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ABSTRACT
We define a generalized strategy eliminability criterion for bimatrix
games that considers whether a given strategy is eliminable relative
to given dominator & eliminee subsets of the players’ strategies.
We show that this definition spans a spectrum of eliminability cri-
teria from strict dominance (when the sets are as small as possible)
to Nash equilibrium (when the sets are as large as possible). We
show that checking whether a strategy is eliminable according to
this criterion is coNP-complete (both when all the sets are as large
as possible and when the dominator sets each have size1). We
then give an alternative definition of the eliminability criterion and
show that it is equivalent using the Minimax Theorem. We show
how this alternative definition can be translated into a mixed inte-
ger program of polynomial size with a number of (binary) integer
variables equal to the sum of the sizes of the eliminee sets, imply-
ing that checking whether a strategy is eliminable according to the
criterion can be done in polynomial time, given that the eliminee
sets are small. Finally, we study using the criterion for iterated
elimination of strategies.
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1. INTRODUCTION
Solving general-sum games is a topic of growing interest in com-

puter science. To solve such games, the concept of (iterated) dom-
inance is often too strong: it cannot eliminate enough strategies.
But, if possible, we would like a stronger argument for eliminating
a strategy than (mixed-strategy) Nash equilibrium. Similarly, in
mechanism design (where one gets to create the game), implemen-
tation in dominant strategies is often excessively restrictive, but im-
plementation in (Bayes-)Nash equilibrium may not be sufficiently
strong for the designer’s purposes. Hence, it is desirable to have
eliminability criteria that arebetweenthese concepts in strength.
In this paper, we will introduce such a criterion. The criterion we
introduce considers whether a given strategy is eliminable relative
to given dominator & eliminee subsets of the players’ strategies.
The criterion spans an entirespectrumof strength between Nash
equilibrium and strict dominance (in terms of which strategies it
can eliminate), and in the extremes can be made to coincide with
either of these two concepts, depending on how the dominator &
eliminee sets are set. It can also be used for iterated elimination of
strategies.

An important question to ask of any solution concept is how ef-
ficiently a solution can becomputed. A recent sequence of pa-
pers [8, 4, 9, 5] shows that the problem of finding a Nash equilib-
rium (even in the two-player case) is complete for the class PPAD.
(In contrast,approximateNash equilibria can be found in quasi-
polynomial time [19]. Also, Nash equilibria can be found in poly-
nomial time for average-payoff repeated games [20].) The best-
known algorithm for finding a Nash equilibrium, theLemke-Howson
algorithm [17], has a worst-case exponential running time [27], and
methods based on exhaustively searching through the space of the
mixed strategies’ supports fare comparatively well for many classes
of games [26]. It is also known that finding Nash equilibriawith
certain additional properties(for example, the social-welfare max-
imizing Nash equilibrium) is NP-complete [12, 6]. The computa-
tional complexity of dominance and iterated dominance has been
studied as well [16, 11, 7]. In this paper, we will study the compu-
tational complexity of applying the new eliminability criterion, and
provide a mixed integer programming approach for it.

Throughout, we focus on two-player games only. The elim-
inability criterion itself can be generalized to more players, but the
computational tools we introduce do not straightforwardly gener-
alize to more players. Moreover, we focus only on normal-form
games (rather than make use of structured representations of games
[14, 18, 2, 13]).

One of the benefits of the new criterion is that when a strategy
cannot be eliminated by dominance (but it can be eliminated by



the Nash equilibrium concept), the new criterion may provide a
stronger argument than Nash equilibrium for eliminating the strat-
egy, by using dominator & eliminee sets smaller than the entire
strategy set. To get the strongest possible argument for eliminating
a strategy, the dominator & eliminee sets should be chosen to be as
small as possible while still having the strategy be eliminable rela-
tive to these sets.1 Iterated elimination of strategies using the new
criterion is also possible, and again, to get the strongest possible
argument for eliminating a strategy, the sequence of eliminations
leading up to it should use dominator & eliminee sets that are as
small as possible.2

As another benefit, the algorithm that we provide for checking
whether a strategy is eliminable according to the new criterion can
also be used as a subroutine in the computation of Nash equilib-
ria. Specifically, any strategy that is eliminable (even using iterated
elimination) according to the criterion is guaranteed not to occur
in any Nash equilibrium. Current state-of-the-art algorithms for
computing Nash equilibria already use a subroutine that eliminates
(conditionally) dominated strategies [26]. Because the new crite-
rion can eliminate more strategies than dominance, the algorithm
we provide may speed up the computation of Nash equilibria. (For
purposes of speed, it is probably desirable to only apply special
cases of the criterion that can be computed fast—in particular, as
we will show, eliminability according to the criterion can be com-
puted fast when the eliminee sets are small. Even these special
cases are more powerful than dominance.)

2. A MOTIVATING EXAMPLE
Because the definition of the new eliminability criterion is com-

plex, we will first illustrate it with an example. Consider the fol-
lowing (partially specified) game.

σ1
c σ2

c σ3
c σ4

c

σ1
r ?, ? ?, 2 ?, 0 ?, 0

σ2
r 2, ? 2, 2 2, 0 2, 0

σ3
r 0, ? 0, 2 3, 0 0, 3

σ4
r 0, ? 0, 2 0, 3 3, 0

A quick look at this game reveals that strategiesσ3
r andσ4

r are
both almostdominated byσ2

r—but they perform better thanσ2
r

againstσ3
c andσ4

c , respectively. Similarly, strategiesσ3
c andσ4

c

are both almost dominated byσ2
c —but they perform better thanσ2

c

againstσ4
r andσ3

c , respectively. So we are unable to eliminate any
strategies using (even weak) dominance.

