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Abstract

In recent years, certain formalizations of combinatorial ne-
gotiation settings, most notably combinatorial auctions, have
become an important research topic in the AI community. A
pervasive assumption has been that ofno externalities: the
agents deciding on a variable (such as whether a trade takes
place between them) are the only ones affected by how this
variable is set. To date, there has been no widely studied for-
malization of combinatorial negotiation settings with exter-
nalities. In this paper, we introduce such a formalization. We
show that in a number of key special cases, it is NP-complete
to find a feasible nontrivial solution (and therefore the max-
imum social welfare is completely inapproximable). How-
ever, for one important special case, we give an algorithm
which converges to the solution with the maximal conces-
sion by each agent (in a linear number of rounds for utility
functions that decompose into piecewise constant functions).
Maximizing social welfare, however, remains NP-complete
even in this setting. We also demonstrate a special case which
can be solved in polynomial time by linear programming.

Introduction
One key problem in multiagent settings is that ofprefer-
ence aggregation, where the agents must collectively choose
one outcomefrom a set of candidate outcomes, based on
the agents’ individual preferences. Oftentimes, this out-
come space is highly combinatorial in nature. For instance,
in a combinatorial auction(see, e.g., (Rothkopf, Pekeč, &
Harstad 1998; Fujishima, Leyton-Brown, & Shoham 1999;
Sandholm 2002)), multiple items are to be allocated to the
agents, so an outcome is defined by a specification of which
bundle of items each agent gets (plus, perhaps, payments
to be made by or to the agents). The (usual) goal of pref-
erence aggregation is to find an outcome that is good for
the agents in aggregate (for instance, one that has highso-
cial welfare, defined as the sum of the agents’ utilities).
However, in most settings, there are additional constraints
that must be satisfied. Typically, there is aparticipation
constraint that no agent is made worse off by participat-
ing in the preference aggregation protocol. Additionally,
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if only the agents themselves know their preferences, and
the agents are self-interested (the setting ofmechanism de-
sign), there may be anincentive compatibilityconstraint: no
agent should be able to make itself better off by misreport-
ing its preferences.1 The goal is to find a preference ag-
gregation function (mechanism), mapping (reported) pref-
erences to outcomes, that is desirable (for instance, one
that leads to high social welfare) while satisfying the de-
sired constraints. Additionally, we should have an algo-
rithm for computingthis function. (Computing the most
desirable preference aggregation functions tends to be very
difficult in combinatorial settings, so the goal is to find a
good function that can still be computed efficiently. In
mechanism design, this process has been calledalgorithmic
mechanism design, and this line of research has produced a
number of interesting results (Nisan & Ronen 2001; 2000;
Feigenbaum, Papadimitriou, & Shenker 2001; Lehmann,
O’Callaghan, & Shoham 2002; Mu’alem & Nisan 2002;
Archeret al. 2003; Bartal, Gonen, & Nisan 2003).)

Combinatorial auctions are by far the most-studied com-
binatorial preference aggregation setting. To a lesser ex-
tent, some variants such as combinatorial exchanges (where
the agents seek to trade items among each other—see,
e.g., (Parkes, Kalagnanam, & Eso 2001; Sandholmet al.
2002)) have also received attention. A pervasive assump-
tion in all of this work has been that there areno alloca-
tive externalities: no agent cares what happens to an item
unless that agent itself receives the item. This is insuffi-
cient to model situations where there are certain items (such
as nuclear weapons) that are such that bidders who do not
win the item still care which other bidder wins it (Jehiel &
Moldovanu 1996). More generally, there are many impor-
tant preference aggregation settings where decisions taken
by a few agents may affect many other agents. For exam-
ple, many agents may benefit from one agent taking on a
task such as building a bridge (and the extent of their bene-
fit may depend on how the bridge is built, for example, on

1In mechanism design, this constraint is motivated by therev-
elation principle (e.g. (Mas-Colell, Whinston, & Green 1995)),
which can be informally stated as follows. For every mechanism
that achieves a certain objective in the face of strategic agents, there
exists another,truthful mechanism (that is, a mechanism satisfying
the incentive compatibility constraint) that achieves the same ob-
jective.



how heavy a load it can support). Alternatively, if a com-
pany reduces its pollution level, many individuals may ben-
efit, even if they have nothing to do with the goods that the
company produces. A decision’s effect on an otherwise un-
involved agent is commonly known as anexternality(Mas-
Colell, Whinston, & Green 1995). In designing a good pref-
erence aggregation function, externalities must be taken into
account, so that (potentially complex) arrangements can be
made that are truly to every agent’s benefit.

