m+1 times. In the worst situation l∗/l → 0,
the ratio is 1 and therefore no reduction is obtained. In
both cases, the compute time keeps to be linear in l∗.
We observe that, randomization of type (2) exploits
the existence of paths that are not excessively longer
than the shortest path.

Now, we focus on non–blind randomization of type (2),
providing a negative result.

Lemma 4. Any algorithm that finds the terminal ver-
tex of an l–step–long path with probability p and able
to position non–blindly in every vertex of the path, re-
quires either an exponential number (res) of restarts
or an exponential cutoff as l grows in length exponen-
tially.

Proof. Suppose to have an oracle that, given a cutoff
and an almost complementary solution, is able to say
whether or not such a solution is farther than cutoff
from the terminal vertex. If the solution is farther,
then it is discarded, otherwise the algorithm follows
the path from the given solution and the terminal ver-
tex. The probability to find a randomly generated
solution that is not farther than cutoff from the equi-
librium by res random restarts is: 1− (1−cutoff/l)res.
By posing: 1 − (1 − cutoff/l)res = p, we obtain res =
log(1−p)/ log(1−cutoff/l). When liml→+∞ cutoff/l =
0, we can write res = −l log(1 − p)/cutoff. There-
fore, if l grows in length exponentially then either
res or cutoff grow in length exponentially. When
liml→+∞ cutoff/l > 0, cutoff grows in length expo-
nentially as l does. �

From the above lemma, it can be easily observed that
when all the LH paths grow in length exponentially
non–blind randomization is useless: even dropping the
completeness and accepting that the NE can be found
with a probability p, in the worst case the compute
time is O(l∗). Thus, rrLH is asymptotically optimal
among algorithms randomizing over LH paths.

3.2 Randomizing over Lemke (L) paths

As discussed in the previous section, randomization
over paths exhibits a compute time that depends on
the length of shortest path. The main drawback of LH
is that the number of available paths is small. In this
section, we resort to the Lemke algorithm adaptation
as prescribed by [24], which we will call L. This algo-
rithm allows for an arbitrary initial solution, each cor-
responding to a different path, and therefore it allows
for an infinite number of paths. Define the polyhedron

P as follows.

P =







[z0 z1 z2]

∣

∣

∣

∣

∣

∣

M1,1z1 + M1,2z2 + d1z0 = q1

M2,1z1 + M2,2z2 + d2z0 + q2 ≥ 0
z0, z2 ≥ 0







with d1 = 1,d2 = [−(U1x2)
T ,−(U2x1)

T ]T where x1

and x2 are parameters (therefore P is parametric),
q1 = −1, q2 = 0 and

z1 =

[

v1

v2

]

M1,1 =

[

0 0
0 0

]

M1,2 =

[

1T 0T

0T 1T

]

z2 =

[

x1

x2

]

M2,1 =

[

1 0
0 1

]

M2,2 =

[

0 −U1

−U2 0

]

Let V be the set of vertices of P . The space Θ of so-
lutions traversed by the Lemke algorithm is a subset
of V . Call w the slack variables of M2,1z1 +M2,2z2 +
d2z0+q2−w = 0 and consider the associated tableau.
Call zj , with j 6= 0, the j–th element of z = [zT1 , z

T
2 ].

Variables zj and wj are called complementary. A solu-
tion is completely complementary if the basis contains
one complementary variable between zj and wj for ev-
ery j (therefore z0 is out the basis), while a solution is
almost complementary if both variables zj and wj for
a single j are not in the basis but z0 is.

The algorithm moves along almost complementary so-
lutions, each corresponding to a pair of strategies
(x1+z0x1,x2+z0x2). The initial solution is such that:
(a) z0 is in the basis and it is equal to 1, (b) all the
variables xi,a such that a is a best response to x−i are
in the basis except one, and (c) for all the non–best–
response actions a the complementary variable wj of
xi,a is in the basis. Given the initial solution, the al-
gorithm follows a path of almost complementary solu-
tions by repeatedly applying complementary pivoting
(the entering variable is the complementary variable
of the leaving variable at the previous step, while the
leaving variable is determined by the lexico minimum
ratio test). At the first step of L, the entering vari-
able is xi,a such that a is the only best response not
yet in the basis. (L terminates when z0 is the leaving
variable, finding as NE.)

