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ABSTRACT 1. INTRODUCTION

We define a generalized strategy eliminability criterion for bimatrix ~ Solving general-sum games is a topic of growing interest in com-
games that considers whether a given strategy is eliminable relativeputer science. To solve such games, the concept of (iterated) dom-
to given dominator & eliminee subsets of the players’ strategies. inance is often too strong: it cannot eliminate enough strategies.
We show that this definition spans a spectrum of eliminability cri- But, if possible, we would like a stronger argument for eliminating
teria from strict dominance (when the sets are as small as possible)a strategy than (mixed-strategy) Nash equilibrium.  Similarly, in
to Nash equilibrium (when the sets are as large as possible). Wemechanism design (where one gets to create the game), implemen-
show that checking whether a strategy is eliminable according to tation in dominant strategies is often excessively restrictive, butim-
this criterion is coNP-complete (both when all the sets are as large plementation in (Bayes-)Nash equilibrium may not be sufficiently
as possible and when the dominator sets each havel sizéve strong for the designer’s purposes. Hence, it is desirable to have
then give an alternative definition of the eliminability criterion and €liminability criteria that arebetweenthese concepts in strength.
show that it is equivalent using the Minimax Theorem. We show In this paper, we will introduce such a criterion. The criterion we
how this alternative definition can be translated into a mixed inte- introduce considers whether a given strategy is eliminable relative
ger program of polynomial size with a number of (binary) integer 10 given dominator & eliminee subsets of the players’ strategies.
variables equal to the sum of the sizes of the eliminee sets, imply- The criterion spans an entispectrumof strength between Nash

ing that checking whether a strategy is eliminable according to the equilibrium and strict dominance (in terms of which strategies it
criterion can be done in polynomial time, given that the eliminee can eliminate), and in the extremes can be made to coincide with
sets are small. Finally, we study using the criterion for iterated €ither of these two concepts, depending on how the dominator &

elimination of strategies. eliminee sets are set. It can also be used for iterated elimination of
strategies.
Categories and Subject Descriptors An important question to ask of any solution concept is how ef-
o ] i ] ficiently a solution can beomputed A recent sequence of pa-
J.4 [Computer Applications]: Social and Behavioral Sciences—  pers [8, 4, 9, 5] shows that the problem of finding a Nash equilib-
EconomicsF.2 [Theory of Computation]: Analysis of Algorithms  rjym (even in the two-player case) is complete for the class PPAD.

and Problem Complexity (In contrast,approximateNash equilibria can be found in quasi-

polynomial time [19]. Also, Nash equilibria can be found in poly-

General Terms nomial time for average-payoff repeated games [20].) The best-

Algorithms, Economics, Theory known algorithm for finding a Nash equilibrium, themke-Howson
algorithm [17], has a worst-case exponential running time [27], and

Keywords methods based on exhaustively searching through the space of the

_ o mixed strategies’ supports fare comparatively well for many classes
Qame Theory, .Slolgtlon Congepts, (Iterated) Elimination of Strate- of games [26]. It is also known that finding Nash equilibniah
gies, Nash Equilibrium, Dominance certain additional propertie¢for example, the social-welfare max-

*This material is based upon work supported by the National Sci- Imizing Nash e_qumbrlum_) IS NP-compIete [12, 6]'. The computa-

ence Foundation under ITR grants 11S-0121678 and 11S-0427858, tional complexity of dominance and iterated dominance has been

and a Sloan Fellowship. An earlier version of the paper appearedstudied as well [16, 11, 7]. In this paper, we will study the compu-

at AAAI-05. tational complexity of applying the new eliminability criterion, and
provide a mixed integer programming approach for it.

Throughout, we focus on two-player games only. The elim-
inability criterion itself can be generalized to more players, but the
computational tools we introduce do not straightforwardly gener-
alize to more players. Moreover, we focus only on normal-form
games (rather than make use of structured representations of games
[14, 18, 2, 13)).

EC’06 Workshop on Alternative Solution Concepts in Mechanism Design.  One of the benefits of the new criterion is that when a strategy
June 12, 2006, Ann Arbor, Michigan, USA. cannot be eliminated by dominance (but it can be eliminated by




the Nash equilibrium concept), the new criterion may provide a player should play? at Ieast% of the time. But again, in order
stronger argument than Nash equilibrium for eliminating the strat- for it to be worthwhile for the row player to ever play, the col-
egy, by using dominator & eliminee sets smaller than the entire umn player should play: at leastZ of the time. Thus, if both the
strategy set. To get the strongest possible argument for eliminatingrow and the column player accurately assess the probabilities that
a strategy, the dominator & eliminee sets should be chosen to be ashe other places on these strategies, and their strategies are rational
small as possible while still having the strategy be eliminable rela- with respect to these assessments (as would be the case in a Nash
tive to these sets.Iterated elimination of strategies using the new equilibrium), then, if the row player puts positive probability
criterion is also possible, and again, to get the strongest possibleby the previous reasoning, the column player should be playing
argument for eliminating a strategy, the sequence of eliminations at least? of the time, and-? at least? of the time. Of course, this
leading up to it should use dominator & eliminee sets that are as js impossible; so, in a sense, the row player should notgfay
small as possiblé. It may appear that all we have shown is thdtis not played in

