
Generalizing Preference Elicitation in Combinatorial Auctions

Content Areas: multiagent systems, negotiation

Abstract
Combinatorial auctions where agents can bid on
bundles of items are desirable because they allow
the agents to express complementarity and substi-
tutability between the items. However, expressing
one’s preferences can require bidding on all bun-
dles. Selective incremental preference elicitation
by the auctioneer was recently proposed to address
this problem but the idea was not evaluated. In
this paper we show that automated elicitation is
extremely beneficial: as the number of items for
sale increases, the amount of information elicited
is a small and diminishing fraction of the informa-
tion collected in traditional “direct revelation mech-
anisms” where bidders reveal all their valuation in-
formation. The elicitors also maintain the bene-
fit as the number of agents increases—except rank
lattice based elicitors which we show ineffective.
We also develop elicitors that combine different
query types, and we present a new query type that
takes the incremental nature of elicitation to a new
level by allowing agents to give approximate an-
swers that are refined only on an as-needed basis.
We show that determining VCG payments requires
very little additional elicitation. Finally, we show
that elicitation can be easily adapted to combinato-
rial reverse auctions, where the benefits are similar
to those in auctions, except that the elicitation ratio
improves as the number of agents increases. In the
process, we present methods for evaluating differ-
ent types of elicitation policies.

1 Introduction
Combinatorial auctions, where agents can submit bids on
bundles of items, are economically efficient mechanisms for
selling k items to n bidders, and are attractive when the bid-
ders’ valuations on bundles exhibit complementarity (a bun-
dle of items is worth more than the sum of its parts) and/or
substitutability (a bundle is worth less than the sum of its
parts). Determining the winners in such auctions is a com-
plex optimization problem that has recently received consid-
erable attention (e.g., [Fujishima et al., 1999; Nisan, 2000;
Sandholm, 2002a]).

An equally important problem, which has received much
less attention, is that of bidding. There are 2k − 1 bundles,
and each agent may need to bid on all of them to fully express
its preferences. This can be undesirable for any of several rea-
sons: determining one’s valuation for any given bundle can be
computationally intractable [Parkes, 1999; Sandholm, 2000;
Larson and Sandholm, 2001]; there is a huge number of
bundles to evaluate; communicating the bids can incur pro-
hibitive overhead (e.g., network traffic); and agents may pre-
fer not to reveal all of their valuation information due to
reasons of privacy or long-term competitiveness [Rothkopf

et al., 1990]. Appropriate bidding languages [Fujishima et
al., 1999; Nisan, 2000; Hoos and Boutilier, 2001; Sand-
holm, 2002a; 2002b] can solve the communication overhead
in some cases (when the bidder’s utility function is compress-
ible). However, they still require the agents to completely de-
termine and transmit their valuation functions and as such do
not solve all the issues. So in practice, when the number of
items for sale is even moderate, the bidders cannot bid on all
bundles. Instead, they may bid on bundles which they will
not win, and they may fail to bid on bundles they would have
won. The former problem leads to wasted effort, the latter
to reduced economic efficiency of the resulting allocation of
items to bidders.

A recent paper [Conen and Sandholm, 2001] proposed to
have the auctioneer incrementally elicit the preferences but
did not evaluate the idea. In this paper we build on those
ideas, examining new elicitation policies and query types and
evaluating them with mostly experimental and also some the-
oretical results. We also study the complexity not only of de-
termining the optimal allocation of items to bidders but also
determing the bidders’ Vickrey-Clarke-Groves (VCG) pay-
ments [Groves, 1973]. In addition to combinatorial auctions
we study combinatorial reverse auctions (procurement auc-
tions). Our experiments show that only a very small fraction
of the bidders’ preference information needs to be elicited in
order to determine the provably optimal allocation and the
VCG payments.

2 Auction and elicitation setting
We model the auction as having a single auctioneer selling
a set K of items to n bidder agents (let k = |K|). Each
agent i has a valuation function vi : 2K 7→ R+ that deter-
mines a positive, finite, and private value vi(b) for each bun-
dle b ⊆ K. We make the usual assumption that the agents
have free disposal, that is, adding items to an agent’s bundle
never makes the agent worse off because, at worst, the agent
can dispose of extra items for free. Formally, ∀b ⊆ K, b′ ⊆ b,
vi(b) ≥ vi(b

′). The techniques of the paper could also be
used without free disposal, although more elicitation would
be required due to less a priori structure.

