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Abstract. Automated market makers are algorithmic agents that pro-
vide liquidity in electronic markets. A recent stream of research in au-
tomated market making is the design of liquidity-sensitive automated
market makers, which are able to adjust their price response to the level
of active interest in the market. In this paper, we introduce homogeneous
risk measures, the general class of liquidity-sensitive automated market
makers, and show that members of this class are (necessarily and suffi-
ciently) the convex conjugates of compact convex sets in the non-negative
orthant. We discuss the relation between features of this convex conju-
gate set and features of the corresponding automated market maker in
detail, and prove that it is the curvature of the convex conjugate set that
is responsible for implicitly regularizing the price response of the market
maker. We use our insights into the dual space to develop a new family of
liquidity-sensitive automated market makers with desirable properties.

1 Introduction

Automated market makers are algorithmic agents that provide liquidity in elec-
tronic markets. Markets with large event spaces or sparse interest from traders
might fail because buyers and sellers have trouble finding one another. Auto-
mated market makers can prevent this failure by stepping in and providing
a counterparty for prospective traders; instead of making bets with each other,
traders place bets with the automated market maker. Automated market makers
have been the object of theoretical study into market microstructure [Ostrovsky,
2009, Othman and Sandholm, 2010b] and successfully implemented in practice
in large electronic markets [Goel et al., 2008, Othman and Sandholm, 2010a]. A
broad introduction to the mechanics of automated market making can be found
in Pennock and Sami [2007].

Othman et al. [2010] introduce a liquidity-sensitive automated market maker.
This market maker is able to adapt its price response to increasing activity within
the market; with this market maker bets will not move prices very much when
there is lots of money already wagered with the market maker. This is in contrast
to traditional market-making agents that provide identical price responses re-
gardless of whether there are tens of dollars or tens of millions of dollars wagered
with the market maker.



Unfortunately, this liquidity-sensitive market maker does not generalize eas-
ily. In Othman et al. [2010] it is referred to as a technique to “continuously
channel profits into liquidity”, a view echoed by Abernethy et al. [2011]. While
this view may be accurate, it is not prescriptive: it offers no insight about how
to create other liquidity-sensitive market makers, or of the relation between
liquidity-sensitive market makers and the other market makers of the literature.

In this paper, we solve the puzzle of how liquidity-sensitive market makers
work, and their relation to other market makers from the literature. We are able
to contextualize, generalize, and expand the idea of liquidity-sensitive market
makers. In order to do this, we first situate liquidity-sensitive market makers
within the same framework as their liquidity-insensitive counterparts. Using a
set of desiderata taken from the prediction market and finance literature we
introduce a new class of automated market makers, homogeneous risk measures,
which we argue correctly embody the notion of liquidity sensitivity, and we prove
that the market maker of Othman et al. [2010] is a member of this class.

Our principal result is a necessary and sufficient characterization of the com-
plete set of homogeneous risk measures: they are the support functions of com-
pact convex sets in the non-negative orthant. Most intriguingly, this dual view
allows us to achieve a synthesis between homogeneous risk measures and the
experts algorithm perspective of Chen and Vaughan [2010], another recent view
of automated market making. In this perspective, homgeneous risk measures are
unregularized follow-the-leader algorithms that (generally) put non-unit total
weight on the set of experts. We show it is the shape of the convex conjugate
set (particularly, that set’s curvature) that implicitly acts as a regularizer for
the homogeneous risk measure. Furthermore, the bulge of the convex set away
from the probability simplex defines notions like the maximum sum of prices.
We use these insights to create a new family of liquidity-sensitive automated
market makers, the unit ball market makers, that have desirable properties: de-
fined costs for any possible bet, defined bounds on sums of prices, and tightly
bounded loss.

2 Background

In this section we provide a brief introduction to automated market making,
with emphasis on the recent results that guide the remainder of the work.

2.1 Cost functions and risk measures

We consider a general setting in which the future state of the world is exhaus-
tively partitioned into n events, {ω1, . . . , ωn}, so that exactly one of the ωi will
occur. This model applies to a wide variety of settings, including financial mod-
els on stock prices and interest rates, sports betting, and traditional prediction
markets.