LH has a finite number of possible paths (m1 + m2),
while L has an infinite number of them, thus we try to
design a non–blind randomization policy among paths
and we fixed a limit to the restarts, otherwise in the
worst case the compute time would be infinite. We
design the version of L with random restarts (rrL)
like rrLH except that: (a) the initial solution is deter-
mined by randomly generating x1 and x2; since there
are infinitely many possible initial solutions and many
of them could lead to potentially long paths, (b) we
use quality metrics to accept or discard an initial so-
lution θ (we accept θ if g(θ) > th, where g can be
defined in different ways, e.g., ǫ, ǫWS , and r, and th
is a threshold), (c) we use a cutoff as a function of
how the different metrics ǫ, ǫWS , r, and z0 decrease



along the path; and (d) we disable the cutoff after a
given number of restarts to guarantee completeness,
the potential restarts would be infinite otherwise.

The advantage of rrL is that the initial solution can
be any and thus much more paths than rrLH can be
followed. The potential drawbacks are that the algo-
rithm is forced to move along fixed paths and that the
pivoting step requires about twice as much compute
time as LH due to the tableau size.

4 Local search on best response

vertices

We cast NE finding as a local search based optimiza-
tion problem (Θ, f,N) where Θ is the solution space,
f is a function f : Θ → R to minimize, and N is the
neighborhood function that specifies, for each solution
θ ∈ Θ, a set N(θ) ⊆ Θ of solutions that can be directly
reached from θ [16].

The solution space Θ is the set of vertices Vi of the
polyhedron Pi = {x̃i ∈ R

mi |U−ix̃i ≤ 1, x̃i ≥ 0} that
constitutes the best response polyhedron of agent i,
where agent i is the agent with the minimum number
of actions. This choice allows one to reduce the solu-
tion space as shown below (however, our algorithm can
be applied with any i). Every vertex x̃i of Vi, except
for x̃i = 0, is equivalent to a strategy xi =

1
1T x̃i

x̃i.

The function f to minimize associates each strategy
xi = xi with the ǫ value of the best ǫ–Nash equilibrium
when agent i plays xi. This value can be computed as:

min
ǫ,x

−i

ǫ (5)

s.t. x
T
i Uix−i + ǫ − e

T
k Uix−i ≥ 0 ∀k ∈ Ai (6)

x
T
i U−ix−i + ǫ − x

T
i U−iek ≥ 0 ∀k ∈ A−i (7)

1
T
x−i = 1 (8)

x−i ≥ 0 (9)

ǫ ≥ 0 (10)

The constraints ensure that x−i ∈ ∆−i and ǫ is non–
negative. Note that the solution ǫ∗ of the above linear
program is 0 if and only if there is some x−i = x−i

such that (xi,x−i) is an NE. Therefore, we recognize
whether or not a local minimum is a global minimum.

Given a vertex x̃i of Vi, the neighbors are all the adja-
cent vertices of x̃i. These vertices can be found by ex-
ploiting pivoting. More precisely, consider the tableau
U−ix̃i + s = 1 where s are slack variables. A basic
solution of the tableau is composed by m−i variables
belonging to x̃i and s (when only variables s are in the
basis we have the artificial solution x̃i = 0). A vertex
x̃i of Vi corresponds to a basic solution of the tableau.
We can change the basis by making a non–basic vari-
able enter the basis (the leaving variable is uniquely
determined by the minimum ratio test). The number
of entering variables is mi; thus each vertex has ex-

actly mi neighbors. In contrast, in the local search
over supports, each solution has m1 ·m2 neighbors.