At the start of the auction, the auctioneer knows the items
and the agents, but has no information about the agents’ value
functions over the bundles—except that the agents have free
disposal. The auction proceeds by having the auctioneer in-
crementally elicit value function information from the agents
one query at a time until the auctioneer has enough informa-
tion to determine an optimal allocation of items to agents.
Therefore, we also call the auctioneer the elicitor. An allo-
cation is optimal if it maximizes social welfare

∑n
i=1 vi(bi),

where bi is the bundle that agent i receives in the allocation.1

1Social welfare can only be maximized meaningfully if bidders’
valuations can be compared to each other. We make the usual as-
sumption that the valuations are measured in money (dollars) and
thus can be directly compared.

The goal of the elicitor is to determine an optimal allocation
with as little elicitation as possible.2

3 Elicitor’s constraint network
The elicitor, as we designed it, never asks a query whose an-
swer could be inferred from the answers to previous queries.
To support the storing and propagation of information re-
ceived from the agents, we have the elicitor store its infor-
mation in a constraint network.3 Specifically, the elicitor
stores a graph for each agent. In each graph, there is one
node for each bundle b. Each node is labeled by an inter-
val [LBi(b),UBi(b)]. The lower bound LBi(b) is the highest
lower bound the elicitor can prove on the true vi(b) given the
answers received to queries so far. Analogously, UBi(b) is
the lowest upper bound. We say a bound is tight when it is
equal to the true value.

Each graph can also have directed edges. A directed edge
(a, b) encodes the knowledge that the agent prefers bundle a
over bundle b (that is, vi(a) ≥ vi(b)). The elicitor may know
this even without knowing vi(a) or vi(b). An edge (a, b) lets
the elicitor infer that LBi(a) ≥ LBi(b), which allows it to
tighten the lower bound on a and on any of a’s ancestors in
the graph. Similarly, the elicitor can infer UBi(a) ≥ UBi(b),
which allows it to tighten the upper bound on b and its de-
scendants in the graph.

We define the relation a � b (read “a dominates b”) to
be true if we can prove that vi(a) ≥ vi(b). This is the case
either if LBi(a) ≥ UBi(b), or if there is a directed path from
a to b in the graph. The free disposal assumption allows the
elicitor to infer the following dominance relations before the
elicitation begins: ∀b ⊆ K, b′ ⊆ b, b � b′.
4 Rank lattice based elicitation
In this section we study the effectiveness of a technique pro-
posed earlier [Conen and Sandholm, 2001; 2002]: rank lat-
tice based elicitation. The idea is that the elicitor can make
use of rank information about the bidders’ bundles. Let
bi(ri), 1 ≤ ri ≤ 2k, be the bundle that agent i has at rank
ri. In other words, bi(1) is the agent’s most preferred bundle,
bi(2) is its second most preferred bundle, and so on down to
bi(2

k), which is the empty bundle.
The elicitor uses a rank vector r = 〈r1, r2, . . . , rn〉 to rep-

resent allocating bi(ri) to each agent i. Not all rank vectors
are feasible: the bi(ri)’s might overlap in items, which would
correspond to giving the same item to multiple agents. The
value of a rank vector r is v(b(r)) =

∑
i vi(bi(ri)).

The elicitor can put bounds on vi(bi(ri)) using the con-
straint networks. Even without knowing bi(ri) (which bun-
dle it is that agent i values rith), it knows that vi(bi(ri −
1)) ≤ vi(bi(ri)) ≤ vi(bi(ri + 1)). Thus an upper bound on
vi(bi(ri − 1)) is an upper bound on vi(bi(ri)), and a lower
bound on vi(bi(ri + 1)) is a lower bound on vi(bi(ri)).

The set of all rank vectors defines a rank lattice. The root
of the lattice is the all-ones rank vector ; a child r′ of a node
r has all elements equal except one, which is incremented by
one. A key observation in the lattice is that the children of a
node have lower (or equal) value to the node. Given the rank

2A recent theoretical result shows that even with free disposal, in
the worst case, finding an (even only approximately) optimal alloca-
tion requires exponential communication [Nisan and Segal, 2002].

3This was included in the augmented order graph of Conen &
Sandholm [Conen and Sandholm, 2001].