In our notation, x is a vector and x is a scalar, 1 is the n-dimensional vector
of all ones, and ∇if represents the i-th element of the gradient of a function f .
The non-negative orthant is given by Rn+ ≡ {x | mini xi ≥ 0}.



Let U be a convex subset of Rn. Our work concerns functions C : U 7→ R
which map vector payouts over the events to scalar values. A state refers to
a vector of payouts. Traders make bets with the market maker by changing
the market maker’s state. To move the market maker from state x to state x′,
traders pay C(x′) − C(x). For instance, if the state is x1 = 5 and x2 = 3, then
the market maker needs to pay out five dollars if ω1 is realized and pay out 3
dollars if ω2 is realized. If a new trader wants a bet that pays out one dollar if
event ω1 occurs, then they change the market maker’s state to be {6, 3}, and pay
C({6, 3})− C({5, 3}). There are two broad research streams that explore these
functions. The prediction market literature, where they are called cost functions,
and the finance literature, where they are called risk measures. We use the terms
cost function and risk measure interchangeably.

The most popular cost function used in Internet prediction markets is Han-
son’s logarithmic market scoring rule (LMSR), an automated market maker with
particularly desirable properties, including bounded loss and a simple analytical
form [Hanson, 2003, 2007]. The LMSR is defined as

C(x) = b log

(∑
i

exp(xi/b)

)

for fixed b > 0. b is called the liquidity parameter, because it controls the mag-
nitude of the price response of the market maker to bets.1 For instance, if the
LMSR is used with b = 10 in our example above, C({6, 3}) − C({5, 3}) ≈ .56,
and so the market maker would quote a price of 56 cents to the agent for their
bet. If b = 1, the same bet would cost 92 cents.

The prices pi of a differentiable risk measure are given by the gradient of the
cost function—the marginal cost on each event: pi = exp(xi/b)∑

j exp(xj/b)
. Observe that

the prices in the LMSR sum to one. The notion of sum of prices is crucial to
our work. The market maker’s profit cut (or vigorish in gambling contexts) can
be thought of as the difference between the sum of prices and unity [Othman
et al., 2010]. This profit cut serves to compensate the market maker for taking
bets with traders, and typical values for the vigorish in real applications are
small, ranging from one percent to 20 percent. Since the LMSR and many other
cost functions of the literature [Chen and Pennock, 2007, Peters et al., 2007,
Agrawal et al., 2009, Abernethy et al., 2011] do not have a profit cut, they can
be expected to run at a loss in practice [Pennock and Sami, 2007].

2.2 Link to online learning

One of the most intriguing recent developments in automated market making
is the link between cost functions and online learning algorithms, particularly
between cost functions and online follow-the-regularized-leader algorithms. This
link first appeared in a supporting role in Chen et al. [2008], and was significantly
1 With b = 1, the LMSR is equivalent to the entropic risk measure of the finance

literature [Föllmer and Schied, 2002].



expanded in later work by those authors [Chen and Vaughan, 2010, Abernethy
et al., 2011]. Any loss-bounded convex risk measure (Section 3 will make this
precise) is equivalent to a no-regret follow-the-regularized-leader online learning
algorithm. These online learning algorithms are conventionally expressed not
as cost functions (or, in the machine learning literature, potential functions),
but rather in dual space [Shalev-Shwartz and Singer, 2007]. The dual-space for-
mulation is a powerful way of interpreting and constructing automated market
makers.

Let Π be the probability simplex. Chen and Vaughan [2010] show that we can
write any convex risk measure in terms of a convex optimization over a follow-the-
leader term and a convex regularizer term. This optimization is in fact a conju-
gacy operation restricted to the probability simplex: C(x) = maxy∈Π x · y − f(y)
Here, x · y is the follow-the-leader term, and f is a regularizer.