The local search algorithm for solving (Θ, f,N), called
LS–v, is provided in Algorithm 2. The initial solution
(Step 1) is generated starting from the artificial solu-
tion x̃i = 0 and applying a random number of random
pivoting steps (as described above). In principle, any
possible vertex of Pi may be an initial solution. We
use a tabu list to keep track of previously generated
initial solutions in order to avoid repetitions. Given
solution s, the algorithm searches in the neighborhood
N(s) for a solution s′ such that f(s′) < f(s) (Step 3).
This search is driven by a heuristic. We use three main
heuristics: best improvement (BI) where all neighbors
are generated and the best neighbor better than the
current is chosen, first improvement (FI) where the
neighbors are searched in a given order and the first
neighbor better than the current is chosen, first im-
provement with random generation (FIR) where the
neighbors are searched randomly and the first neigh-
bor better than the current solution is chosen. (With
FIR we disable the tabu list for the initial solution be-
cause randomization makes the algorithm follow dif-
ferent paths at every execution, and we generate at
most max–n neighbors.) If there is no neighbor bet-
ter than the current solution or if the path length is
longer than cutoff and there exists an unvisited initial
solution, then a restart is conducted (Steps 4 and 5).

Algorithm 2 Local search on best response vertices
(LS–v)

1: randomly choose an unvisited initial solution s from x̃i = 0 by
pivoting

2: repeat
3: choose neighbor θ′ ∈ N(θ) with f(θ′) < f(θ) and assign

θ = θ′

4: if there is no θ′ or the path is longer than cutoff then
5: go to Step 1
6: until f(θ) > 0

7: return current solution

The advantages of rrL are that it can traverse solutions
that are not in LH/L paths and that the number of
neighbors is low (w.r.t. local search on supports). The
drawback is that the algorithm is incomplete.

5 Anytime iterative perturbation over

paths

Given a two–player game with utilities (U1, U2) and a
game with (U ′

1, U
′
2) where every U ′

i is obtained by per-
turbing each payoff of Ui with an arbitrary probability
distribution over [−δ, δ], it has been shown that an NE
for (U ′

1, U
′
2) is an ǫ–NE for (U1, U2) with ǫ ≤ 4δ [5]. We

argue that the bound is tighter:

Theorem 1. Given a two–player game with (U1, U2)
and a game with (U ′

1, U
′
2) where every U ′

i is obtained
by perturbing each payoff of Ui with an arbitrary prob-
ability distribution over [−δ, δ], an NE (x̂1, x̂2) for



(U ′
1, U

′
2) is an ǫ–NE for (U1, U2) with ǫ ≤ 2δ.

Proof Call x∗
1 the best response of agent 1 to x̂2 of

agent 2 for the game (U1, U2). By definition, ||Ui −
U ′
i ||∞ ≤ δ. We can compute the upper bound over the

expected utility loss of agent 1: ǫ = x∗
1U1x̂2−x̂1U1x̂2 ≤

x∗
1U1x̂2 − x∗

1U
′
1x̂2 + x̂1U

′
1x̂2 − x̂1U1x̂2 ≤ |x∗

1U1x̂2 −
x∗
1U

′
1x̂2| + |x̂1U

′
1x̂2 − x̂1U1x̂2| ≤ x∗

1||U1 − U ′
1||∞x̂2 +

x̂1||U
′
1 − U1||∞x̂2 ≤ ||U1 − U ′

1||∞ + ||U ′
1 − U1||∞ ≤

2δ. The same reasoning can be applied to agent 2,
obtaining the same upper bound. Hence, the theorem
is proved. �

We exploit this result to produce a simple anytime
algorithm (Algorithm 3) based on the idea that an
hard game could become easy after perturbed. The
algorithm iteratively applies LH starting from a per-
turbed game obtained with a large perturbation (i.e.,
δ = 0.125) and then exponentially reducing the per-
turbation at each step where LH has found an NE.

Algorithm 3 Anytime iterative perturbation over
paths (ip-LH)

1: set k = 3
2: while deadline has not been reached do
3: set δ = 1/2k

4: apply δ–uniform perturbation on (U1, U2)
5: apply LH to perturbed (U1, U2)
6: set k = k + 1

7: return current solution

6 Experimental evaluation

6.1 Experimental setting

We implemented LH, L, rrLH, rrL and ip–LH in C in
two different versions: one with floating–point and one
with arbitrary–precision integer arithmetic by means
of the GMP library2. We implemented LS–v, PNS and
LS–PNS in C calling CPLEX via AMPL to solve LPs,
while MIP Nash directly in AMPL3 with CPLEX4. All
the algorithms that use pivoting techniques are opti-
mized with the revised technique [15] and those using
GMP with integer pivoting [23] to save compute time.
(Revised technique allows us to store and perform piv-
oting on a reduced tableau, obtaining a relevant im-
provement in the performance of the algorithms.) We
conducted the experiments on a UNIX computer with
2.33GHz CPU, 16GB RAM and kernel 2.6.24.