As another benefit, the algorithm that we provide for checking any Nash equilibrium. But, to some extent, our argument for not
whether a strategy is eliminable according to the new criterion can playing o2 did not make use of the full elimination power of the
also be used as a subroutine in the computation of Nash equilib- Nash equilibrium concept. Most notably, we only reasoned about a
ria. Specifically, any strategy that is eliminable (even using iterated gmg|| part of the game: we never mentioned strategjeando,
elimination) according to the criterion is guaranteed not to occur and we did not even specify most of the utilities for these strategies.
in any Nash equilibrium. Current state-of-the-art algorithms for (1t js easy to extend this example so that the argument only uses an
computing Nash equilibria already use a subroutine that eliminates arpjtrarily small fraction of the strategies and of the utilities in the
(conditionally) dominated strategies [26]. Because the new crite- matrix, for instance by adding many copiesaf ando’.) The
rion can eliminate more strategies than dominance, the algorithm ocality of the reasoning that we did is more akin to the notion of
we provide may speed up the computation of Nash equilibria. (For gominance, which is perhaps the extreme case of local reasoning
purposes of speed, it is probably desirable to only apply special ahout eliminability—only two strategies are mentioned in it. So, in

cases of the criterion that can be computed fast—in particular, asthjs sense, the argument for eliminating is somewhere between
we will show, eliminability according to the criterion can be com-  gominance and Nash equilibrium in strength.

puted fast when the eliminee sets are small. Even these special

cases are more powerful than dominance.) 3 DEFINITION OF THE ELIMINABILITY
2. A MOTIVATING EXAMPLE CRITERION

Because the definition of the new eliminability criterion is com- We are now ready to give the formal definition of the generalized

plex, we will first illustrate it with an example. Consider the fol- elirr_]ina_bility crit_erion. To make the d_efinit_ior} a bit simpler, we
Iowin’wg (partially specified) game define its negation—when a strategynist eliminable relative to
' certain sets of strategies. Also, we only define when one of the

l “ o ‘ o2 ‘ s ‘ o7 ‘ row player’sstrategies is eliminable, but of course the definition is
551331350050 analogous_ f_o_r the cqlumn pla_1yer. S
A S i i The definition, which considers when a strategjys eliminable
Ug 2,712,2|120|20 relative to subset®,., .. of the row player’s pure strategies (with
0-107?]02]30]0,3 er € E,) and subset®,., E.. of the column player’s pure strate-
or 0,2]0,2]0,3]3,0 gies, can be stated informally as follows. To protecfrom elimi-
nation, we should be able to specify the probabilities that the play-
A quick look at this game reveals that strategigsand o are ers’ mixed strategies place on tfi& sets in such a way that &)
both almostdominated byo2—but they perform better than? receives nonzero probability, and 2) for every pure strategiat
againsto? and o, respectively. Similarly, strategies. and o receives nonzero probability, for every mixed stratégyising only
are both almost dominated by¥—but they perform better thasg strategies inD;, it is conceivable that playeri's mixed strategy
againsto;: ando?, respectively. So we are unable to eliminate any is completed so that; is no worse thaw;.* The formal definition
strategies using (even weak) dominance. follows.
Now consider the following reasoning. In order for it to be
worthwhile for the row player to ever play? rather tharo2, the DEFINITION 1. Given a two-player game in normal form, sub-
column player should play? at Ieast% of the time. (If it is ex- setsD,., E, of the row player’s pure strategi€s,, subsetd., E.
actly 2, then switching froms? to o will cost the row player2 of the column player's pure strategi&s, and a distinguished strat-
exactly 1 of the time, but the row player will gai exactly 2 of egye; € E,,we say that; is not eliminable relative td,., £, D..,
the time, so the expected benefini But, similarly, in order for ~ Ee, if there exist functions (partial mixed strategigs) : E. —
it to be worthwhile for the column player to ever play, the row [0,1] andp. : E. — [0, 1] with p,(e7) > 0, ;E pr(er) <1,
There may be multiple minimal vectors of dominator & eliminee and - pc(ec) < 1, such that the following holds. For both
sets relative to which the strategy is eliminable; in this paper, we ec€Be

will not attempt to settle which of these minimal vectors, if any, ¢ € {r,c}, for anye; € E; with p;(e;) > 0, for any mixed
constitutes the most powerful argument for eliminating the strategy. strategyd; placing positive probability only on strategies i;,
2Here, there may also be a tradeoff with the length of the elimina- there is some pure strategy_; € ¥_; — E_; such that (letting
tion path. For example, there may be a path of several eliminations .—— - . )
using dominator & eliminee sets that are small, as well as a single “As is common in the game theory literature; denotes “the
elimination using dominator & eliminee sets that are large, both of player other than.”

which eliminate a given strategy. (In fact, we wallwaysbe con- 4This description may sound similar to the conceptrational-
fronted with this situation, as Corollary 3 will show.) Again, in this izability. However, in two-player games (the subject of this pa-
paper, we will not attempt to settle which argument for eliminating per), rationalizability is known to coincide with iterated strict dom-
the strategy is stronger. inance [25].




p—i ¢ o—; denote the mixed strategy that results from placing the alized criterion can never eliminate a strategy that is in some Nash
remaining probabilityl — >>  p_;(e—;) thatisnotused by the  equilibrium. So, if a strategy can be eliminated by the generalized

e—i€F_; criterion, it can be eliminated by the Nash equilibrium concept.
partial mixed strategy_; ono_;), we have:u;(e;,p—; © 0—;) >
ui(di, p—i ¢ 0—;). (If p—; already uses up all the probability, we PROPOSITION 2. If there is some Nash equilibrium that places
simply haveu;(e;, p—i) > wi(d;,p—;)—noo_; needs to be cho-  positive probability on pure strategy, theno}: is not eliminable
sen.j relative to anyD,., E.., D., E..