2.3 The OPRS cost function

The Othman-Pennock-Reeves-Sandholm cost function (OPRS) was originally in-
troduced in Othman et al. [2010] as a liquidity-sensitive extension of the LMSR.
The OPRS is defined as C(x) = b(x) log (

∑
i exp(xi/b(x))), where b(x) = α

∑
i xi

for α > 0. The OPRS can be contrasted with the LMSR, for which b(x) ≡ b.
Unlike the LMSR, the OPRS is only defined over the non-negative orthant (for
continuity we can set C(0) = 0). Also unlike the LMSR, the sum of prices in the
OPRS is always greater than 1.

The OPRS has several desirable properties. These include a concise ana-
lytical closed form and outcome-independent profit, the ability to (for certain
final quantity vectors) book a profit regardless of the realized outcome. Perhaps
the most practical property of the OPRS is its scale-invariant liquidity sensi-
tivity: its consistent price reaction over different scales of market activity. (This
scale-invariance is a consequence of the OPRS cost function being positive ho-
mogeneous.) For large liquid markets, say with millions of dollars, a one-dollar
bet will have a much smaller impact on prices than in a less-liquid market. This
is not the case for the LMSR, where a one dollar bet moves prices the same
amount in both heavily- and lightly-traded markets.

3 Desiderata, dual spaces, and an impossibility result

This section expands upon the dual-space approach to automated market mak-
ing [Agrawal et al., 2009, Chen and Vaughan, 2010, Abernethy et al., 2011],
particularly as a vehicle for contextualizing and generalizing the OPRS.

3.1 Desiderata and their combinations

In this section we introduce five desiderata for cost functions. Each of these
properties has been acknowledged as desirable in the market making litera-
ture [Agrawal et al., 2009, Othman et al., 2010, Abernethy et al., 2011]. The
market makers from the literature satisfy various subsets of these desiderata.



Monotonicity: For all x and y such that xi ≤ yi, C(x) ≤ C(y).
Monotonicity prevents simple arbitrages like a trader buying a zero-cost con-

tract that never results in losses but sometimes results in gains.

Convexity: For all x and y and λ ∈ [0, 1], C(λx + (1− λ)y) ≤ λC(x) + (1− λ)C(y).
Convexity can be thought of as a condition that encourages diversification.

The cost of the blend of two payout vectors is not greater than the sum of
the cost of each individually. Consequently, the market maker is incentivized to
diversify away its risk. The acknowledgment of diversification as desirable goes
back to the very beginning of the mathematical finance literature [Markowitz,
1952].

Bounded loss: supx [maxi (xi)− C(x)] <∞.
A market maker using a cost function with bounded loss can only lose a finite

amount to interacting traders, regardless of the traders’ actions and the realized
outcome.

Translation invariance: For all x and scalar α, C(x + α1) = C(x) + α.
Translation invariance ensures that adding a dollar to the payout of every

state of the world will cost a dollar.

Positive homogeneity: For all x and scalar γ > 0, C(γx) = γC(x).
Positive homogeneity ensures a scale-invariant, currency-independent price

response, as in the OPRS. From a risk measurement perspective, positive homo-
geneity ensures that doubling a risk doubles its cost.

A cost function that satisfies all of these desiderata except bounded loss is
called a coherent risk measure. Coherent risk measures were first introduced
in Artzner et al. [1999].

Definition 1 A coherent risk measure is a cost function that satisfies mono-
tonicity, convexity, translation invariance, and positive homogeneity.

When we relax positive homogeneity from a coherent risk measure, we get a
convex risk measure. Convex risk measures were first introduced in Carr et al.
[2001] and feature prominently in the prediction market literature [Hanson, 2003,
Ben-Tal and Teboulle, 2007, Hanson, 2007, Chen and Pennock, 2007, Peters
et al., 2007, Agrawal et al., 2009, Abernethy et al., 2011].

When we instead relax translation invariance from a coherent risk measure,
we get what we dub a homogeneous risk measure.

Definition 2 A homogeneous risk measure is a cost function satisfying mono-
tonicity, convexity, and positive homogeneity.

To our knowledge, the only homogeneous risk measure of the literature that
is not also a coherent risk measure is the OPRS.

Proposition 1 The OPRS is a homogeneous risk measure (for vectors in the
non-negative orthant).