Now consider the following reasoning. In order for it to be
worthwhile for the row player to ever playσ3

r rather thanσ2
r , the

column player should playσ3
c at least2

3
of the time. (If it is ex-

actly 2
3
, then switching fromσ2

r to σ3
r will cost the row player2

exactly 1
3

of the time, but the row player will gain1 exactly 2
3

of
the time, so the expected benefit is0.) But, similarly, in order for
it to be worthwhile for the column player to ever playσ3

c , the row

1There may be multiple minimal vectors of dominator & eliminee
sets relative to which the strategy is eliminable; in this paper, we
will not attempt to settle which of these minimal vectors, if any,
constitutes the most powerful argument for eliminating the strategy.
2Here, there may also be a tradeoff with the length of the elimina-
tion path. For example, there may be a path of several eliminations
using dominator & eliminee sets that are small, as well as a single
elimination using dominator & eliminee sets that are large, both of
which eliminate a given strategy. (In fact, we willalwaysbe con-
fronted with this situation, as Corollary 3 will show.) Again, in this
paper, we will not attempt to settle which argument for eliminating
the strategy is stronger.

player should playσ4
r at least2

3
of the time. But again, in order

for it to be worthwhile for the row player to ever playσ4
r , the col-

umn player should playσ4
c at least2

3
of the time. Thus, if both the

row and the column player accurately assess the probabilities that
the other places on these strategies, and their strategies are rational
with respect to these assessments (as would be the case in a Nash
equilibrium), then, if the row player puts positive probability onσ3

r ,
by the previous reasoning, the column player should be playingσ3

c

at least2
3

of the time, andσ4
c at least2

3
of the time. Of course, this

is impossible; so, in a sense, the row player should not playσ3
r .

It may appear that all we have shown is thatσ3
r is not played in

any Nash equilibrium. But, to some extent, our argument for not
playing σ3

r did not make use of the full elimination power of the
Nash equilibrium concept. Most notably, we only reasoned about a
small part of the game: we never mentioned strategiesσ1

r andσ1
c ,

and we did not even specify most of the utilities for these strategies.
(It is easy to extend this example so that the argument only uses an
arbitrarily small fraction of the strategies and of the utilities in the
matrix, for instance by adding many copies ofσ1

r andσ1
c .) The

locality of the reasoning that we did is more akin to the notion of
dominance, which is perhaps the extreme case of local reasoning
about eliminability—only two strategies are mentioned in it. So, in
this sense, the argument for eliminatingσ3

r is somewhere between
dominance and Nash equilibrium in strength.

3. DEFINITION OF THE ELIMINABILITY
CRITERION

We are now ready to give the formal definition of the generalized
eliminability criterion. To make the definition a bit simpler, we
define its negation—when a strategy isnot eliminable relative to
certain sets of strategies. Also, we only define when one of the
row player’sstrategies is eliminable, but of course the definition is
analogous for the column player.

The definition, which considers when a strategye∗r is eliminable
relative to subsetsDr, Er of the row player’s pure strategies (with
e∗r ∈ Er) and subsetsDc, Ec of the column player’s pure strate-
gies, can be stated informally as follows. To protecte∗r from elimi-
nation, we should be able to specify the probabilities that the play-
ers’ mixed strategies place on theEi sets in such a way that 1)e∗r
receives nonzero probability, and 2) for every pure strategyei that
receives nonzero probability, for every mixed strategydi using only
strategies inDi, it is conceivable that player−i’s mixed strategy3

is completed so thatei is no worse thandi.4 The formal definition
follows.

DEFINITION 1. Given a two-player game in normal form, sub-
setsDr, Er of the row player’s pure strategiesΣr, subsetsDc, Ec

of the column player’s pure strategiesΣc, and a distinguished strat-
egye∗r ∈ Er, we say thate∗r isnot eliminable relative toDr, Er, Dc,
Ec, if there exist functions (partial mixed strategies)pr : Er →
[0, 1] andpc : Ec → [0, 1] with pr(e

∗
r) > 0,

∑
er∈Er

pr(er) ≤ 1,

and
∑

ec∈Ec

pc(ec) ≤ 1, such that the following holds. For both

i ∈ {r, c}, for any ei ∈ Ei with pi(ei) > 0, for any mixed
strategydi placing positive probability only on strategies inDi,
there is some pure strategyσ−i ∈ Σ−i − E−i such that (letting

3As is common in the game theory literature,−i denotes “the
player other thani.”
4This description may sound similar to the concept ofrational-
izability. However, in two-player games (the subject of this pa-
per), rationalizability is known to coincide with iterated strict dom-
inance [25].



p−i � σ−i denote the mixed strategy that results from placing the
remaining probability1−

∑
e−i∈E−i

p−i(e−i) that is not used by the

partial mixed strategyp−i onσ−i), we have:ui(ei, p−i � σ−i) ≥
ui(di, p−i � σ−i). (If p−i already uses up all the probability, we
simply haveui(ei, p−i) ≥ ui(di, p−i)—noσ−i needs to be cho-
sen.)5

In the example from the previous subsection, we can setDr =
{σ2

r}, Dc = {σ2
c}, Er = {σ3

r , σ4
r}, Ec = {σ3

c , σ4
c}, ande∗r = σ3

r .
Then, by the reasoning that we did, it is impossible to setpr and
pc so that the conditions are satisfied, and henceσ3

r is eliminable
relative to these sets.