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10 11

elicitation ratio

number of items

5 agents
4 agents
3 agents
2 agents

Figure 1: Performance of rank lattice based elicitation. The
curves for 4 and 5 agents are barely visible, being at an elici-
tation ratio of almost 1. The experiment setup is described in
the appendix.

lattice, we can employ search algorithms to find an optimal
allocation. In particular, by starting from the root and search-
ing in best-first order (always expanding the fringe node of
highest value), we are guaranteed that the first feasible node
that is reached is optimal.

A complication arises in that the elicitor may have insuffi-
cient information to determine which node has highest value,
and may need to effect further preference elicitation from the
bidders. We implemented the following algorithm for doing
this. It corresponds to an elicitation policy where as long as
we cannot prove which node on the fringe is the best, we pick
an arbitrary node and elicit just enough information to deter-
mine its value.

FINDBESTNODE(FRINGE)
1 S ← FRINGE
2 remove from S all r dominated by some r′ in S
3 if all r ∈ S have the same value
4 return arbitrary r ∈ S
5 choose r ∈ S whose value we don’t know exactly
6 for each agent i
7 if elicitor does not know bi(ri)
8 ask agent i what bundle it ranks rith
9 if elicitor does not know vi(bi(ri)) exactly

10 ask agent i for its valuation on bundle bi(ri)
11 goto 2

4.1 Rank lattice experiments
We ran experiments to evaluate the efficiency of rank lattice
based elicitation. Define the elicitation ratio to be the number
of queries asked divided by the number of queries asked in
full revelation. In full revelation, the number of queries is
n(2k− 1) (that is, for each agent, one value query for each of
the 2k bundles except the empty bundle). Figure 1 shows that
as the number of items in the auction increases, the elicitation
ratio decreases quickly. Preliminary results indicate that the
ratio continues to decrease as we run on instances with more
than 11 items.

Unfortunately, Figure 1 also shows that as the number of
agents n grows, the advantage from rank lattice based elici-
tation decreases. This phenomenon can be explained as fol-
lows. As the number of agents increases, the average number
of items that an agent wins decreases. Thus agents will usu-
ally win smaller, lower-ranked bundles. Because rank lattice
based elicitors require the agents to reveal all high-rank bun-
dles before any low-rank bundles, as the number of agents
increases, each agent reveals a greater number of bundle val-
ues. This holds not only for the specific elicitor algorithm

described above, but any elicitor that asks queries in order
of rank (even if the elicitor had an oracle for deciding which
queries should be asked from which agents). These elicitors
include all rank lattice based elicitors that search contiguous
regions in the lattice, starting from the root (such as the EBF
elicitor family studied in [Conen and Sandholm, 2002]).
5 General elicitation framework
Given that no rank lattice based elicitor can do much better
than the one outlined above, we now move to a more general
elicitation framework. As we will show, this allows us to
develop algorithms that ask significantly fewer queries, and
that scale well as the number of agents grows.

The framework allows a richer set of query types (to
accommodate for different settings where answering some
types of queries is easier than answering other types); al-
lows more flexible ordering of the queries at run time; and
never considers infeasible solutions. The general elicitor tem-
plate is a slightly modified version of that of Conen & Sand-
holm [Conen and Sandholm, 2001]:
SOLVE()
1 C ← INITIALCANDIDATES(n, k)
2 while not DONE(C)
3 q ← SELECTQUERY(C)
4 ASKQUERY(q)
5 C ← PRUNE(C)

Here, C is a set of candidates allocations, where a candi-
date is a vector c = 〈c1, c2, . . . , cn〉 of bundles where the
bundles contain no items in common. Unlike with rank vec-
tors, all candidates are feasible. The value of a candidate is
v(c) =

∑
i vi(ci); UB(c) =

∑
i UBi(ci) is an upper bound,

and LB(c) =
∑
i LBi(ci) a lower bound.

INITIALCANDIDATES generates the set of all candidates,
which is the set of all nk allocations of the k items to the
n agents (some agents might get no items).

PRUNE removes, one candidate at a time, each candidate
that is dominated by a remaining candidate (a candidate c
dominates another candidate c′ if the elicitor can prove that
the value of c is at least as high as that of c′).