The desiderata are global properties that need to hold over the entire space
the cost function is defined over. It is often difficult to verify that a given cost
function satisfies these desiderata directly, and inversely, it is difficult to con-
struct new cost functions that satisfy specific desiderata. Remarkably, each of
these desiderata have simple representations in Legendre-Fenchel dual space.

3.2 Dual space equivalences

The rest of the paper relies on the well-developed theory of convex conjugacy.

Definition 3 The Legendre-Fenchel dual (aka convex conjugate) of a convex
cost function C is a convex function f : Y 7→ R over a convex set Y ⊂ Rn such
that C(x) = maxy∈Y [x · y − f(y)]. We say that the cost function is “conjugate
to” the pair Y and f . Convex conjugates exist uniquely for convex cost functions
defined over Rn [Rockafellar, 1970, Boyd and Vandenberghe, 2004].

We will refer to the convex optimization in dual space as the “optimization”
or “optimization problem”, and the maximizing y as the “maximizing argu-
ment”. One way of interpreting the dual is that it represents the “price space”
of the market maker, as opposed to a cost function which is defined over a “quan-
tity space” [Abernethy et al., 2011]. The only prices a market maker can assume
are those y ∈ Y, while the function f serves as a measure of market sensitivity
and a way to limit how quickly prices are adjusted in response to bets. As we
have discussed, in the prediction market literature “prices” denote the partial
derivatives of the cost function [Pennock and Sami, 2007, Othman et al., 2010].
When it is unique, the maximizing argument of the convex conjugate is the
gradient of the cost function, and when it is not unique, then the maximizing
arguments represent the subgradients of the cost function. A fuller discussion
of the relation between convex conjugates and derivatives is available in convex
analysis texts [Rockafellar, 1970, Boyd and Vandenberghe, 2004].

Another interpretation of the dual space is from online learning, specifically
online regularized follow-the-leader algorithms [Chen and Vaughan, 2010]. We
discussed the literature relating to this link in Section 2.2. Here, the set Y rep-
resents the allowable weights we can assign to experts, and the function f is a
regularizer that determines how quickly we adjust the weight between experts
in response to returns which are the same as payouts in this interpretation.
Generally speaking when the set Y exceeds the probability simplex Π, then the
weights placed on the experts will not be guaranteed to sum to unity.

With these interpretations in mind, we proceed to show the power of the
dual space: we can represent homogeneous risk measures with a compact convex
set in the non-negative orthant. The relations between convex and monotonic
cost functions, convex and positive homogeneous cost functions, and their re-
spective duals are a consequence of well-known results in the convex analysis
literature [Rockafellar, 1966, 1970].

Proposition 2 A risk measure is convex and monotonic if and only if the set
Y is exclusively within the non-negative orthant.



Proposition 3 A risk measure is convex and positive homogeneous if and only
if its convex conjugate has compact Y and has f(y) = 0 for every y ∈ Y.

In the literature this latter result relates indicator sets (here, the set Y)
to support functions (here, the cost function). Since f(y) = 0 for all y ∈ Y,
the cost function conjugacy is defined only by the set Y. Consequently, we will
abuse terminology slightly and refer to the cost functions as conjugate to the
convex compact set alone. A necessary and sufficient condition on the set of
homogeneous risk measures follows.

Corollary 1 A cost function is a homogeneous risk measure if and only if it is
conjugate to a compact convex set in the non-negative orthant.

The following results can be derived from convex analysis and the work
of Abernethy et al. [2011].

Proposition 4 A risk measure is convex, monotonic, and translation invariant
if and only if the set Y lies exclusively on the probability simplex.

Proposition 5 A risk measure is convex and has bounded loss if and only if the
set Y includes the probability simplex.

The only market maker that satisfies all five of our desiderata is max.

Proposition 6 The only coherent risk measure with bounded loss is C(x) = maxi xi.