In the example from the previous subsection, we carlket= PROOF. Leto’. be the row player's (mixed) strategy in the Nash
{02}, Do = {02}, Br = {0},07}, B = {02,0:}, ande} = o7, equilibrium (which places positive probability arf), and leto”.
Then, by the reasoning that we did, it is impossible toyseand be the column player's (mixed) strategy in the Nash equilibrium.
pe SO that the conditions are satisfied, and hemtés eliminable For any D,., E,, D., E. with ¢ € E,., to prove thats} is not
relative to these sets. eliminable relative to these sets, simply ggtcoincide withs’. on

E,—that is, letp, be the probabilities that the row player places
4., THE SPECTRUM OF STRENGTH on the strategies itg,. in the equilibrium. (Thusp,.(o7) > 0).

In this section we show that the generalized eliminability cri- Similarly, letp. coincide withor. on E.. We will prove that the
terion we defined in in the previous section spans a spectrum of condition on strategies with positive probability is satisfied for the
strength all the way from Nash equilibrium (when the sBts E,., row player; the case of the column player follows by symmetry. For
D,, E. are chosen as large as possible), to strict dominance (when@nyer € E, with p,.(e-) > 0, for any mixed strategy.., we have
the sets are chosen as small as possible). First, we show that the crittr (er, 0¢) — ur(dr, 0¢) > 0, by the Nash equilibrium condition.
terion is monotonically increasing, in the sense that the larger we NOW, let pure strategy. € arg maxoex, &, (ur(er, pec © 0) —

make the set®,, E,, D., E., the more strategies are eliminable. ~ Ur(dr,pc ©0)). Then we must have,(er, pc ¢ oc) — ur(dr, pe ©
oc) > ur(er, o) — ur(dr,oL) > 0 (because. ¢ o. ando, co-

PROPOSITION 1. If e} is eliminable relative td;, B}, D¢, E:,  incide onE., and for the former, the remainder of the distribution
andD; C D}, E; C E?,D; C D2, E; C EZ, thene; is elim- is chosen to maximize this expression). It follows thétis not
inable relative toD?, E7, DZ, EZ. eliminable relative to an,., E,., D, E.. O

PrRoOOF We will prove this by showing that i¢;: is not elim-
inable relative taD?, E2, D2, EZ, thene;: is not eliminable relative We next show that by choosing the s&s, E.., D., E. as large
to D}, E}, D!, EL. Itis straightforward that making thB; sets as possible, we can make the generalized eliminability criterion co-
smaller only weakens the condition on strategiesith p;(e;) > 0 incide with the Nash equilibrium concept.
in Definition 1. Hence, it} is not eliminable relative td?2, E2, D?,

EZ2, thene} is not eliminable relative td., E2, D!, E2. All that PROPOSITION 3. Let D, = E, = ¥, andD. = E. = ..

remains to show is that making tt& sets smaller will not make Thene;. is eliminable relative to these sets if and only if there is no
e; eliminable. To show this, we first observe that, if in its last Nash equilibrium that places positive probability eh

step Definition 1 allowed for distributing the remaining probabil-
ity arbitrarily over the strategies ik_; — E_; (rather than re-

quiring a single one of these strategies to receive all the remain- o * _ v anqp. — £, = ¥.. The partial distributiong, and
ing probability), this would not change the definition, because we pe With p.(ef) > 0 that show that; is not eliminable must use

might as well place all the remaining probability on the strategy |, 4| the probability (the probabilities must sum to one), because
o-i € ¥; — E; that maximizesu(e;, o) — “igdi"’—i)z' there are no strategies outsile = ¥, andE, = ¥, to place any
Now, let p, andpc_ be part_lal_ mixed Stra_tegles PV‘E;’“ ar11d EQC remaining probability on. Hence, we must have, for any strategy
that prove that; is _not ellmln_able relatlye tCDTEE’Di’EC' er € E, = ¥, with p.(e.) > 0, that for any mixed strategy
Then, to sh0\_/v thae_t:i is not ellm_lnable relatlve_thr, ET,_DC, El, dr, ur(er, pe) > ur(dr, pe) (and the same for the column player).
use the partial mixed strategips andp,, which are simply the gt these are precisely the conditions ferandp. to constitute a

.. 1 1 i
restrlctlolns _Or‘:Pr, and p. to Erd?”d Ec, re.spc(ejctlvely. Forany  Nash equilibrium. It follows that there is a Nash equilibrium with
e; € E; with pi(e;) > 0 and for any mixed strategy; over positive probability ore*. [