DONE returns true if all remaining candidates inC are prov-
ably optimal. This is the case either if C has only one el-
ement, or if all candidates in C have known value (that is,
∀c ∈ C,UB(c) = LB(c)). Because the algorithm has just
pruned, it knows that if all candidates have known value, then
they have equal value.

SELECTQUERY selects the next query to be asked. This
function can be instantiated in different ways to implement
different elicitation policies, as we will show.

ASKQUERY takes a query, asks the corresponding agent for
the information, and appropriately updates the constraint net-
work. The details of updating the network are discussed in
conjunction with each query type below.
5.1 Determining domination
The PRUNE procedure needs to be able to determine whether a
candidate c dominates another candidate c′ – that is, whether
the elicitor has enough information to prove that the value
of c is at least as high as that of c′. Define δ(c, c′) to be
the least possible difference between v(c) and v(c′) that is
consistent with the information elicited so far. Clearly, if
δ(c, c′) is positive, then c has value at least as high as that
of c′ and thus c dominates c′. Similarly define δi(b, b′) to be
the least difference between vi(b) and vi(b′) that is consistent.

Namely, if b � b′, then δi(b, b′) = max(0,LBi(b)−UBi(b′));
otherwise, δi(b, b′) = LBi(b) − UBi(b′). Since there are
no interactions between agents’ private valuation functions,
δ(c, c′) =

∑n
i=1 δi(ci, c

′
i).

Checking whether bundle ci dominates bundle c′i is an ex-
pensive operation: the elicitor needs to determine whether
a path exists from ci to c′i in the constraint network. This
takes time linear in the size of the network, which is O(2k)
where k is the number of items.4 Therefore, we show that if
UB(c) < UB(c′) or LB(c) < LB(c′) then c does not dominate
c′. Since these two relations can be checked in time indepen-
dent of the number of items, this can save us time when the
tests apply, which in practice they often do.
Proposition 1 If UB(a) < UB(b) then a � b.
Proof: Split the agents into two groups: S = {i|UBi(ai) <
UBi(bi)} and S̄ = {i|UBi(ai) ≥ UBi(bi)}. S̄ may be empty,
but S necessarily includes at least one element by the as-
sumption. For all i ∈ S, the propagation rules ensure that
ai � bi. This allows us to conclude that

∑
i∈S δi(ai, bi) =∑

i∈S LBi(ai)− UBi(bi).
For i ∈ S̄, δi(ai, bi) depends on whether ai � bi. But if

so, δ only increases. Thus
∑
i∈S̄ δi(ai, bi) ≤ ∑

i∈S̄ max(0,LBi(ai)− UBi(bi))
≤ ∑

i∈S̄ max(0,UBi(ai)− UBi(bi))
≤ ∑

i∈S̄ UBi(ai)− UBi(bi)

The last step relies on the fact that by definition, for i ∈ S̄,
UBi(ai) − UBi(bi) ≥ 0, so the max has no effect. Summing
the δi over both sets, we get that δ(a, b) ≤ UB(a) − UB(b).
By assumption, UB(a)− UB(b) is strictly negative.
Proposition 2 If LB(a) < LB(b) then a � b.
Proof: The proof is symmetric to the former proof.

Given these propositions, we implemented the following
algorithm for testing domination:
DOMINATES(c, c′)
1 if UB(c) < UB(c′) then return false
2 if LB(c) < LB(c′) then return false
3 if δ(c, c′) < 0 then return false
4 else return true

6 The grand bundle should be queried
Intuitively it is appealing to elicit from every agent the value
for the grand bundle (i.e., the bundle that consists of all items)
because that sets an upper bound on all bundle-agent pairs
via the free disposal assumption. We present here a proof
that this is in fact almost always required. Namely, almost
all instances require this upper bound from every agent, and
those few instances that do not require it from every agent still
require it from all but one agent. Therefore, the first thing all
our elicitation policies query is the value of the grand bundle
(or a bound on the value).
Proposition 3 In order to determine the optimal allocation,
any elicitation policy must prove an upper bound on vi(K)
for every agent i to which the grand bundle K is not allo-
cated.

4Alternatively, one could keep in a hash table, for each bundle-
agent pair (b, i), all the bundles that b dominates for that agent i.
This would lead to constant time domination tests, but O(22k) time
for each edge addition and Θ(2k) space for each bundle-agent pair,
that is, space Θ(n22k).