The max market maker corresponds to an order-matching, risk-averse cost
function that either charges agents nothing for their transactions, or exactly as
much as they could be expected to gain in the best case. For instance, a trader
wishing to move the max market maker from state {5, 3} to state {7, 3} would be
charged 2 dollars, exactly as much as they would win if the first event happened—
which means taking the bet is a dominated action. On the other hand, a trader
wishing to move the market maker from state {5, 3} to state {5, 5} pays nothing!
These two small examples suggest that max is a poor risk measure in practice,
and therefore Proposition 6 should be viewed as an impossibility result.

Combining all of our dual-space equivalences, we have that the conjugate of
max is defined exclusively on the whole probability simplex, where it is identically
0.2

There are now two ways to smooth out the price response of max: One way
is to use a regularizer, so that price estimates do not immediately jump to
the axes (i.e., zero or one). This corresponds to a regularized online follow-the-
leader algorithm, which is a convex risk measure [Chen and Vaughan, 2010]. We
introduce a different approach, to expand the shape of the valid price, so that the
shape of the space itself serves as an implicit regularizer over the price estimates.
This will generally result in prices that are not probability distributions, and as
we explore in the next section, this approach leads to homogeneous risk measures.
2 In dual price space, the maximizing argument to the max cost function can always

be represented as one of the axes. In the online learning view, max represents an
unregularized follow-the-leader algorithm, putting all of its probability weight on the
current best expert (i.e., the event with largest current payout).



4 Shaping the dual space

Recall that only the convex conjugate set Y of a homogenenous risk measure is
responsible for determining the market maker’s behavior, because the conjugate
function f takes value zero everywhere in that set. In this section, we explore
two features of the conjugate set that produce desirable properties: its curvature
and its divergence from the probability simplex.

4.1 Curvature

We would like for our cost function to always be differentiable (outside of 0,
where a derivative of a positive homogeneous function will not generally exist).
The OPRS is differentiable in the non-negative orthant (again, excepting 0)
while max is differentiable only when the maximum is unique. In this section,
we show that only curved conjugate sets produce homogeneous risk measures
that are differentiable.3

Definition 4 A closed, convex set Y is strictly convex if its boundary does not
contain a non-degenerate line segment. Formally, let ∂Y denote the boundary of
the set. Let 0 ≤ λ ≤ 1 and x,x′ ∈ ∂Y. Then λx + (1− λ)x′ ∈ ∂Y holds only for
x = x′.

Since strictly convex sets are never linear on their boundary they can be
thought of as sets with curved boundaries.

Proposition 7 A homogeneous risk measure is differentiable on Rn\0 if and
only if its conjugate set is strictly convex.

4.2 Divergence from probability simplex

The amount of divergence from the probability simplex governs the market
maker’s divergence from translation-invariant prices (i.e., prices that sum to
unity). Recall that max is the homogeneous risk measure that is defined only
over the probability simplex.

Proposition 8 Let Y be the dual set of a differentiable homogeneous risk mea-
sure. Then the maximum sum of prices (the most a trader would ever need to
spend for a unit guaranteed payout) is given by maxy∈Y

∑
i yi, and the minimum

sum of prices (the most the market maker would ever pay for a unit guaranteed
payout) is given by miny∈Y

∑
i yi.

3 It might be argued that what we are really interested in, particularly if we claim that
curved sets act as a regularizer in the price response, is whether or not curved sets
also imply continuous differentiability of the cost function. Continuous differentia-
bility would mean that prices both exist and are continuous in the quantity vector.
These conditions are in fact the same for convex functions defined over an open in-
terval (such as Rn\0), because for such functions differentiability implies continuous
differentiability [Rockafellar, 1970].



Given any (efficiently representable) convex set corresponding to a differen-
tiable homogeneous risk measure, the extreme price sums can be solved for in
polynomial time, since it is a convex optimization over a convex set.

It was shown in Othman et al. [2010] that the OPRS achieved its maximum
sum of prices for quantity vectors that are scalar multiples of 1. A corollary of
the above result is that this property holds for every homogeneous risk measure.
(Other vectors may also achieve the same sum of prices.)

Corollary 2 In a homogeneous risk measure every vector that is a positive mul-
tiple of 1 achieves the maximum sum of prices.