Using GAMUT [17], we generated 500 instances
of CovariantGame–Rand, GraphicalGame–RG and
PolymatrixGame–RG games (being the hardest classes
w.r.t. PNS, LH and MIP Nash) and 10 instances of all
the other classes with m1 = m2 = m ∈ {5, . . . , 150}
and a step of 5. We also generated an instance of SGC
games with m ∈ {3, . . . , 99} and a step of 4 as pre-
scribed in [19]. In SGC games, all equilibria have a

2
http://gmplib.org/.

3
http://www.ampl.com.

4
http://www-01.ibm.com/software/integration/optimization/

cplex-optimizer/.

medium number of pure strategies in their supports.
Finally, we generated one instance of HtSG (its gen-
eration not being random) with m ∈ {2, . . . , 18} and
a step of 2 as prescribed in [20]. In HtSG, all the LH
paths are exponentially long.5

6.2 Numerical instability with floating point
precision

We evaluated numerical instability of LH and L with
floating–point precision for different game classes,
comparing their results to those obtained with ar-
bitrary precision. With GAMUT game classes, L
presents numerical instability (the algorithm goes in
ray termination) even with small games (m = 30)
for all the game classes, while LH presents instability
with a limited number of game classes (not recogniz-
ing equilibria or finding non–NE solutions). With long
double precision, LH performs a wrong path on 96.1%
of 100x100 TravelersDilemma instances and on 22.75%
of 100x100 WarOfAttrition instances. More available
tricks could be used to diminish the numerical instabil-
ity than the ones used in our implementation, but the
result would be the same: LH and L are intrinsically
unstable. Using other tricks we can increase the size
of the games at which instability appears. However,
the relative comparison of the game classes in terms
of arbitrary precision stands. On HtSG, arbitrary pre-
cision arithmetic is required even during the game in-
stance generation. We generated game instances using
both the trigonometric and the non–trigonometric mo-
ment curves as described in the appendix of [20]. We
counted, using the lrs algorithm [1], the number of
vertices of the polyhedron associated with the game
generated with floating point precision and compared
it to that obtained with arbitrary precision. When at
least one vertex is lost, the polyhedron loses its hard-
ness characteristics and at least a short path appears.
Tab. 1 shows that arbitrary precision is required for
instances with ≥ 14 actions per agent.

Table 1: Percentage of lost vertices in HtSG due to
floating–point precision with different moment curves.

Actions per agent
6 8 10 12 14 16

non–trigonometric
0% 0% 0% 0% 1% 29%

trigonometric
0% 64% 72% 95% 92% 82%

6.3 Path distribution

We ran LH along every possible path with all the
100x100 (99x99 with SGC) instances of our experi-
mental setting (except HtSG), measuring the length of

5
Although HtSG square instances can be easily solved by sup-

port enumeration algorithms, the equilibrium being unique and fully
mixed, non–square games can be built such that support enumera-
tion algorithms require exponential time.



the paths and deriving their distribution for each game
class. Almost all the distributions are fat–tailed [10].
These distributions present a lot of data points in
the tail, showing that the performance of an algo-
rithm may vary dramatically from run to run. For-
mally, a distribution is fat–tailed if its kurtosis (µ4/µ

2
2,

where µj is the j–th moment) is larger than 3 (i.e.,
the kurtosis of a standard normal). All the game
classes have a kurtosis larger then 3, except for Disper-
sionGame, MinimunEffortGame (the kurtosis is not
defined since µ2 = 0 and µ4 = 0, all the paths having
the same length), SGC (1.0), TravelersDilemma (1.8),
and WarOfAttrition (2.39). As suggested in [10], with
fat–tailed distributions, random restarts may drasti-
cally improve performance. Our experiments, dis-
cussed below, confirm this.