In this paper, we define a representation for combinato-
rial preference aggregation settings with externalities. Un-
der various assumptions, we study the computational com-
plexity of, given the agents’ preferences, finding a good (if
possible, the optimal) outcome that honors the participa-
tion constraint (no agent should be made worse off). We
will mostly focus on restricted settings that cannot model
e.g. fully general combinatorial auctions and exchanges (be-
cause problems in those settings are hard even without ex-
ternalities). Also, in this first research, we do not consider
any incentive compatibility constraints, and take the agents’
reported preferences at face value. This is reasonable when
the agents’ preferences are common knowledge; when there
are other reasons to believe that the agents’ preferences are
reported truthfully (for example, for ethical reasons, or be-
cause the party reporting the preferences is concerned with
the global welfare rather than the agent’s individual utility);2

or when we are simply interested in finding outcomes that
are good relative to the reported preferences (for example,
because we are an optimization company that gets rewarded
based on how good the outcomes that we produce are rela-
tive to the reported preferences). Nevertheless, mechanism
design aspects of our setting are an important issue, and we
will discuss them as a topic of future research.

Definitions
We formalize the problem setting as follows.

Definition 1 In a setting with externalities, there aren
agents1, 2, . . . , n; each agenti controlsmi variables
x1
i , x

2
i , . . . , x

mi
i ∈ R≥0; and each agenti has a utility func-

tion ui : RM → R (whereM =
n∑
j=1

mj). (Here,

ui(x1
1, . . . , x

m1
1 . . . , x1

n, . . . , x
mn
n ) represents agenti’s util-

ity for any given setting of the variables.)

In general, one can also impose constraints on which val-
ues for(x1

i , . . . , x
mi
i ) agenti can choose, but we will refrain

from doing so in this paper. (We can effectively exclude cer-
tain settings by making the utilities for them very negative.)
We say that thedefault outcomeis the one where all thexji
are set to0,3 and we require without loss of generality that all

2For example, in a large organization, when a representative
of a department within the organization is asked what the depart-
ment’s needs are, it is possible that this representative acts in the
organization’s best interest (rather than the department’s).

3This is without loss of generality because the variablesxji can
be used to represent thechangesin the real-world variables rela-
tive to the default outcome. If these changes can be both positive
and negative for some real-world variable, we can model this with

agents’ utilities are0 at the default outcome. Thus, the par-
ticipation constraint states that every agent’s utility should
be nonnegative.

Without any restrictions placed on it, this definition is
very general. For instance, we can model a (multi-item,
multi-unit) combinatorial exchange with it. In a combina-
torial exchange, each agent has an initial endowment of a
number of units of each item, as well as preferences over
endowments (possibly including items not currently in the
agent’s possession). The goal is to find some reallocation of
the items (possibly together with a specification of payments
to be made and received) so that no agent is left worse off,
and some objective is maximized under this constraint. We
can model this in our framework as follows: for each agent,
for each item in that agent’s possession, for each other agent,
let there be a variable representing how many units of that
item the former agent transfers to the latter agent. (If pay-
ments are allowed, then we additionally need variables rep-
resenting the payment from each agent to each other agent.)
We note that this framework allows forallocative externali-
ties, that is, for the expression of preferences over which of
the other agents receives a particular item.

Of course, if the agents can have nonlinear preferences
over bundles of items (there are complementarities or sub-
stitutabilities among the items), then (barring some special
concise representation) specifying the utility functions re-
quires an exponential number of values.4 We need to make
some assumption about the structure of the utility functions
if we do not want to specify an exponential number of val-
ues. In (most of) this paper, we make the following assump-
tion, which states that the effect of one variable on an agent’s
utility is independent of the effect of another variable on that
agent’s utility. We note that this assumption disallows the
model of a combinatorial exchange that we just gave, unless
there are no complementarities or substitutabilities among
the items. This is not a problem insofar as our primary inter-
est here is not so much in combinatorial exchanges as it is in
more natural, simpler externality problems such as negotia-
tion over pollution levels. We note that this restriction makes
the hardness results that we present later much more inter-
esting (without the restriction, the results would have been
unsurprising given known hardness results in combinatorial
exchanges). However, for some of our positive results we
will actually not need the assumption, for example for con-
vergence results for our algorithm.