4. THE SPECTRUM OF STRENGTH
In this section we show that the generalized eliminability cri-

terion we defined in in the previous section spans a spectrum of
strength all the way from Nash equilibrium (when the setsDr, Er,
Dc, Ec are chosen as large as possible), to strict dominance (when
the sets are chosen as small as possible). First, we show that the cri-
terion is monotonically increasing, in the sense that the larger we
make the setsDr, Er, Dc, Ec, the more strategies are eliminable.

PROPOSITION 1. If e∗r is eliminable relative toD1
r , E1

r , D1
c , E1

c ,
andD1

r ⊆ D2
r , E1

r ⊆ E2
r , D1

c ⊆ D2
c , E1

c ⊆ E2
c , thene∗r is elim-

inable relative toD2
r , E2

r , D2
c , E2

c .

PROOF. We will prove this by showing that ife∗r is not elim-
inable relative toD2

r , E2
r , D2

c , E2
c , thene∗r is not eliminable relative

to D1
r , E1

r , D1
c , E1

c . It is straightforward that making theDi sets
smaller only weakens the condition on strategiesei with pi(ei) > 0
in Definition 1. Hence, ife∗r is not eliminable relative toD2

r , E2
r , D2

c ,
E2

c , thene∗r is not eliminable relative toD1
r , E2

r , D1
c , E2

c . All that
remains to show is that making theEi sets smaller will not make
e∗r eliminable. To show this, we first observe that, if in its last
step Definition 1 allowed for distributing the remaining probabil-
ity arbitrarily over the strategies inΣ−i − E−i (rather than re-
quiring a single one of these strategies to receive all the remain-
ing probability), this would not change the definition, because we
might as well place all the remaining probability on the strategy
σ−i ∈ Σ−i − E−i that maximizesui(ei, σ−i) − ui(di, σ−i).
Now, let pr and pc be partial mixed strategies overE2

r and E2
c

that prove thate∗r is not eliminable relative toD1
r , E2

r , D1
c , E2

c .
Then, to show thate∗r is not eliminable relative toD1

r , E1
r , D1

c , E1
c ,

use the partial mixed strategiesp′r andp′c, which are simply the
restrictions ofpr and pc to E1

r and E1
c , respectively. For any

ei ∈ E1
i with p′i(ei) > 0 and for any mixed strategydi over

D1
i , we know that there exists someσ−i ∈ Σ−i − E2

−i such that
ui(ei, p−i � σ−i) ≥ ui(di, p−i � σ−i) (because thepi prove that
e∗r is not eliminable relative toD1

r , E2
r , D1

c , E2
c ). But, the distri-

bution p−i � σ−i is a legitimate completion of the partial mixed
strategyp′−i as well (albeit one that distributes the remaining prob-
ability over multiple strategies), and hence thep′i prove thate∗r is
not eliminable relative toD1

r , E1
r , D1

c , E1
c .

Next, we show that the Nash equilibrium concept is weaker6 than
our generalized eliminability criterion—in the sense that the gener-
5We need to make this case explicit for the caseE−i = Σ−i.
6When discussing elimination of strategies, it is tempting to say
that the stronger criterion is the one that can eliminate more strate-
gies. However, when discussing solution concepts, the conven-
tion is that the stronger concept is the one that implies the other.
Therefore, the criterion that can eliminate fewer strategies is actu-
ally the stronger one. For example, strict dominance is stronger
than weak dominance, even though weak dominance can eliminate
more strategies.

alized criterion can never eliminate a strategy that is in some Nash
equilibrium. So, if a strategy can be eliminated by the generalized
criterion, it can be eliminated by the Nash equilibrium concept.

PROPOSITION 2. If there is some Nash equilibrium that places
positive probability on pure strategyσ∗r , thenσ∗r is not eliminable
relative to anyDr, Er, Dc, Ec.

PROOF. Letσ′r be the row player’s (mixed) strategy in the Nash
equilibrium (which places positive probability onσ∗r ), and letσ′c
be the column player’s (mixed) strategy in the Nash equilibrium.
For anyDr, Er, Dc, Ec with σ∗r ∈ Er, to prove thatσ∗r is not
eliminable relative to these sets, simply letpr coincide withσ′r on
Er—that is, letpr be the probabilities that the row player places
on the strategies inEr in the equilibrium. (Thus,pr(σ

∗
r ) > 0).

Similarly, let pc coincide withσ′c on Ec. We will prove that the
condition on strategies with positive probability is satisfied for the
row player; the case of the column player follows by symmetry. For
anyer ∈ Er with pr(er) > 0, for any mixed strategydr, we have
ur(er, σ

′
c) − ur(dr, σ

′
c) ≥ 0, by the Nash equilibrium condition.

Now, let pure strategyσc ∈ arg maxσ∈Σc−Ec(ur(er, pc � σ) −
ur(dr, pc � σ)). Then we must haveur(er, pc � σc)− ur(dr, pc �
σc) ≥ ur(er, σ

′
c) − ur(dr, σ

′
c) ≥ 0 (becausepc � σc andσ′c co-

incide onEc, and for the former, the remainder of the distribution
is chosen to maximize this expression). It follows thatσ∗r is not
eliminable relative to anyDr, Er, Dc, Ec.

We next show that by choosing the setsDr, Er, Dc, Ec as large
as possible, we can make the generalized eliminability criterion co-
incide with the Nash equilibrium concept.7

PROPOSITION 3. Let Dr = Er = Σr and Dc = Ec = Σc.
Thene∗r is eliminable relative to these sets if and only if there is no
Nash equilibrium that places positive probability one∗r .