D}, we know that there exists soree; € ¥_; — E2, such that

u:’(_ei,pfi 0 0-i) > wi(di,p—i 01(771'% (belcau25e the; prove that Moving to the other side of the spectrum, we now show that the
e, is not eliminable relative td;, By, D, E:). But, the distri- - concept of strict dominance is stronger than the generalized elim-
butionp_; © o—; is a legitimate completion of the partial mixed  jyapjjity criterion—in the sense that the generalized eliminability

strategyp_ ; as well (albeit one that distributes the remaining prob-  ¢iterion can always eliminate a strictly dominated strategy (as long
ability over multiple strategies), and hence fijeprove thate: is as the dominating strategy is ib,.).
not eliminable relative td}, EX, D!, EX. O

PROOF The “only if” direction follows from Proposition 2. For
the “if” direction, suppose;. is not eliminable relative td, =

Next, we show that the Nash equilibrium concept is webtten PROPOSITION 4. If pure strategyo, is strictly dominated by
our generalized eliminability criterion—in the sense that the gener- SOmMe mixed strategy,*thena,,. is eliminable relative to any);., £,
: - o D., E. such that 1)0;; € E., and 2) all the pure strategies on
-We need to make this case explicit for the case = X_;. whichd,. places positive probability are i, .
When discussing elimination of strategies, it is tempting to say _ o )
that the stronger criterion is the one that can eliminate more strate- PROOF To show that;: is not eliminable relative to these sets,
gies. However, when discussing solution concepts, the conven-we must seb.-(o) > 0, and thus we must demonstrate that for
tion is that the stronger concept is the one that implies the other.
Therefore, the criterion that can eliminate fewer strategies is actu- ‘Unlike Nash equilibrium, the generalized eliminability criterion
ally the stronger one. For example, strict dominance is stronger does not discuss what probabilities should be placed on strategies
than weak dominance, even though weak dominance can eliminatethat are not eliminated, so it only “coincides” with Nash equilib-
more strategies. rium in terms of what it can eliminate.




some pure strategy. € X.—Ee¢, ur (0}, pco0c) > Ur(dr, peooe) a cost constrain€ and a value targét’; we assume without loss
(or, if all the probability is used upy, (o), pc) > ur(dr,pe)), of generality that” = 1 — ¢, for somee small enough that it is
becausel, only places positive probability on strategies in.. impossible for a subset of the to sum to a value strictly between

But this is impossible, because by strict dominancég, o.) <
ur(dr, o) for any mixed strategy.. [

C and1,? thate; > 0 for all 4, and thatz v; < 1) to the follow-

ing eliminability question. Let the game be as follows. The row

Finally, we show that by choosing the sdfs, E. as small as player hasm + 2 distinct pure strategieser, e?, ..., e™, el d,
possible, we can make the generalized eliminability criterion coin- (where E,. = {e},e?,...,e™, ef} and D, = {dr}). The col-
cide with the strict dominance concept. umn player hasn + 1 distinct pure strategiesz;, e2, ..., e, d.

(whereE, = {el,e2,...,e"} andD, = {d.}). Let the utilities

PrROPOSITION 5. Let E. = {} and E, = {e.}. Thene, is be as follows:
eliminable relative toD,, E,, D., E. if and only if it is strictly
dominated by some mixed strategy that places positive probability e w,.(ef,el) = 1 forall i # j;
only on elements db,.. o
o - o u.(el,el) =1— L forall
PROOF The “if” direction follows from Proposition 4. For the vi
“only if” direction, suppose that, is eliminable relative to these

7 ! o u. (el d.)=1foralli;
sets. That means that there exists a mixed stradeghat places
positive probability only on strategies if,- such that for any pure o u.(ef,el) = % — 1forall 4
strategyoc. € Y. — E. = X, u(er,0.) < u(dr,o.) (because .
E.={}andE, = {e,}, this is the only way in which an attempt o ur(er,dec) = —1;
to prove thate, is not eliminable could fail). But this is precisely doe) = 0 for all i-
the condition ford,. to strictly dominate,.. [ o ur(dr,cc) =0foralls
r d'mdc =05
We are now ready to turn to computational aspects of the new o ur )=0
eliminability criterion. o uc(el,el) =0foralli# j;
7 ) 1 ..
5. APPLYING THE NEW ELIMINABILITY o teerec) = g foralld;
CRITERION CAN BE COMPUTATION- o u(ch.d) — 1foralli

ALLY HARD

(er,de)

In this section, we demonstrate that applying the eliminability ( )
criterion can be computationally hard, in the sense of worst-case o uc(elr,de) = 1;
complexity® We show that applying the eliminability criterion is ‘
coNP-complete in two key special cases (subclasses of the prob- e uc(dr,e.) =
lem). The first case is the one in which the, E., D., F. sets are
set to be as large as possible. Here, the hardness follows directly ~ ® ue(dr, de)
from Proposition 3 and a known hardness result on computing Nash
equilibria [12, 6].