In addition to maximum prices, the shape of the convex set also determines
the worst-case loss of the resulting market maker. The notion of worst-case loss
is closely related to our desideratum of bounded loss—a market maker with
unbounded worst-case loss does not have bounded loss, and a market maker
with finite worst-case loss has bounded loss.

Definition 5 The worst-case loss of a market maker is given by maxi xi−C(x)+
C(x0) where x0 ∈ Rn+ is some initial quantity vector the market maker selects.

In homogeneous risk measures, the amount of liquidity sensitivity is propor-
tional to the market’s state. Since in practice there is some latent level of interest
in trading on the event before the market’s initiation, it is desirable to seed the
market initially to reflect a certain level of liquidity. It is desirable to have a tight
bound on that worst-case loss, reflecting that in practice, market administrators
are likely to have bounds on how much the market maker could lose in the worst
case. Tight bounds on worst-case loss assure the administrator that that bound
will be satisfied with maximum liquidity injected at the market’s initiation.

Proposition 9 Let Y be a convex set conjugate to a homogeneous risk measure
that includes the unit axes but does not exceed the unit hypercube. Then the
worst-case loss of the risk measure is tightly bounded by the initial cost of the
market’s starting point.

By bringing x0 as close as desired to 0, we have the following corollary, which
is a generalization of a similar result for the OPRS.

Corollary 3 Let Y be a convex set conjugate to a homogeneous risk measure
that includes the unit axes. Then the worst-case loss of the risk measure can be
set arbitrarily small.

A bound on prices also emerges from this result.

Corollary 4 Let Y be a convex set conjugate to a homogeneous risk measure
that includes the unit axes but does not exceed the unit hypercube. Then the
maximum price on any event is 1.



5 A new family of liquidity-sensitive market makers

We proceed to use our theoretical results constructively, to create a family of
homogeneous risk measures with desirable properties that the OPRS, the only
prior homogeneous risk measure, lacks. These include tight bounds on minimum
sum of prices and worst-case losses, and definition over all of Rn. Our new family
of market makers is parameterized (in much the same way as the OPRS) by the
maximum sum of prices. The OPRS is not a member of this new family.

Our scheme is to take as our dual set the intersection of two unit balls in
different Lp norms, one ball at 0 and the other ball at 1. For 1 < p < ∞,
the intersection of the two balls is a strictly convex set that includes the unit
axes but does not exceed the unit hypercube. (At p = 1, we get the probability
simplex, which is not strictly convex. At p = ∞ we get the unit hypercube,
which is also not strictly convex.) Let || · ||p denote the Lp norm. Then we can
define the vectors in the intersections of the unit balls, U(p), as

U(p) ≡ {y | y ∈ Rn, ||y − 1||p ≤ 1, ||y||p ≤ 1}

This set gives us a cost function C(x) = maxy∈U(p) x · y. We dub this the unit
ball market maker. Since we can easily test whether a vector is within both unit
balls (i.e., within U(p)), the optimization problem for the cost function can be
solved in polynomial time.

This family of market makers is parameterized by the Lp norm that defines
which vectors in dual space are in the convex set. By choosing the value of p
correctly, we can engineer a market maker with the desired maximum sum of
prices. The outer boundary of the set is defined by the unit ball from 0 in Lp
space. Its boundary along 1 is given by the k that solves p

√
nkp = 1. Solving for

k we get k = n−1/p, and so the maximum sum of prices is nk = n
(
n−1/p

)
=

n1−1/p. For prices that are at most 1 + v, we can set 1 + v = n1−1/p. Solving
this equation for p yields p = logn

logn−log(1+v) . Given any target maximum level of
vigorish, this formula provides the exponent of the unit ball market maker to
use. Considering that only small divergences away from unity are natural to the
setting, the p we select for our Lp norm should be quite small. The norm increases
in the maximum sum of prices, and for larger n the same norm produces larger
sums of prices.