PROOF. The “only if” direction follows from Proposition 2. For
the “if” direction, supposee∗r is not eliminable relative toDr =
Er = Σr andDc = Ec = Σc. The partial distributionspr and
pc with pr(e

∗
r) > 0 that show thate∗r is not eliminable must use

up all the probability (the probabilities must sum to one), because
there are no strategies outsideEc = Σc andEr = Σr to place any
remaining probability on. Hence, we must have, for any strategy
er ∈ Er = Σr with pr(er) > 0, that for any mixed strategy
dr, ur(er, pc) ≥ ur(dr, pc) (and the same for the column player).
But these are precisely the conditions forpr andpc to constitute a
Nash equilibrium. It follows that there is a Nash equilibrium with
positive probability one∗r .

Moving to the other side of the spectrum, we now show that the
concept of strict dominance is stronger than the generalized elim-
inability criterion—in the sense that the generalized eliminability
criterion can always eliminate a strictly dominated strategy (as long
as the dominating strategy is inDr).

PROPOSITION 4. If pure strategyσ∗r is strictly dominated by
some mixed strategydr, thenσ∗r is eliminable relative to anyDr, Er,
Dc, Ec such that 1)σ∗r ∈ Er, and 2) all the pure strategies on
whichdr places positive probability are inDr.

PROOF. To show thatσ∗r is not eliminable relative to these sets,
we must setpr(σ

∗
r ) > 0, and thus we must demonstrate that for

7Unlike Nash equilibrium, the generalized eliminability criterion
does not discuss what probabilities should be placed on strategies
that are not eliminated, so it only “coincides” with Nash equilib-
rium in terms of what it can eliminate.



some pure strategyσc ∈ Σc−Ec, ur(σ
∗
r , pc�σc) ≥ ur(dr, pc�σc)

(or, if all the probability is used up,ur(σ
∗
r , pc) ≥ ur(dr, pc)),

becausedr only places positive probability on strategies inDr.
But this is impossible, because by strict dominance,ur(σ

∗
r , σc) <

ur(dr, σc) for any mixed strategyσc.

Finally, we show that by choosing the setsEr, Ec as small as
possible, we can make the generalized eliminability criterion coin-
cide with the strict dominance concept.

PROPOSITION 5. Let Ec = {} and Er = {er}. Thener is
eliminable relative toDr, Er, Dc, Ec if and only if it is strictly
dominated by some mixed strategy that places positive probability
only on elements ofDr.

PROOF. The “if” direction follows from Proposition 4. For the
“only if” direction, suppose thater is eliminable relative to these
sets. That means that there exists a mixed strategydr that places
positive probability only on strategies inDr such that for any pure
strategyσc ∈ Σc − Ec = Σc, u(er, σc) < u(dr, σc) (because
Ec = {} andEr = {er}, this is the only way in which an attempt
to prove thater is not eliminable could fail). But this is precisely
the condition fordr to strictly dominateer.

We are now ready to turn to computational aspects of the new
eliminability criterion.

5. APPLYING THE NEW ELIMINABILITY
CRITERION CAN BE COMPUTATION-
ALLY HARD

In this section, we demonstrate that applying the eliminability
criterion can be computationally hard, in the sense of worst-case
complexity.8 We show that applying the eliminability criterion is
coNP-complete in two key special cases (subclasses of the prob-
lem). The first case is the one in which theDr, Er, Dc, Ec sets are
set to be as large as possible. Here, the hardness follows directly
from Proposition 3 and a known hardness result on computing Nash
equilibria [12, 6].

THEOREM 1. Deciding whether a given strategy is eliminable
relative toDr = Er = Σr andDc = Ec = Σc is coNP-complete,
even when the game is symmetric.

PROOF. By Proposition 3, this is the converse of asking whether
there exists a Nash equilibrium with positive probability on the
given strategy. This is NP-complete [12, 6].

While this shows that the eliminability criterion is, in general,
computationally hard to apply, we may wonder if there are spe-
cial cases in which it is computationally easy to apply. Natural
special cases to look at include those in which some of the sets
Dr, Er, Dc, Ec are small. The next theorem shows that apply-
ing the eliminability criterion remains coNP-complete even when
|Dr| = |Dc| = 1.

THEOREM 2. Deciding whether a given strategy is eliminable
relative to givenDr, Er, Dc, Ec is coNP-complete, even when|Dr| =
|Dc| = 1.

PROOF. We will show later (Corollary 1) that the problem is in
coNP. To show that the problem is coNP-hard, we reduce an arbi-
trary KNAPSACK instance (given bym cost-value pairs(ci, vi),
8Because we only show hardness in the worst case, it is possible
that many (or even most) instances are in fact easy to solve.

a cost constraintC and a value targetV ; we assume without loss
of generality thatC = 1 − ε, for someε small enough that it is
impossible for a subset of theci to sum to a value strictly between

C and1,9 thatci > 0 for all i, and that
m∑

i=1

vi ≤ 1) to the follow-

ing eliminability question. Let the game be as follows. The row
player hasm + 2 distinct pure strategies:e1

r, e
2
r, . . . , e

m
r , e∗r , dr

(whereEr = {e1
r, e

2
r, . . . , e

m
r , e∗r} andDr = {dr}). The col-

umn player hasm + 1 distinct pure strategies:e1
c , e

2
c , . . . , e

m
c , dc

(whereEc = {e1
c , e

2
c , . . . , e

m
c } andDc = {dc}). Let the utilities

be as follows:

• ur(e
i
r, e

j
c) = 1 for all i 6= j;

• ur(e
i
r, e

i
c) = 1− 1

vi
for all i;

• ur(e
i
r, dc) = 1 for all i;

• ur(e
∗
r , ei

c) = 1
V
− 1 for all i;

• ur(e
∗
r , dc) = −1;

• ur(dr, e
i
c) = 0 for all i;

• ur(dr, dc) = 0;

• uc(e
i
r, e

j
c) = 0 for all i 6= j;

• uc(e
i
r, e

i
c) = 1

ci
for all i;

• uc(e
i
r, dc) = 1 for all i;

• uc(e
∗
r , ei

c) = 0 for all i;

• uc(e
∗
r , dc) = 1;

• uc(dr, e
i
c) = 0 for all i;

• uc(dr, dc) = 1.