1 2 m

THEOREM 1. Deciding whether a given strategy is eliminable oI 6136_ T ico ico Clicl
relative toD, = E, = ¥, and D, = E. = X. is coNP-complete, 5 vi’ el 1 ’ ’
even when the game is symmetric. er 1,0 B E’ =z Lo 1,1

PROOF By Proposition 3, this is the converse of asking whether
there exists a Nash equilibrium with positive probability on the e 1,0 1,0 e 1= vl ) ﬁ 1,1
given strategy. This is NP-complete [12, 6] er +-1,0 +-1,0 - $H-10 —-1,1

dy 0,0 0,0 .+ 0,0 0,1

While this shows that the eliminability criterion is, in general,

computationally hard to apply, we may wonder if there are spe- e now show that; is eliminable relative td,, E,, D, E. if
cial cases in which it is computationally easy to apply. Natural and only if there is no solution to the KNAPSACK instance.
special cases to look at include those in which some of the sets  First suppose there is a solution to the KNAPSACK instance.

D,, Ey, D., E. are small. The next theorem shows that apply- Then, for everyi such that(c;, v;) is included in the KNAPSACK
ing the eliminability criterion remains coNP-complete even when solution, letp, (el.) = ¢;; for everyi such that(c;, v;) is not in-

|Dr| = |De| = 1. cluded in the KNAPSACK solution, I@T(ei) 0. Also, let
THEOREM 2. Deciding whether a given strategy is eliminable  Pr(er) =1 — Z pr(er). (We note thatZ pr(er) <C=1-¢

relative to givenD,., E., D, E. is cONP-complete, even whii.| = ¢4 thatp, (¢?) > e > 0.) Also, for everyz such that(c:, v;) is in-

[De| = 1. cluded in the KNAPSACK solution, lgt.(e%) = v;. We now show

PROOF We will show later (Corollary 1) that the problem isin  thatp, andp. satisfy the conditions of Definition 1. If the column
coNP. To show that the problem is coNP-hard, we reduce an arbi- Player places the remaining probability dp, then the U'ﬂ“ty for

trary KNAPSACK instance (given by cost-value pairgc;, v;), the row player of playing any; with p.(e;) > 0is 1 —

'U7 —_

8Because we only show hardness in the worst case, it is possible ’Because we may assume thatdaandc are all mtegers divided

that many (or even most) instances are in fact easy to solve. by some numbef, it is sufficient ife <



the utility of playinge? is —1 + L Z pe(el) > -1+ ¥ =0;and

the utility of playingd, is alsoO. Thus the condition is satisfied
for all elements ofE,. that have positive probability. As faE.,
we note that all of the row player’s probability has already been
used up. The utility of playing any’. with p.(e.) > 0 is “=1,
whereas the utility for playing. is alsol. Thus, the condmon is
satisfied for all elements df. that have positive probability. It fol-
lows thatp, andp. satisfy the conditions of Definition 1 ard is
not eliminable relative td,, E,, D., E..

Now suppose that: is not eliminable relative t®,., E,., D, E..
Let p,- andp. be partial mixed strategies dfi- and E.. satisfying
the conditions of Definition 1. We must have tma(ei) > 0. The

utility for the row player of playing:;: is —1+ - Z pe(el), which

1= 1

must be at leadt (the utility of playingd..); hencez pe(el) > V.
=1

The utility for the column player of playing’ is , Which

must be at least (the utility of playingd.) if p.(e.) > 0; hence
pr(el) > ¢ if pe(el) > 0 Finally, the utility for the row player

of playing el is 1 — ”C( , Which must be at leadt (the utility

of playing d..) if pr(er) > 0; hencep(el) < v; if pr(el) > 0.

Because we must hayg (e;.) > c; > 0 if pc(el) > 0, it follows

that we must always haye.(¢2) < v;. LetS = {i : p.(el) > 0}.

We must have}” v; > 3 pe(el) > V. Also, we must have
€S €S

S <3 pe(eh) < 1 (because we must haye (ef) > 0).

i€S i€S

Because it is impossible th& < > ¢; < 1, it follows that

i€s

> ¢; < C. Butthen,S is a solution to the KNAPSACK in-

i€s

stance. [J

Pr (el,)
Ci

However, we will show later that the eliminability criterion can
be applied in polynomial time if thé’; sets are small (regardless
of the size of theD; sets). To do so, we first need to introduce an
alternative version of the definition.

6. ANALTERNATIVE, EQUIVALENT DEF-
INITION OF THE ELIMINABILITY CRI-
TERION

In this section, we will give an alternative definition of elim-
inability, and we will show it is equivalent to the one presented in
Definition 1. While the alternative definition is slightly less intuitve
than the original one, it is easier to work with computationally, as
we will show in the next section. Informally, the alternative def-
inition differs from the original one as follows: in the alternative
definition, the completion of playeri's mixed strategy has to be
chosenbeforeplayeri’s strategyd; is chosen (but after playeis
strategye; with p;(e;) > 0 is chosen). The formal definition fol-
lows.