Although almost all the classes present fat–tailed dis-
tributions, the performance of LH varies greatly across
them. We ran LH with instances of different sizes and
bucketed the game classes into five groups:

1. (DispersionGame, MinimumEffortGame) The
length of all the paths is constant (= 2) with game
size.

2. (BidirectionalLEG–CG/RG/SG,
CovariantGame–Pos, LocationGame,
UniformLEG–CG/RG/SG, WarOfAttrition)
The average and maximum path length tends to
a constant value (< 10) as game size increases.

3. (SGC, TravelersDilemma) The average path
length increases linearly in game size.

4. (BertrandOligopoly, CovariantGame–
Rand/Zero, GraphicalGame–RG/Road/SG/SW,
PolymatrixGame–CG/RG/Road/SW, Ran-
domGame) These games have an exponential
growth of the average number of steps with
the game size, but there can be some paths
with polynomial length. Fig. 1 reports, for two
classes, the average number of steps and the
pertinent box–plot diagram: median, 1–st and
3–rd quartiles (dashed), max and min (dotted).

5. (HtSG). All the paths are exponentially long.

We produced the same analysis for L by randomly
generating m initial solutions. All the classes present
the same behavior they have with LH — except Dis-
persionGame, which, when solved with L, belongs to
Group 2. HtSG preserves, with L, the same charac-
teristic exhibited with LH: the length of the shortest
paths grows exponentially.

6.4 Finding an NE by rrLH

Groups 1–3 are easy even without resorting to ran-
dom restarts (these games are easy also with other
algorithms, e.g. PNS). Thus, we just briefly summa-
rize the main results omitting details. Instances of

LH rrLH
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Figure 1: Comparison between LH (left) and rrLH
(right) in terms of average number of steps and box–
plot (median, 1–st/3–rd quartiles with dotted lines,
min/max with dashed lines) of PolymatrixGame–RG
and CovariantGame–Rand.

Groups 1 and 2 are solved by LH with a very small
number of steps even in the worst cases (the compute
times are less than one second). With Group 3, LH
requires a linear compute time. With SCG it has al-
ready been experimentally demonstrated that LH out-
performs MIP Nash and PNS [19]. With Travelers-
Dilemma, LH (with arbitrary precision) is essentially
the unique applicable algorithm — the commercial LP
solvers do not support arbitrary precision, while a pre-
liminary evaluation of GLPK with arbitrary precision
led to compute times two orders of magnitude longer.

Random restarts play a crucial role with Group 4.
These games are hard (in average) when solved with
LH (and the other known algorithms: PNS, MIP
Nash, LS–PNS). The application of rrLH with cutoff =
20 makes all the classes except for CovariantGame–
Rand easy: all the executions of rrLH find an NE
by the deadline and the average compute time is lin-



Table 2: Termination percentage and compute times.
rr–LH MIP Nash PNS

BetrandOligopoly
(100%) 0.27 s (100%) 2.25 s (100%) 0.15 s

CovariantGame–Rand
(80%) 176.61 s (10%) 254.02 s (20%) 18.13 s

CovariantGame–Zero
(100%) 0.15 s (80%) 155.79 s (90%) 3.75 s

GraphicalGame–RG
(100%) 0.16 s (10%) 124.42 s (90%) 3.64 s

GraphicalGame–Road
(100%) 0.13 s (60%) 98.32 s (90%) 4.47 s

GraphicalGame–SG
(100%) 0.15 s (40%) 180.61 s (60%) 2.30 s

GraphicalGame–SW
(100%) 0.14 s (30%) 155.28 s (90%) 3.42 s

PolymatrixGame–CG
(100%) 0.14 s (30%) 213.77 s (60%) 3.27 s

PolymatrixGame–RG
(100%) 0.14 s (60%) 160.80 s (90%) 1.14 s

PolymatrixGame–Road
(100%) 0.15 s (70%) 208.48 s (90%) 2.51 s

PolymatrixGame–SW
(100%) 0.13 s (20%) 73.73 s (90%) 2.43 s

RandomGame
(100%) 0.13 s (50%) 160.14 s (60%) 4.80 s

ear the game size (the same for max and median),
as shown in Fig. 1 for PolymatrixGame–RG. With
CovariantGame–Rand, we observed that there is at
least an instance whose shortest path grows in length
exponentially (therefore, as shown in Section 3, no cut-
off, even with iterative deepening, can lead to non–
exponential compute times). As a result, the average
number of steps is not smaller than that of LH.