Thus, the matrix is as follows:

e1
c e2

c · · · em
c dc

e1
r 1− 1

v1
, 1

c1
1, 0 · · · 1, 0 1, 1

e2
r 1, 0 1− 1

v2
, 1

c2
· · · 1, 0 1, 1

...
em

r 1, 0 1, 0 · · · 1− 1
vm

, 1
cm

1, 1

e∗r
1
V
− 1, 0 1

V
− 1, 0 · · · 1

V
− 1, 0 −1, 1

dr 0, 0 0, 0 · · · 0, 0 0, 1

We now show thate∗r is eliminable relative toDr, Er, Dc, Ec if
and only if there is no solution to the KNAPSACK instance.

First suppose there is a solution to the KNAPSACK instance.
Then, for everyi such that(ci, vi) is included in the KNAPSACK
solution, letpr(e

i
r) = ci; for every i such that(ci, vi) is not in-

cluded in the KNAPSACK solution, letpr(e
i
r) = 0. Also, let

pr(e
∗
r) = 1−

m∑
i=1

pr(e
i
r). (We note that

m∑
i=1

pr(e
i
r) ≤ C = 1− ε,

so thatpr(e
∗
r) ≥ ε > 0.) Also, for everyi such that(ci, vi) is in-

cluded in the KNAPSACK solution, letpc(e
i
c) = vi. We now show

thatpr andpc satisfy the conditions of Definition 1. If the column
player places the remaining probability ondc, then the utility for
the row player of playing anyei

r with pr(e
i
r) > 0 is 1 − vi

vi
= 0;

9Because we may assume that theci andC are all integers divided
by some numberK, it is sufficient ifε < 1

K
.



the utility of playinge∗r is−1+ 1
V

m∑
i=1

pc(e
i
c) ≥ −1+ V

V
= 0; and

the utility of playingdr is also0. Thus, the condition is satisfied
for all elements ofEr that have positive probability. As forEc,
we note that all of the row player’s probability has already been
used up. The utility of playing anyei

c with pc(e
i
c) > 0 is ci

ci
= 1,

whereas the utility for playingdc is also1. Thus, the condition is
satisfied for all elements ofEc that have positive probability. It fol-
lows thatpr andpc satisfy the conditions of Definition 1 ande∗r is
not eliminable relative toDr, Er, Dc, Ec.

Now suppose thate∗r is not eliminable relative toDr, Er, Dc, Ec.
Let pr andpc be partial mixed strategies onEr andEc satisfying
the conditions of Definition 1. We must have thatpr(e

∗
r) > 0. The

utility for the row player of playinge∗r is−1+ 1
V

m∑
i=1

pc(e
i
c), which

must be at least0 (the utility of playingdr); hence
m∑

i=1

pc(e
i
c) ≥ V .

The utility for the column player of playingei
c is pr(ei

r)

ci
, which

must be at least1 (the utility of playingdc) if pc(e
i
c) > 0; hence

pr(e
i
r) ≥ ci if pc(e

i
c) > 0. Finally, the utility for the row player

of playing ei
r is 1 − pc(ei

c)

vi
, which must be at least0 (the utility

of playingdr) if pr(e
i
r) > 0; hencepc(e

i
c) ≤ vi if pr(e

i
r) > 0.

Because we must havepr(e
i
r) ≥ ci > 0 if pc(e

i
c) > 0, it follows

that we must always havepc(e
i
c) ≤ vi. Let S = {i : pc(e

i
c) > 0}.

We must have
∑
i∈S

vi ≥
∑
i∈S

pc(e
i
c) ≥ V . Also, we must have∑

i∈S

ci ≤
∑
i∈S

pr(e
i
r) < 1 (because we must havepr(e

∗
r) > 0).

Because it is impossible thatC <
∑
i∈S

ci < 1, it follows that∑
i∈S

ci ≤ C. But then,S is a solution to the KNAPSACK in-

stance.

However, we will show later that the eliminability criterion can
be applied in polynomial time if theEi sets are small (regardless
of the size of theDi sets). To do so, we first need to introduce an
alternative version of the definition.

6. AN ALTERNATIVE, EQUIVALENT DEF-
INITION OF THE ELIMINABILITY CRI-
TERION

In this section, we will give an alternative definition of elim-
inability, and we will show it is equivalent to the one presented in
Definition 1. While the alternative definition is slightly less intuitve
than the original one, it is easier to work with computationally, as
we will show in the next section. Informally, the alternative def-
inition differs from the original one as follows: in the alternative
definition, the completion of player−i’s mixed strategy has to be
chosenbeforeplayeri’s strategydi is chosen (but after playeri’s
strategyei with pi(ei) > 0 is chosen). The formal definition fol-
lows.