DEFINITION 2. Given a two-player game in normal form, sub-
setsD,, E, of the row player’s pure strategies,, subsetd., E.
of the column player’s pure strategi&s, and a distinguished strat-
egye; € E,, we say that; isnot eliminable relative t®,., E.., D,
E., if there exist functions (partial mixed strategigs) : E, —

[0,1] andp. : Ec — [0, 1] withp(e7) > 0, >0 pr(er) < 1,
erEE,
and > pc(ec) < 1, such that the following holds. For both
ec€E,

i € {r,c}, foranye; € E; withp;(e;) > 0, there exists some com-
pletion of the probability distribution overi's strategies, given by

p ¥y — [0,1] (with p®,(e—;) = p—i(e—;) forall e_; €
E_;;and > p%.(0—;) = 1), such that for any pure strategy
o_;€EX_;
d; € Di, we haVQLZ'(ei,piii) 2 ui(di,peji).
We now show that the two definitions are equivalent.

THEOREM 3. The notions of eliminability put forward in Def-
initions 1 and 2 are equivalent. That is; is eliminable relative
to D,, E,, D., E. according to Definition 1 if and only ¢ is
eliminable relative to (the samé),., £, D., E. according to Def-
inition 2.

PrROOF The definitions are identical up to the condition that
each strategy with positive probability (eache E. with p,(e,) >
0 and eache. € E. with p.(e.) > 0) must satisfy. We will
show that these conditions are equivalent across the two definitions,
thereby showing that the definitions are equivalent.

To show that the conditions are equivalent, we introduce another,
zero-sum game that is a function of the original game, the sets
D,, E., D., E., the chosen partial probability distributiops and
pe, and the strategy; for which we are checking whether the con-
ditions are satisfied. (Without loss of generality, assume that we are
checking it for some strategy. € E, with p..(e-) > 0.)

The zero-sum game has two playdrsnd2 (not to be confused
with the row and column players of the original game). Player
chooses somé. € D,., and playeR chooses some. € %, — E..

The utility to playerl is u,(d,,pe ¢ oc) — ur(er, pe © oc) (@nd

the utility to player2 is the negative of this). (We assume without
loss of generality that. does not already use up all the probability,
because in this case the conditions are trivially equivalent across
the two definitions.)

First, suppose that playérmust declare her probability distri-
bution (mixed strategy) oveD.. first, after which playerR best-
responds. Then, letting (X') denote the set of probability distribu-
tions over seiX, playerl will receivemax;, ca(p,) Ming ex, - B,

> 6r(dr)(ur(dr, peo0c) — Uur(er, pe©0c)) = MaXs, eA(D,)
dr €Dy

ming, ex,— &, Ur(6r, pe © 0c) — ur(er, pe © o). This expression
is at most if and only if the condition in Definition 1 is satisfied.
Second, suppose that playzmust declare his probability dis-
tribution (mixed strategy) ovex.. — E. first, after which playet
best-responds. Then, playewill receivemins, ca(s, - &.)
maXd,.eD, Z 5C(U(:)(Ur(d'r7pc<>gc) —U7~(€r,pc<>00)) =

0c€X.—Ec Z pc(ec)(ur(dmec)—u7>(€r7€c))+

mins,eA(s.—E.) MaXd,.eD,
ec€EE.

> (L= > pe(ec))de(oe)(ur(dr, o) — ur(er,oc))

oc€Xc.—Ec ec€E.
mins e a(s, - E.) MaXd, e D, Ur(dr, PeOdc) —Ur(er, Peodc). This
expression is at mostif and only if the condition in Definition 2
is satisfied.

However, by the Minimax Theorem [28], the two expressions
must have the same value, and hence the two conditions are equiv-
alent. [J

Informally, the reason that Definition 2 is easier to work with
computationally is that all of the continuous variables (the values
of the functionsp., p., pe", py<) are set by the party that is try-
ing to prove that the strategy is not eliminable; whereas in Defini-
tion 1, some of the continuous variables (the probabilities defining
the mixed strategied,, d.) are set by the party trying to refute the
proof that the strategy is not eliminable. This will become more
precise in the next section.



7. A MIXED INTEGER PROGRAMMING
APPROACH

In this section, we show how to translate Definition 2 into a
mixed integer program that determines whether a given strategy

ey is eliminable relative to given se®,., E,., D., E.. The vari-

ables in the program, which are all restricted to be nonnegative, are

thep;(e;) for all e; € E;; thep; ™ (o;) foralle_; € E_; and all
o; € ¥; — E;; andbinary indicator variable$; (e;) for all e; € E;
which can be set to zero if and onlyzif(e;) = 0. The program is
the following:

maximize p,(e;) subject to

(probability constraints): for bothi € {r,c}, for all e; € E;,

>, p-ile—i) + > p%i(o_;) =1

e_,€E_; o_;ES_;—E_;

(binary constraints)for bothi € {r,c}, foralle; € E;, pi(e;) <
bi (61)

(main constraints):for bothi € {r,c}, for all e; € E; and all
di € Di, 3. poile—i)(uiei,e—i) —ui(di, e—i))+
e_;€E_;
> plio-i)(uiles, 0-i) — ui(di,0-i)) = (bi(ei) —
oc_;eXx_;,—E_;

1)U

In this program, the constabi; is the maximum difference be-
tween two different utilities that playermay receive in the game,
thatis,U; = max,, o/ s, 0,0 ez, Wil0r,0c) — ui(0r, 0c).

THEOREM 4. The mixed integer program has a solution with
objective value greater than zero if and onlgjfis not eliminable
relative toD,, E,, D., E..