We compared rrLH with floating–point precision (ar-
bitrary precision is averagely 56 times slower) to MIP
Nash and PNS with 150x150 instances of Group 4 (LS–
PNS is not useful for non–hard instances [3]). Tab. 2
shows the percentage of instances solved within 600 s
and the compute time in seconds. rrLH dramatically
outperforms the other two algorithms. More precisely,
PNS terminates very quickly if there is an NE with
very small support and takes exponential time other-
wise. Call s the smallest support size of all the NEs
of a game. PNS scans O(n2s) supports before finding
an NE, instead we observed that rrLH makes O(2ns)
pivoting steps. Thus, as n increases, PNS is inefficient
even with small s, instead rrLH scales well. MIP Nash
performs radically worse than the others.

With HtSG, obviously, rrLH is not effective.

6.5 Finding an NE by rrL

The performance of rrL with blind random restarts
are similar to rrLH, requiring for some classes (e.g.
CovariantGame–Rand) a smaller number of steps but
requiring more time per step. Given that all the other
classes can be easily solved by applying rrLH except
for CovariantGame–Rand and HtSG, we focused only
on these two hard classes exploiting the main pecu-

liarity of rrL: adopting a non–blind approach, trying
to characterize good initial solutions and discarding
those that are not promising.

We initially studied correlation between the values of
ǫ, ǫWS , and r of the initial solutions and the length of
the paths with L, and we observed that no statistical
correlation is present. Thus, such parameters cannot
be used to identify short paths and discard those po-
tentially long. Instead, we found statistical correlation
for CovariantGame–Rand (and PolymatrixGame–RG)
between the length of the L paths and the distance
(d∞) in ||·||∞ between the initial solution and the equi-
librium (the steps reduce as d∞ increases), as shown
in Fig. 2. Because the equilibrium is unknown, we
can only use the vertices of the simplices as initial so-
lutions (these are by definition the farthest points).
However, with these initial solutions, L behaves like
LH. This justifies why, although L allows potentially
infinite paths, LH performs like L.

Given the difficulty of characterizing good initial so-
lutions, we tried to characterize good paths by an-
alyzing how some metrics (ǫ, ǫWS , r, z0) vary dur-
ing the paths. We designed a measure defined as
decr(z0, h) = 1

z01

∑h
k=1 |z0k − z0k+1

| that is equal to

1 when z0 decreases monotonically and greater than
1 otherwise. Fig. 2 shows that with CovariantGame–
Rand, decr(z0, h) is high on long paths. However, ex-
perimentally, this strategy resulted ineffective even fix-
ing a small cutoff. Furthermore, there is no statistical
correlation when ǫ or ǫWS or r are used in place of z0.
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Figure 2: Relation between the measures d∞,
decr(z0,m) and number of steps with 50x50
CovariantGame–Rand and 16x16 HtSG.

6.6 Finding an NE by LS–v

We mainly focused the evaluation of LS–v on
CovariantGame–Rand, the other classes being easy
and LS–v being not applicable to HtSG due to lack
of arbitrary precision. We tuned the parameters



cutoff and max–n of FIR in LS–v as follows. We
isolated 15 100x100 hard CovariantGame–Rand in-
stances that cannot be solved by 600 s by PNS,
MIP Nash or rrLH. We randomly chose 5 instances
and tuned LS–v with cutoff ∈ {m, 2m,m2, 2m2} and
max–n ∈ {m/2,m, 2m,m2/2}. The best configuration
was cutoff = m2/2 and max–n = 2m2. With such
configuration, the number of random restarts is very
small. In practice, every solution has a better neighbor
with high probability. Then we compared the perfor-
mance of the three heuristics BI, FI and FIR (with its
best configuration) with the other 10 hard instances
(non–used for the tuning). The best heuristic was FIR
with ǫ = 3.64 · 10−4 by 600 s, while ǫ > 3 · 10−3 with
the other two. However, LS–v never found an NE with
these 10 hard instances. In addition, we evaluated LS–
v with generic (not necessarily hard) instances. Tab. 3
reports success probability and ǫ of the best solution
found by 600 s. LS–v is outperformed by rrLH and
rrL (that found an NE with GraphicalGame–RG and
PolymatrixGame–RG with a probability of 100% and
of 30% with 100x100 CovariantGame–Rand).