DEFINITION 2. Given a two-player game in normal form, sub-
setsDr, Er of the row player’s pure strategiesΣr, subsetsDc, Ec

of the column player’s pure strategiesΣc, and a distinguished strat-
egye∗r ∈ Er, we say thate∗r isnot eliminable relative toDr, Er, Dc,
Ec, if there exist functions (partial mixed strategies)pr : Er →
[0, 1] andpc : Ec → [0, 1] with pr(e

∗
r) > 0,

∑
er∈Er

pr(er) ≤ 1,

and
∑

ec∈Ec

pc(ec) ≤ 1, such that the following holds. For both

i ∈ {r, c}, for anyei ∈ Ei with pi(ei) > 0, there exists some com-
pletion of the probability distribution over−i’s strategies, given by

pei
−i : Σ−i → [0, 1] (with pei

−i(e−i) = p−i(e−i) for all e−i ∈
E−i, and

∑
σ−i∈Σ−i

pei
−i(σ−i) = 1), such that for any pure strategy

di ∈ Di, we haveui(ei, p
ei
−i) ≥ ui(di, p

ei
−i).

We now show that the two definitions are equivalent.

THEOREM 3. The notions of eliminability put forward in Def-
initions 1 and 2 are equivalent. That is,e∗r is eliminable relative
to Dr, Er, Dc, Ec according to Definition 1 if and only ife∗r is
eliminable relative to (the same)Dr, Er, Dc, Ec according to Def-
inition 2.

PROOF. The definitions are identical up to the condition that
each strategy with positive probability (eacher ∈ Er with pr(er) >
0 and eachec ∈ Ec with pc(ec) > 0) must satisfy. We will
show that these conditions are equivalent across the two definitions,
thereby showing that the definitions are equivalent.

To show that the conditions are equivalent, we introduce another,
zero-sum game that is a function of the original game, the sets
Dr, Er, Dc, Ec, the chosen partial probability distributionspr and
pc, and the strategyei for which we are checking whether the con-
ditions are satisfied. (Without loss of generality, assume that we are
checking it for some strategyer ∈ Er with pr(er) > 0.)

The zero-sum game has two players,1 and2 (not to be confused
with the row and column players of the original game). Player1
chooses somedr ∈ Dr, and player2 chooses someσc ∈ Σc−Ec.
The utility to player1 is ur(dr, pc � σc) − ur(er, pc � σc) (and
the utility to player2 is the negative of this). (We assume without
loss of generality thatpc does not already use up all the probability,
because in this case the conditions are trivially equivalent across
the two definitions.)

First, suppose that player1 must declare her probability distri-
bution (mixed strategy) overDr first, after which player2 best-
responds. Then, letting∆(X) denote the set of probability distribu-
tions over setX, player1 will receivemaxδr∈∆(Dr) minσc∈Σc−Ec∑
dr∈Dr

δr(dr)(ur(dr, pc �σc)−ur(er, pc �σc)) = maxδr∈∆(Dr)

minσc∈Σc−Ec ur(δr, pc � σc) − ur(er, pc � σc). This expression
is at most0 if and only if the condition in Definition 1 is satisfied.

Second, suppose that player2 must declare his probability dis-
tribution (mixed strategy) overΣc − Ec first, after which player1
best-responds. Then, player1 will receiveminδc∈∆(Σc−Ec)

maxdr∈Dr

∑
σc∈Σc−Ec

δc(σc)(ur(dr, pc �σc)−ur(er, pc �σc)) =

minδc∈∆(Σc−Ec) maxdr∈Dr

∑
ec∈Ec

pc(ec)(ur(dr, ec)−ur(er, ec))+∑
σc∈Σc−Ec

(1 −
∑

ec∈Ec

pc(ec))δc(σc)(ur(dr, σc) − ur(er, σc)) =

minδc∈∆(Σc−Ec) maxdr∈Dr ur(dr, pc�δc)−ur(er, pc�δc). This
expression is at most0 if and only if the condition in Definition 2
is satisfied.

However, by the Minimax Theorem [28], the two expressions
must have the same value, and hence the two conditions are equiv-
alent.

Informally, the reason that Definition 2 is easier to work with
computationally is that all of the continuous variables (the values
of the functionspr, pc, p

er
c , pec

r ) are set by the party that is try-
ing to prove that the strategy is not eliminable; whereas in Defini-
tion 1, some of the continuous variables (the probabilities defining
the mixed strategiesdr, dc) are set by the party trying to refute the
proof that the strategy is not eliminable. This will become more
precise in the next section.



7. A MIXED INTEGER PROGRAMMING
APPROACH

In this section, we show how to translate Definition 2 into a
mixed integer program that determines whether a given strategy
e∗r is eliminable relative to given setsDr, Er, Dc, Ec. The vari-
ables in the program, which are all restricted to be nonnegative, are
thepi(ei) for all ei ∈ Ei; thep

e−i

i (σi) for all e−i ∈ E−i and all
σi ∈ Σi −Ei; andbinary indicator variablesbi(ei) for all ei ∈ Ei

which can be set to zero if and only ifpi(ei) = 0. The program is
the following:

maximizepr(e
∗
r) subject to

(probability constraints): for both i ∈ {r, c}, for all ei ∈ Ei,∑
e−i∈E−i

p−i(e−i) +
∑

σ−i∈Σ−i−E−i

pei
−i(σ−i) = 1

(binary constraints):for bothi ∈ {r, c}, for all ei ∈ Ei, pi(ei) ≤
bi(ei)

(main constraints):for both i ∈ {r, c}, for all ei ∈ Ei and all
di ∈ Di,

∑
e−i∈E−i

p−i(e−i)(ui(ei, e−i)− ui(di, e−i))+∑
σ−i∈Σ−i−E−i

pei
−i(σ−i)(ui(ei, σ−i) − ui(di, σ−i)) ≥ (bi(ei) −

1)Ui

In this program, the constantUi is the maximum difference be-
tween two different utilities that playeri may receive in the game,
that is,Ui = maxσr,σ′r∈Σr,σc,σ′c∈Σc ui(σr, σc)− ui(σ

′
r, σ

′
c).