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9

elicitation ratio

number of items

2 agents
3 agents
4 agents
5 agents

Figure 2: Elicitation using value and order queries.

Proof: The lower bound on the optimal allocation is finite
(say, L) because we require each bundle to have non-negative
and finite value for every bidder. Therefore, unless the auc-
tioneer provides an upper bound on vi(K), the possibility is
open that allocating K to i is worth more than L. Because al-
locating K to i possibly has value greater than implementing
the allocation that is, in fact, optimal, the elicitation policy
cannot terminate.

7 Order queries
In some applications, agents might not know the values of
bundles, and might need to expend great effort to determine
them [Parkes, 1999; Sandholm, 2000; Larson and Sandholm,
2001], but might easily be able to see that one bundle is
preferable over another. In such settings, it would be sen-
sible for the elicitor to ask order queries, that is, ask an agent
i to order two given bundles ci and c′i (to say which of the
two it prefers). The agent will answer ci � c′i or c′i � ci
or both. ASKQUERY will then create new edges in the con-
straint network to represent these new dominates relations.
By asking only order queries, the elicitor cannot compare the
valuations of one agent against those of another, so in general
it cannot determine a social welfare maximizing allocation.
However, order queries can be helpful when interleaved with
other types of queries.

7.1 Interleaving value and order queries
We developed an elicitation policy that uses both value and
order queries. It mixes them in a straightforward way, sim-
ply alternating between the two, starting with an order query.
Whenever an order query is to be asked, the elicitor computes
all tuples (a, b, i) where a and b are each allocated to agent i
in some candidate, and where the elicitor knows neither a � b
nor b � a. The elicitor then picks a random tuple. Whenever
a value query is to be asked, the elicitor chooses a random
(b, i) where b is allocated to agent i in some candidate.

To evaluate the mixed policy, we need a way of comparing
the cost of an order query to the cost of a value query. In the
experiment, we let an order query cost 0.1 and a value query
cost 1, capturing the notion that the qualitative order queries
should be much easier to answer than precise value queries.

Figure 2 shows that, as desired, the elicitation ratio falls as
the number of items increases. Furthermore, unlike with rank
lattice based elicitors, this benefit is largely maintained as the
number of agents increases.

The policy described above is able to reduce the number
of precise values it elicits, by about 10%, over asking only
value queries. This decrease is almost exactly offset by the
cost of asking order queries. In other words, the order queries

are helping, but more work needs to be done to find a policy
that better combines the two query types—or at least, to find
a better policy for order queries.

Another advantage of the mixed value-order query policy is
that it does not depend as critically on free disposal. Without
free disposal, the policy that uses value queries only would
have to elicit all values. The order queries in the mixed policy,
on the other hand, can create useful edges in the constraint
network which the elicitor can use to prune candidates.

8 Bound-approximation queries
In many settings, the bidders can roughly estimate valua-
tions easily, but the more accurate the estimate, the more
costly it is to determine. In this sense, the bidders determine
their valuations using anytime algorithms [Parkes, 1999;
Sandholm, 2000; Larson and Sandholm, 2001]. For this rea-
son, we introduce a new query type: a bound-approximation
query. In such a query, the elicitor asks an agent i to tighten
the agent’s upper bound UBi(b) (or lower bound LBi(b)) on
the value of a given bundle b. This query type leads to more
incremental elicitation in that queries are not answered with
exact information, and the information is refined incremen-
tally on an as-needed basis.

The elicitor can provide a hint t to the agent as to how
much additional time the agent should devote to tightening
the bound in the query. Smaller values of the hint t make
elicitation more incremental, but cause additional communi-
cation overhead and computation by the elicitor. Therefore,
the hint can be tailored to the setting, depending on the rel-
ative costs of communication, bundle evaluation by the bid-
ders, and computation by the elicitor. The hint could also be
adjusted at run-time, but in the experiments below, we use a
fixed hint t = 0.2.

To evaluate this elicitation method, we need a model on
how the agents’ computation refines the bounds. We designed
the details of our elicitation policy motivated by the following
specific scenario, although the elicitation policy can be used
generally. Let each agent have two anytime algorithms which
it can run to discover its value of any given bundle: one gives
a lower bound, the other gives an upper bound. Spending
time d, 0 ≤ d ≤ 1 will yield a lower bound vi(b)

√
d or

an upper bound (2 −
√
d)vi(b).5 This means that there are

diminishing returns to computation, as is the case with most
anytime algorithms.6 Finally, we assume that the algorithms
can be restarted from the best solution found so far with no
penalty: having spent d time tightening a bound, we can get
the bound we would have gotten spending d′ > d by only
spending an additional time d′ − d.