One of the advantages of the unit ball market maker is that it is defined over
all of Rn, as opposed to just the non-negative orthant. Its behavior in the positive
orthant is to charge agents more than a dollar for a dollar guaranteed payout,
because the outer boundary is diverges outwards from the probability simplex.
Its behavior in the negative orthant, where its points on the inner boundary are
selected in the maximization, is to pay less than a dollar for a dollar guaranteed
payout. Its behavior in all other orthants is equivalent to max, as the unit axes
are selected as maximizing arguments. Finally, if we restrict the unit ball market
maker to only the non-negative orthant (like the OPRS), the sum of prices is
tightly bounded between 1 and n1−1/p.



6 Conclusions and future work

Using five desiderata that have appeared in the finance and prediction market
literature, we contextualized a new class of cost functions, which we dubbed ho-
mogeneous risk measures. We showed that the OPRS [Othman et al., 2010] is a
member of this class, because it is convex, monotonic, and positive homogeneous.
We proved only the max cost function satisfies all five of our desiderata, but it
does not have a differentiable price response. To produce a differentiable price
response, one can add a regularizer, leading to the regularized online learning
algorithms explored by Chen and Vaughan [2010]. Another approach is to curve
the conjugate dual space, relaxing it from the probability simplex. We discussed
how the properties of the convex set induce desirable properties in its conjugate
homogeneous risk measure. Finally, using our insights, we developed a new fam-
ily of homogeneous risk measures, the unit ball market makers, with desirable
properties.

Our work centered on cost functions that are positive homogeneous, because
these are the only cost functions that display identical relative price responses
at different levels of liquidity. However, another direction is to explore cost func-
tions that display some characteristics of liquidity sensitivity (more muted price
responses at high levels of liquidity) without necessarily being homogeneous.

Finally, we are attracted to the work of Agrawal et al. [2009] because it
provides a framework to simply add functionality to handle limit orders (orders of
the form “I will pay no more than p for the payout vector x”) into a cost function
market maker. That framework relies on convex optimization and so would also
be able to run in polynomial time, a significant gain over näıve implementations
of limit orders within cost function market makers. However, that work relied
heavily on simplifications to the optimization that could be made because of
translation invariance, so it is unclear how to embed a market maker whose
convex conjugate is defined over more than the probability simplex into a limit
order framework.
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H. Föllmer and A. Schied. Stochastic Finance (Studies in Mathematics 27). De Gruyter,
2002.

S. Goel, D. Pennock, D. Reeves, and C. Yu. Yoopick: a combinatorial sports prediction
market. In Proceedings of the National Conference on Artificial Intelligence (AAAI),
pages 1880–1881, 2008.

R. Hanson. Combinatorial information market design. Information Systems Frontiers,
5(1):107–119, 2003.

R. Hanson. Logarithmic market scoring rules for modular combinatorial information
aggregation. Journal of Prediction Markets, 1(1):1–15, 2007.

H. Markowitz. Portfolio Selection. The Journal of Finance, 7(1):77–91, 1952.
M. Ostrovsky. Information aggregation in dynamic markets with strategic traders. In

ACM Conference on Electronic Commerce (EC), pages 253–254, 2009.
A. Othman and T. Sandholm. Automated market-making in the large: the Gates

Hillman prediction market. In ACM Conference on Electronic Commerce (EC),
pages 367–376, 2010a.

A. Othman and T. Sandholm. When Do Markets with Simple Agents Fail? In Inter-
national Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 865–872, Toronto, Canada, 2010b.

A. Othman, D. M. Pennock, D. M. Reeves, and T. Sandholm. A practical liquidity-
sensitive automated market maker. In ACM Conference on Electronic Commerce
(EC), pages 377–386, 2010.

D. Pennock and R. Sami. Computational Aspects of Prediction Markets. In Algorithmic
Game Theory, chapter 26, pages 651–674. Cambridge University Press, 2007.

M. Peters, A. M.-C. So, and Y. Ye. Pari-mutuel markets: Mechanisms and performance.
In International Workshop On Internet And Network Economics (WINE), pages 82–
95, 2007.

R. T. Rockafellar. Level sets and continuity of conjugate convex functions. Transactions
of the American Mathematical Society, 123(1):46–63, 1966.

R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.
S. Shalev-Shwartz and Y. Singer. A primal-dual perspective of online learning algo-

rithms. Machine Learning, 69:115–142, December 2007.