PROOF Foranye; € F; with p;(e;) > 0, b;(e;) must bel, and
thus the corresponding main constraints become: forary D;,

Z p—i(e—i)(ui(eiae—i) - Ui(diye—i))+
e_;eEE_;

Z peji(U,i)(ui(ei,a,i) — ui(di,a,i)) > 0. These

o_;eX_;,—E_;
are equivalent to the constraints given on strategies E; with
pi(e;) > 0 in Definition 2. On the other hand, for amy € E;
with p;(e;) = 0, bi(e;) can be set td), in which case the con-
straints become: forani; € D;, Y. p_i(e—i)(ui(ei,e—i)—

e_;cE_;
ui(di,e—i))+ > pTi(o—i)(uilei, 0—i)—ui(di,0-3)) >
o_,€EX_;—E_;
—U,.

sum to one by the probability constraints, dridis the maximum
difference between two different utilities that playenay receive

Because the probabilities in each of these constraints must

PROOF Any mixed integer program whose only integer vari-
ables are binary variables can be solved in time exponential only in
its number of binary variables (for example, by searching over all
settings of its binary variables and solving the remaining linear pro-
gram in each case). The number of binary variables in this program
is|E-|+ |E.|. O

8. ITERATED ELIMINATION

In this section, we study what happens when we eliminate strate-
giesiteratively using the new criterion. The criterion can be itera-
tively applied by removing an eliminated strategy from the game,
and subsequently checking for new eliminabilities in the game with
the strategy removeeic. (as in the more elementary, conventional
notion of iterated dominance). First, we show that this procedure
is, in a sense, sound.

THEOREM 5. Iterated elimination according to the generalized
criterion will never remove a strategy that is played with positive
probability in some Nash equilibrium of the original game.

PrRoOF We will prove this by induction on the elimination round
(that is, the number of strategies eliminated so far). The claim is
true for the first round by Proposition 2. Now suppose it is true up
to and including round:; we must show it is true for round + 1.
Suppose that the claim is false for roubd- 1, that is, there exists
some game~ and some pure strategy such that 1) is played
with positive probability in some Nash equilibrium 6f, and 2)
usingk elimination rounds( can be reduced t6* "1, in whicheo
is eliminable. Now consider the gami& which preceded**! in
the elimination sequence, that is, the game obtained by undoing the
last elimination befor&**. Also, leto’ be the strategy removed
from G* to obtainG***. Now, in G, & cannot be eliminated by
the induction assumption. However, by Proposition 3, any strategy
that is not played with positive probability in any Nash equilibrium
can be eliminated, so it follows that there is some Nash equilibrium
of G* in whichg is played with positive probability. Moreover, this
Nash equilibrium cannot place positive probability @n(because
otherwise, by Proposition 2, we would not be able to eliminate it).
But then, this Nash equilibrium must also be a Nash equilibrium
of G**!: it does not place any probability on strategies that are
not in G**!, and the set of strategies that the players can switch to
in GF*1 is a subset of those i6*. Hence, by Proposition 2, we
cannot eliminater from G***, and we have achieved the desired
contradiction. [

Because (the single-round version of) the eliminability criterion
extends all the way to Nash equilibrium by Proposition 3, we get
the following corollary.

in the game, these constraints are vacuous. Therefore the main con-

straints correspond exactly to those in Definition Z]

We obtain the following corollaries:

COROLLARY 1. Checking whether a given strategy can be elim-

inated relative to giverD,., E,., D., E. is in cONP.

COROLLARY 3. Any strategy that can be eliminated using iter-
ated elimination can also be eliminated in a single round (that is,
without iterated application of the criterion).

PROOF By Proposition 3, all strategies that are not played with
positive probability in any Nash equilibrium can be eliminated in

PrROOF. To see whether the strategy can be protected from elim- @ single round; but by Theorem 5, this is the only type of strategy
ination, we can nondeterministically choose the values for the bi- that iterated elimination can eliminate[]

nary variabled.(e,) andb.(e.). After this, only a linear program
remains to be solved, which can be done in polynomial time [15].

COROLLARY 2. Using the mixed integer program above, the
time required to check whether a given strategy can be eliminated

relative to givenD,., E.., D., E. is exponential only inE, | + |E.|
(and notin|D.|, | D.|, |Z-|, or |Zc]).

Interestingly, iterated elimination is in a sense incomplete:

PROPOSITION 6. Removing an eliminated strategy from a game
sometimes decreases the set of strategies that can be eliminated.

PrROOF Consider the following game:



[ L [M R | | [L [R ]
Ul|22]|01|0,5 Ul10]|1,1
D|1,0|11,1|10 D 0,1|0,0
The unique Nash equilibrium of this gamg(i8, M), for the fol- Strict dominance cannot eliminate, but iterated strict domi-

lowing reasons. In order for it to be worthwhile for the row player nance (which can remow@ first) can eliminatel.. [

to play U with positive probability, the column player should play

L with probability at least /2. But, in order for it to be worthwhile Of course, even under this (or any other) restriction iterated elim-

for the column player to play. with positive probability (rather  ination remains sound in the sense of Theorem 5. Therefore, one

than M), the row player should play/ with probability at least  sensible approach to eliminating strategies is the following. ltera-