5The model of agents’ computation cost here opens the possibil-
ity to cheat in the evaluation of the elicitor. As the model is stated,
the elicitor could ask an agent to spend t time each on the upper
and lower bound. Based on the answers, the elicitor would know
the exact value (it would be in the middle between the lower and
upper bound). To check that our results do not inadvertently depend
on such specifics of the agents’ computation model, we ran experi-
ments using an asymmetric cost function (linear for lower bounds,
square root for upper bounds). This did not appreciably change the
results.

6The square root is arbitrary, but captures the case of diminishing
returns to additional computation. Running experiments with d in
place of

√
d did not significantly change the results.

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8

elicitation ratio

number of items

2 agents
3 agents
4 agents
5 agents

Figure 3: Elicitation using bound-approximation queries.
The 2-agent, 2-item instances average an elicitation ratio
greater than 1 because the method can incur up to cost 2 per
bundle (1 each for tight upper and lower bounds)

Using randomly chosen bound-approximation queries as
the elicitation policy would work, but the more sophisticated
elicitation policy that we developed chooses the query that
maximizes the benefit of receiving the information from that
query. The benefit is defined to be the sum over all bundles
in remaining candidates of the amount by which the bounds
on each bundle will change given the new information. The
elicitor optimistically hopes that the new bound z is such
that it will change the most possible bounds: that is, when
computing the benefit of a lower bound query, it assumes
z = UBi(b) while when computing the benefit of an upper
query, z = LBi(b).7 Computing the expected benefit rather
than the optimistic benefit gave very similar results.

We evaluated bound-approximation queries using the elici-
tation policy and agents’ computation model described above.
Figure 3 shows that as the number of items increases, the frac-
tion of the overall computation cost actually incurred dimin-
ishes: the optimal allocation is determined while querying
only very approximate valuations on most bundle-agent pairs.
The method also maintains its benefit as the number of agents
increases.

9 Determining VCG payments
Having allocated the items to the agents, the auctioneer needs
to specify how much each agent should pay for its bundle. Re-
quiring an agent to pay the amount it revealed during the elic-
itation algorithm has the disadvantage that agents will be mo-
tivated to lie about their preferences (and may need to spend
additional computational resources to compute what pref-
erences they should reveal). In the Vickrey-Clarke-Groves
(VCG) mechanism [Groves, 1973] applied to a combinato-
rial auction (this mechanism is also known as the Generalized
Vickrey Auction [GVA]), the auctioneer charges each agent an
amount equal to the negative externality that agent imposed
on the other bidders. That is, if an agent i enters an auction
and wins items, the other agents will typically be worse off
than if the agent had not entered the auction; agent i is re-
quired to pay the difference to the auctioneer.

It has been proven that under the VCG pricing scheme, an-
swering the elicitor’s queries truthfully is an ex post equilib-
rium [Conen and Sandholm, 2001]. This is a weaker solution

7A minor detail comes in estimating the worth of reducing an
upper bound from ∞. We avoid this question by initially asking
each agent for an upper bound on the grand bundle—which is almost
always required anyway as shown in Proposition 3.

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

elicitation ratio

number of items

bound-approx, 2 agents
bound-approx, 4 agents

value/order, 2 agents
value/order, 4 agents

Figure 4: Computing VCG payments. The upper two curves
are for the bound-approximation policy, the lower two for the
value and order policy.

concept than the dominant strategy equilibrium of the full-
revelation GVA, but still stronger than a Nash equilibrium.
The difference is due to the fact that the elicitor’s queries leak
information to the bidder about what the other bidders have
answered so far.

After enough information has been elicited to determine
the optimal allocation, some additional elicitation may be re-
quired to determine the VCG payments. We implemented the
following routine to carry out the overall elicitation:
COMPUTEPAYMENTS()

1 Call SOLVE as before, getting the optimal allocation opt.
2 Elicit the exact value v(opt) of the optimal allocation.
3 For each agent i, call SOLVE but remove from C all alloc-

ations that allocate items to i. Call this opt−i. Elicit the
exact value v(opt−i) of this allocation.