Table 3: Percentage of solved instances and average
best ǫ–NE found within 600 s with LS–v.

Actions per agent
60 80 100

CovariantGame–Rand

(56%)9.34 · 10−5 (63%)1.82 · 10−4 (13%)1.80 · 10−4

GraphicalGame–RG

(56%)1.32 · 10−4 (38%)1.72 · 10−4 (36%)7.83 · 10−4

PolymatrixGame–RG

(60%)3.91 · 10−5 (40%)3.95 · 10−4 (30%)2.57 · 10−4

6.7 Approximating an NE

We compared LS–v to the anytime versions of the
other algorithms, obtained by keeping track of the
best ǫ–NE during the pivoting, and ip–LH. Tab. 4
shows that LS–v is the best anytime algorithm (in-
cluding PNS–anyT) for the 15 hard CovariantGame–
Rand instances by an order of magnitude. It
can be observed that ip–LH does not perform well
with CovariantGame–Rand. This result shows that
CovariantGame–Rand instances are stable, keeping to
be hard even when perturbed.

We compared the anytime performance of LS–v and
LH–anyT, these algorithms working on a similar solu-
tion space. Fig. 3 shows that LS–v found very good
approximate solutions within a small number of steps
and it outperforms LH–anyT for all setting of run time
(the other heuristics provide similar results: LS–v finds
very quickly a good approximate equilibrium).

We studied the ǫ–NEs with 16x16 HtSG. These games
were easy for ip–LH (with arbitrary precision), requir-
ing less than 10 steps even with a perturbation of
10−10, returning ǫ ≈ 10−12 (we cannot apply a per-

Table 4: Average best ǫ–NE found within 600 s on
100x100 hard CovariantGame–Rand.

LH–anyT L–anyT PNS–anyT MILP–anyT

6 · 10−3 2 · 10−2 8 · 10−2 3 · 10−3

ip–LH LS–v LS–PNS

1 · 10−2 3 · 10−4 2 · 10−3

LS–v LH–anyT
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Figure 3: How the best ǫ–NE found so far changes
during two sample executions of LS–v and LH–anyT.

turbation smaller than 10−10 due to limits of GMP
library). This shows that HtSG instances are highly
unstable when perturbed. Therefore, there must ex-
ist another game class that is hard for LH and that is
stable unless PPAD ⊆ RP. Finally, LH–anyT provided
best performance, returning ǫ ≈ 10−34 within 600 s.

7 Conclusions and future research

The computation of an NE is a challenging task even
with two agents. In this paper we present by and
large the fastest algorithms for the problem to date.
We also present other results about the problem. For
many situations, arbitrary–precision arithmetic is nec-
essary even with LH. Complementary pivoting with
blind random restarts over paths is the best heuris-
tic, linearizing the average compute time in game size
and outperforming all our and state–of–the–art al-
gorithms for all the benchmark game classes except
CovariantGame–Rand and HtSG. We provide theoret-
ical results that allow us to say that rrLH is asymptot-
ically optimal among algorithms that randomize over
LH paths. We did not find any metric to characterize
good L paths and therefore to have non–blind ran-
dom restarts. Local search guided by the minimiza-
tion of ǫ exhibits worse performance in finding exact
equilibria, but it is the best in approximating hard in-
stances, except for HtSG. HtSG games are unstable
in the sense that they can be easily approximated by
introducing a very small perturbation; therefore there
must exist an alternative hard instance for LH that is
stable (CovariantGame–Rand is a possible candidate,
it being stable). In the future, we will extend our algo-
rithms to games with more than two agents and isolate
hard stable instances for each algorithm.
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