1/2. However, if the row player play& with probability at least tively apply the eliminability criterion (with whatever restrictions

1/2, then the column player's unique best response is to flay  are desired to increase the strength of the argument, or are neces-

Hence, the row player must play in any Nash equilibrium, and  sary to make it computationally manageable, sudias+ | E.| <

the unique best response/fbis M. k), removing each eliminated strategy, until the process gets stuck.
Thus, by Proposition 3, all strategies besidesind M can be Then, start again with the original game, and take a different path of

eliminated. In particularR can be eliminated. However, if we jterated elimination (which may eliminate strategies that could no

removeR from the game, the remaining game is: longer be eliminated after the first path of elimination, as described
in Proposition 6), until the process gets stualte-In the end, any
L [z [M ] strategy that was eliminated in any one of the elimination paths can
Ul22]01 be considered “eliminated”, and this is safe by Theorefh 5.
D|10]11 Interestingly, here the analogy with iterated weak dominance

breaks down. Because there is no soundness theorem such as The-
orem 5 for iterated weak dominance, considering all the strategies
that are eliminated in some iterated weak dominance elimination
path to be simultaneously “eliminated” can lead to senseless re-
sults. Consider for example the following game:

In this game(U, L) is also a Nash equilibrium, and hernigeand
L can no longer be eliminated, by Proposition Z.]

This example highlights an interesting issue with respect to us-
ing this eliminability criterion as a preprocessing step in the com-
putation of Nash equilibria: it does not suffice to simply throw out

eliminated strategies and compute a Nash equilibrium for the re- l H L [ M [ R ‘

maining game. Rather, we need to use the criterion more carefully: v]11]00]10

if we know that a strategy is eliminable according to the criterion D]11/10)0,0

we can restrict our attention to supports for the player that do not

include this strategy. U can be eliminated by removing first, andD can be elim-

The example also directly implies that iterated elimination ac- inated by removingV/ first—but these are the row player's only
cording to the generalized criterion is path-dependent (the choice of strategies, so considering both of them to be eliminated makes lit-
which strategy to remove first affects which strategies can/will be tle sense.
removed later). The same phenomenon occurs with iterated weak
dominance (one strategy weakly dominates another if the former9. CONCLUSIONS
always does at least as well as the latter, and in at least one case
strictly better). There is a sizeable literature on path (in)dependence
for various notions of dominance [10, 3, 24, 21, 22, 1].

In light of these results, it may appear that there is not muc
reason to do iterated elimination using the new criterion, because

' We defined a generalized eliminability criterion for bimatrix games
that considers whether a given strategy is eliminable relative to
h given dominator & eliminee subsets of the players’ strategies. We
showed that this definition spans a spectrum of eliminability cri-
teria from strict dominance (when the sets are as small as possi-
%'Ie) to Nash equilibrium (when the sets are as large as possible).
Thus, eliminating a strategy relative to dominator & eliminee sets
of intermediate size can provide a stronger argument for eliminat-
ing a strategy than Nash equilibrium, even when the strategy cannot
be eliminated by (iterated) dominance. We showed that checking
whether a strategy is eliminable according to this criterion is coNP-
complete (both when all the sets are as large as possible and when
the dominator sets each have side We then gave an alternative
definition of the eliminability criterion and showed that it is equiv-
alent using the Minimax Theorem. We showed how this alternative
definition can be translated into a mixed integer program of poly-
nomial size with a number of (binary) integer variables equal to
the sum of the sizes of the eliminee sets, implying that checking

gies that we can eliminate. However, we need to keep in mind that
Theorem 5, Corollary 3, and Proposition 6 do not pose any restric-
tions on the set®,., E,., D., E., and therefore (by Propositions 2
and 3) are effectively results about iteratively removing strategies
based on whether they are played in a Nash equilibrium. However,
the new criterion is more informative and useful when there are re-
strictions on the set®,., E., D., E.. Of particular interest is the
restriction|E,.| + |E.| < k, because by Corollary 2 this quantity
determines the (worst-case) runtime of the mixed integer program-
ming approach that we presented in the previous section. Under
this restriction, it turns out that iterated elimination can eliminate
strategies that single-round elimination cannot.

PROPOSITION 7. Under a restriction of the for,.| +| E.| < whether a strategy is eliminable according to the criterion can be
k, iterated elimination can eliminate strategies that single-round done in polynomial time if the eliminee sets are small. Finally, we
elimination cannot (even whén= 1). studied using the criterion for iterated elimination of strategies.

There are numerous avenues for future research. One is to use
the new eliminability criterion and the computational tools we pro-
vided for it to speed up search-based techniques for computing

PROOF By Proposition 5, wheik = 1 the eliminability crite-
rion coincides with strict dominance (and hence iterated applica-
tion of the criterion coincides with iterated strict dominance). So,
consider the following game: 19This procedure is reminiscent of iterative sampling.




Nash equilibria. Another avenue is to characterize the eliminability
criterion at intermediate points of the spectrum. Yet another pos-
sibility is to try to find other special cases that can be computed [18]
in polynomial time. We can also experimentally analyze the run-

time of the mixed integer programming approach on random games
(such as those generated by GAMUT [23]). Finally, we can attempt

to use the criterion as a solution concept in mechanism design.  [19]
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