4 The payment by agent i is v(opt−i)− (v(opt)− vi(opti)).
In the 2-agent case, almost no additional elicitation is re-

quired: opt−i simply allocates the grand bundle K to the
agent that was not removed. Thus at most 4 additional val-
ues are needed over what is necessary to compute the optimal
allocation: v1(opt1), v1(K), v2(opt2), and v2(K). While
this argument does not generalize to more than 2 agents, in
practice, the information needed for the VCG payments is
elicited largely as a side effect of eliciting information for de-
termining the optimal allocation. For example, the elicitation
ratio of the bound-approximation policy is 60% at n = 3,
k = 5 while computing VCG payments only increases the
elicitation ratio to 71%. Similarly, that of the value and order
policy only increases from 48% to 56%.

While the agents have no incentive to lie during COM-
PUTEPAYMENTS, they also have no incentive to tell the truth.
In a more realistic setting, the elicitor should interleave the
additional queries needed to compute the opt−i allocations
with the queries needed to compute opt.

10 Reverse auctions
While earlier work on preference elicitation has focused
on combinatorial forward auctions, the methodology can be
adapted for combinatorial reverse auctions as well, where
there is one buyer and multiple sellers (bidders). For all the
elicitation policies discussed in the general elicitation frame-
work, the only change is in the PRUNE procedure. Rather than
removing candidates that are dominated, we remove candi-
dates that dominate.

Figure 5 shows some of the results of running our elicitors
on combinatorial reverse auctions with bound-approximation
queries (results for the value and order policy are qualitatively

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8

elicitation ratio

number of items

2 agents
3 agents
4 agents
5 agents

Figure 5: Bound-approximation queries in reverse auctions.

similar but omitted for lack of space). As happens with for-
ward auctions, the elicitation ratio in reverse auctions falls as
the number of items increases. Interestingly, the experiments
indicate that while in auctions, adding more agents tends to
increase the elicitation ratio, the converse is true in reverse
auctions.

11 Conclusions and future work
In all of the elicitation algorithms of this paper, as the number
of items for sale increases, the amount of information elicited
is a small and shrinking fraction of the information collected
in traditional “direct revelation mechanisms” where bidders
reveal all their valuation information! With the exception
of rank lattice based elicitors, the elicitation schemes largely
maintain their benefit as the number of agents increases; in
reverse auctions, in fact, the benefit grows with the number
of agents.

By using the VCG pricing scheme, each agent is motivated
to answer the queries truthfully, even if the agents are allowed
to pass on queries and answer queries that were not asked.
We showed that determining the VCG payments requires very
little additional preference elicitation beyond what is needed
to determine the optimal allocation.

We experimented with several query types. Using a combi-
nation of value queries to get exact values, and order queries
which are easier to answer, we can reduce the amount of exact
valuation the bidders need to do. More work needs to be done
to reduce the overall amount of agent-side computation. Our
bound-approximation queries take the incremental nature of
elicitation to a new level. The agents are only asked for rough
bounds on valuations first, and more refined approximations
are elicited only on an as-needed basis. A related approach
would be to propose a bound, and ask whether the agent’s
valuation is above or below the bound. This suggest a rela-
tionship between preference elicitation and ascending combi-
natorial auctions where the auction proceeds in rounds, and in
each round the bidders react to price feedback from the auc-
tioneer by revealing demand (e.g., [Parkes and Ungar, 2000;
Wurman and Wellman, 2000]). As future research, we plan to
explore this connection more deeply. We also desire to design
new, increasingly effective preference elicitation algorithms.

Appendix: Experimental setup
We generated 50 instances of each size and ran the elicitation
algorithms on those instances. Each point on the plots cor-
responds to the average performance over the 50 runs. The
plots show results for those instance sizes on which the algo-
rithms could solve each instance in under 2 minutes on a 2.8
GHz Intel machine.