THEOREM 4. The mixed integer program has a solution with
objective value greater than zero if and only ife∗r is not eliminable
relative toDr, Er, Dc, Ec.

PROOF. For anyei ∈ Ei with pi(ei) > 0, bi(ei) must be1, and
thus the corresponding main constraints become: for anydi ∈ Di,∑
e−i∈E−i

p−i(e−i)(ui(ei, e−i)− ui(di, e−i))+∑
σ−i∈Σ−i−E−i

pei
−i(σ−i)(ui(ei, σ−i) − ui(di, σ−i)) ≥ 0. These

are equivalent to the constraints given on strategiesei ∈ Ei with
pi(ei) > 0 in Definition 2. On the other hand, for anyei ∈ Ei

with pi(ei) = 0, bi(ei) can be set to0, in which case the con-
straints become: for anydi ∈ Di,

∑
e−i∈E−i

p−i(e−i)(ui(ei, e−i)−

ui(di, e−i))+
∑

σ−i∈Σ−i−E−i

pei
−i(σ−i)(ui(ei, σ−i)−ui(di, σ−i)) ≥

−Ui. Because the probabilities in each of these constraints must
sum to one by the probability constraints, andUi is the maximum
difference between two different utilities that playeri may receive
in the game, these constraints are vacuous. Therefore the main con-
straints correspond exactly to those in Definition 2.

We obtain the following corollaries:

COROLLARY 1. Checking whether a given strategy can be elim-
inated relative to givenDr, Er, Dc, Ec is in coNP.

PROOF. To see whether the strategy can be protected from elim-
ination, we can nondeterministically choose the values for the bi-
nary variablesbr(er) andbc(ec). After this, only a linear program
remains to be solved, which can be done in polynomial time [15].

COROLLARY 2. Using the mixed integer program above, the
time required to check whether a given strategy can be eliminated
relative to givenDr, Er, Dc, Ec is exponential only in|Er|+ |Ec|
(and not in|Dr|, |Dc|, |Σr|, or |Σc|).

PROOF. Any mixed integer program whose only integer vari-
ables are binary variables can be solved in time exponential only in
its number of binary variables (for example, by searching over all
settings of its binary variables and solving the remaining linear pro-
gram in each case). The number of binary variables in this program
is |Er|+ |Ec|.

8. ITERATED ELIMINATION
In this section, we study what happens when we eliminate strate-

giesiterativelyusing the new criterion. The criterion can be itera-
tively applied by removing an eliminated strategy from the game,
and subsequently checking for new eliminabilities in the game with
the strategy removed,etc. (as in the more elementary, conventional
notion of iterated dominance). First, we show that this procedure
is, in a sense, sound.

THEOREM 5. Iterated elimination according to the generalized
criterion will never remove a strategy that is played with positive
probability in some Nash equilibrium of the original game.

PROOF. We will prove this by induction on the elimination round
(that is, the number of strategies eliminated so far). The claim is
true for the first round by Proposition 2. Now suppose it is true up
to and including roundk; we must show it is true for roundk + 1.
Suppose that the claim is false for roundk + 1, that is, there exists
some gameG and some pure strategyσ such that 1)σ is played
with positive probability in some Nash equilibrium ofG, and 2)
usingk elimination rounds,G can be reduced toGk+1, in whichσ
is eliminable. Now consider the gameGk which precededGk+1 in
the elimination sequence, that is, the game obtained by undoing the
last elimination beforeGk+1. Also, letσ′ be the strategy removed
from Gk to obtainGk+1. Now, in Gk, σ cannot be eliminated by
the induction assumption. However, by Proposition 3, any strategy
that is not played with positive probability in any Nash equilibrium
can be eliminated, so it follows that there is some Nash equilibrium
of Gk in whichσ is played with positive probability. Moreover, this
Nash equilibrium cannot place positive probability onσ′ (because
otherwise, by Proposition 2, we would not be able to eliminate it).
But then, this Nash equilibrium must also be a Nash equilibrium
of Gk+1: it does not place any probability on strategies that are
not inGk+1, and the set of strategies that the players can switch to
in Gk+1 is a subset of those inGk. Hence, by Proposition 2, we
cannot eliminateσ from Gk+1, and we have achieved the desired
contradiction.

Because (the single-round version of) the eliminability criterion
extends all the way to Nash equilibrium by Proposition 3, we get
the following corollary.

COROLLARY 3. Any strategy that can be eliminated using iter-
ated elimination can also be eliminated in a single round (that is,
without iterated application of the criterion).

PROOF. By Proposition 3, all strategies that are not played with
positive probability in any Nash equilibrium can be eliminated in
a single round; but by Theorem 5, this is the only type of strategy
that iterated elimination can eliminate.

Interestingly, iterated elimination is in a sense incomplete:

PROPOSITION 6. Removing an eliminated strategy from a game
sometimes decreases the set of strategies that can be eliminated.

PROOF. Consider the following game:



L M R

U 2, 2 0, 1 0, 5
D 1, 0 1, 1 1, 0

The unique Nash equilibrium of this game is(D, M), for the fol-
lowing reasons. In order for it to be worthwhile for the row player
to playU with positive probability, the column player should play
L with probability at least1/2. But, in order for it to be worthwhile
for the column player to playL with positive probability (rather
thanM ), the row player should playU with probability at least
1/2. However, if the row player playsU with probability at least
1/2, then the column player’s unique best response is to playR.
Hence, the row player must playD in any Nash equilibrium, and
the unique best response toD is M .