Unfortunately, real data for combinatorial auctions are not
publicly available. Therefore, as in all of the other academic
work on combinatorial auctions so far, we used randomly
generated data. Existing problem generators output instances
with sparse bids, that is, each agent bids on a relatively small
number of bundles. This is the case for the CATS suite of
economically-motivated random problem instances [Leyton-
Brown et al., 2000] as well as for many other prior bench-
marks [Fujishima et al., 1999; Sandholm, 2002a]. This is not
necessarily realistic: while the bidders may far prefer some
items and bundles to others, they will often have non-zero
value on almost every bundle, at least due to reselling pos-
sibilities and, in some domains (such as spectrum or real es-
tate auctions), renting. In addition, the instances generated by
many of the earlier benchmarks do not honor the free disposal
constraints.

The instances were generated by assigning, for each agent
in turn, integer valuations using the following routine. We
impose an arbitrary maximum bid value MAXBID = 107 in
order to avoid integer arithmetic overflow issues, while at the
same time allowing a wide range of values to be expressed.
Valuations generated with this routine exhibit both comple-
mentarity and substitutability and observe the free disposal
assumption.
GENERATEBIDS(K)
1 G← new constraint network
2 S ← 2K (the set of all bundles)
3 impose free disposal constraints on G
4 UB(K)← MAXBID
5 while S 6= ∅
6 pick b uniformly at random from S
7 S ← S − b
8 pick v(b) uniformly at random from [LB(b),UB(b)]
9 propagate LB(b) = UB(b) = v(b) through G
References
[Conen and Sandholm, 2001] Wolfram Conen and Tuomas Sandholm. Preference elic-

itation in combinatorial auctions: Extended abstract. ACM-EC. More detailed ver-
sion: IJCAI-2001 Workshop on Economic Agents, Models, and Mechanisms.

[Conen and Sandholm, 2002] Wolfram Conen and Tuomas Sandholm. Partial-
revelation VCG mechanism for combinatorial auctions. AAAI.

[Fujishima et al., 1999] Yuzo Fujishima, Kevin Leyton-Brown, and Yoav Shoham.
Taming the computational complexity of combinatorial auctions: Optimal and ap-
proximate approaches. IJCAI.

[Groves, 1973] Theodore Groves. Incentives in teams. Econometrica, 41:617–631.
[Hoos and Boutilier, 2001] Holger Hoos and Craig Boutilier. Bidding languages for

combinatorial auctions. IJCAI.
[Larson and Sandholm, 2001] Kate Larson and Tuomas Sandholm. Costly valuation

computation in auctions. TARK.
[Leyton-Brown et al., 2000] Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham.

Towards a universal test suite for combinatorial auction algorithms. ACM-EC.
[Nisan and Segal, 2002] Noam Nisan and Ilya Segal. The communication complexity

of efficient allocation problems. Draft. Second version March 5th, 2002.
[Nisan, 2000] Noam Nisan. Bidding and allocation in combinatorial auctions. ACMEC.
[Parkes and Ungar, 2000] David C Parkes and Lyle Ungar. Iterative combinatorial auc-

tions: Theory and practice. AAAI.
[Parkes, 1999] David C Parkes. Optimal auction design for agents with hard valuation

problems. IJCAI-99 Agent-Mediated Electronic Commerce Workshop.
[Rothkopf et al., 1990] Michael H Rothkopf, Thomas J Teisberg, and Edward P Kahn.

Why are Vickrey auctions rare? Journal of Political Economy, 98(1):94–109.
[Sandholm, 2000] Tuomas Sandholm. Issues in computational Vickrey auctions. Inter-

national Journal of Electronic Commerce, 4(3):107–129. Early version: ICMAS-96.
[Sandholm, 2002a] Tuomas Sandholm. Algorithm for optimal winner determination in

combinatorial auctions. Artificial Intelligence, 135:1–54. Early versions: First Inter-
national Conference on Information and Computation Economies, 1998; Washing-
ton Univ., Dept. of Computer Science, tech report WUCS-99-01, 1999; IJCAI-99.

[Sandholm, 2002b] Tuomas Sandholm. eMediator: A next generation electronic com-
merce server. Computational Intelligence Special issue on Agent Technology for
Electronic Commerce. (To appear). Early versions: AGENTS-00, AAAI-99 Work-
shop on AI in Electronic Commerce, Washington University, St. Louis, Dept. of
Computer Science technical report WU-CS-99-02, 1999.

[Wurman and Wellman, 2000] Peter R Wurman and Michael P Wellman. AkBA: A
progressive, anonymous-price combinatorial auction. ACM-EC.