Thus, by Proposition 3, all strategies besidesD andM can be
eliminated. In particular,R can be eliminated. However, if we
removeR from the game, the remaining game is:

L M

U 2, 2 0, 1
D 1, 0 1, 1

In this game,(U, L) is also a Nash equilibrium, and henceU and
L can no longer be eliminated, by Proposition 2.

This example highlights an interesting issue with respect to us-
ing this eliminability criterion as a preprocessing step in the com-
putation of Nash equilibria: it does not suffice to simply throw out
eliminated strategies and compute a Nash equilibrium for the re-
maining game. Rather, we need to use the criterion more carefully:
if we know that a strategy is eliminable according to the criterion
we can restrict our attention to supports for the player that do not
include this strategy.

The example also directly implies that iterated elimination ac-
cording to the generalized criterion is path-dependent (the choice of
which strategy to remove first affects which strategies can/will be
removed later). The same phenomenon occurs with iterated weak
dominance (one strategy weakly dominates another if the former
always does at least as well as the latter, and in at least one case,
strictly better). There is a sizeable literature on path (in)dependence
for various notions of dominance [10, 3, 24, 21, 22, 1].

In light of these results, it may appear that there is not much
reason to do iterated elimination using the new criterion, because
it never increases and sometimes even decreases the set of strate-
gies that we can eliminate. However, we need to keep in mind that
Theorem 5, Corollary 3, and Proposition 6 do not pose any restric-
tions on the setsDr, Er, Dc, Ec, and therefore (by Propositions 2
and 3) are effectively results about iteratively removing strategies
based on whether they are played in a Nash equilibrium. However,
the new criterion is more informative and useful when there are re-
strictions on the setsDr, Er, Dc, Ec. Of particular interest is the
restriction|Er| + |Ec| ≤ k, because by Corollary 2 this quantity
determines the (worst-case) runtime of the mixed integer program-
ming approach that we presented in the previous section. Under
this restriction, it turns out that iterated elimination can eliminate
strategies that single-round elimination cannot.

PROPOSITION 7. Under a restriction of the form|Er|+|Ec| ≤
k, iterated elimination can eliminate strategies that single-round
elimination cannot (even whenk = 1).

PROOF. By Proposition 5, whenk = 1 the eliminability crite-
rion coincides with strict dominance (and hence iterated applica-
tion of the criterion coincides with iterated strict dominance). So,
consider the following game:

L R

U 1, 0 1, 1
D 0, 1 0, 0

Strict dominance cannot eliminateL, but iterated strict domi-
nance (which can removeD first) can eliminateL.

Of course, even under this (or any other) restriction iterated elim-
ination remains sound in the sense of Theorem 5. Therefore, one
sensible approach to eliminating strategies is the following. Itera-
tively apply the eliminability criterion (with whatever restrictions
are desired to increase the strength of the argument, or are neces-
sary to make it computationally manageable, such as|Er|+ |Ec| ≤
k), removing each eliminated strategy, until the process gets stuck.
Then, start again with the original game, and take a different path of
iterated elimination (which may eliminate strategies that could no
longer be eliminated after the first path of elimination, as described
in Proposition 6), until the process gets stuck—etc. In the end, any
strategy that was eliminated in any one of the elimination paths can
be considered “eliminated”, and this is safe by Theorem 5.10

Interestingly, here the analogy with iterated weak dominance
breaks down. Because there is no soundness theorem such as The-
orem 5 for iterated weak dominance, considering all the strategies
that are eliminated in some iterated weak dominance elimination
path to be simultaneously “eliminated” can lead to senseless re-
sults. Consider for example the following game:

L M R

U 1, 1 0, 0 1, 0
D 1, 1 1, 0 0, 0

U can be eliminated by removingR first, andD can be elim-
inated by removingM first—but these are the row player’s only
strategies, so considering both of them to be eliminated makes lit-
tle sense.

9. CONCLUSIONS
We defined a generalized eliminability criterion for bimatrix games

that considers whether a given strategy is eliminable relative to
given dominator & eliminee subsets of the players’ strategies. We
showed that this definition spans a spectrum of eliminability cri-
teria from strict dominance (when the sets are as small as possi-
ble) to Nash equilibrium (when the sets are as large as possible).
Thus, eliminating a strategy relative to dominator & eliminee sets
of intermediate size can provide a stronger argument for eliminat-
ing a strategy than Nash equilibrium, even when the strategy cannot
be eliminated by (iterated) dominance. We showed that checking
whether a strategy is eliminable according to this criterion is coNP-
complete (both when all the sets are as large as possible and when
the dominator sets each have size1). We then gave an alternative
definition of the eliminability criterion and showed that it is equiv-
alent using the Minimax Theorem. We showed how this alternative
definition can be translated into a mixed integer program of poly-
nomial size with a number of (binary) integer variables equal to
the sum of the sizes of the eliminee sets, implying that checking
whether a strategy is eliminable according to the criterion can be
done in polynomial time if the eliminee sets are small. Finally, we
studied using the criterion for iterated elimination of strategies.

There are numerous avenues for future research. One is to use
the new eliminability criterion and the computational tools we pro-
vided for it to speed up search-based techniques for computing

10This procedure is reminiscent of iterative sampling.



Nash equilibria. Another avenue is to characterize the eliminability
criterion at intermediate points of the spectrum. Yet another pos-
sibility is to try to find other special cases that can be computed
in polynomial time. We can also experimentally analyze the run-
time of the mixed integer programming approach on random games
(such as those generated by GAMUT [23]). Finally, we can attempt
to use the criterion as a solution concept in mechanism design.
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