Definition 2 ui decomposes (across variables)if

ui(x1
1, . . . , x

m1
1 , . . . , x1

n, . . . , x
mn
n ) =

n∑
k=1

mk∑
j=1

uk,ji (xjk).

When utility functions decompose, we will sometimes be
interested in the special cases where theuk,ji are step func-
tions (denotedδx≥a, which evaluates to0 if x < a and to

two variablesxj1i , x
j2
i , the difference between which represents the

change in the real-world variable.
4Thus, the fact that finding a feasible solution for a combi-

natorial exchange is NP-complete (Sandholmet al. 2002) does
not imply that finding a feasible solution in our framework is NP-
complete, because there is an exponential blowup in representation.



1 otherwise), or piecewise constant functions (linear combi-
nations of step functions).5

In addition, we will focus strictly on settings where the
higher an agent sets its variables, the worse it is for itself.
We will call such settingsconcessions settings. So, if there
is no negotiation, each agent will selfishly set all its variables
to 0. This also provides a game-theoretic justification of the
participation constraint that every agent’s utility should be
nonnegative: specifically, if any agent can block the nego-
tiation process, then any agent that would receive negative
utility from the negotiation process would do so.

Definition 3 A concessions setting is a set-
ting with externalities for which for any
(x1

1, . . . , x
m1
1 , . . . , x1

n, . . . , x
mn
n ) ∈ RM , for any

i, 1 ≤ j ≤ mi, and for any x̂ji > xji , we have
ui(x1

1, . . . , x
m1
1 , . . . , x̂ji , . . . , x

1
n, . . . , x

mn
n ) ≤

ui(x1
1, . . . , x

m1
1 , . . . , xji , . . . , x

1
n, . . . , x

mn
n ).

In parts of this paper, we will be interested in the follow-
ing additional assumption, which states that the higher an
agent sets its variables, the better it is for the others. (For in-
stance, the more a company reduces its pollution, the better
it is for all others involved.)

Definition 4 A concessions setting hasonly negative exter-
nalities if for any (x1

1, . . . , x
m1
1 , . . . , x1

n, . . . , x
mn
n ) ∈ RM ,

for anyi, 1 ≤ j ≤ mi, for anyx̂ji > xji , and for anyk 6= i,
uk(x1

1, . . . , x
m1
1 , . . . , x̂ji , . . . , x

1
n, . . . , x

mn
n ) ≥

uk(x1
1, . . . , x

m1
1 , . . . , xji , . . . , x

1
n, . . . , x

mn
n ).

We definetrivial settings of variables as settings that are
indistinguishable from setting them to0.

Definition 5 The valuer is trivial for variablexji if it does
not matter to anyone’s utility function whetherxji is set tor
or to 0. (That is, for anyx1

1, . . . , x
m1
1 , . . . , xj−1

i , xj+1
i , . . . ,

x1
n, . . . , x

mn
n , and for anyk, we haveuk(x1

1, . . . , x
m1
1 , . . . ,

xj−1
i , r, xj+1

i , . . . , x1
n, . . . , x

mn
n ) = uk(x1

1, . . . , x
m1
1 , . . . ,

xj−1
i , 0, xj+1

i , . . . , x1
n, . . . , x

mn
n ). A setting of all the vari-

ables istrivial if each variable is set to a trivial value.

We are now ready to define the following two computa-
tional problems that we will study. Say that an outcome is
feasibleif it honors the participation constraint, that is, no
agent prefers the default outcome to it.

Definition 6 (FEASIBLE-CONCESSIONS) We are given
a concessions setting. We are asked whether there exists a
nontrivial feasible solution.

Definition 7 (SW-MAXIMIZING-CONCESSIONS) We
are given a concessions setting. We are asked to find a
feasible solution that maximizes social welfare (the sum of
the agents’ utilities).

The following shows that if the first problem is hard, the
second problem is hard to approximate to any ratio. (We
omit many proofs in this paper due to space constraint.)

5For these special cases, it may be conceptually desirable to
make the domains of the variablesxji discrete, but we will refrain
from doing so in this paper for the sake of consistency.

Proposition 1 Suppose that FEASIBLE-CONCESSIONS is
NP-hard even under some constraints on the instance (but
no constraint that prohibits adding another agent that de-
rives positive utility from any nontrivial setting of the vari-
ables of the other agents). Then it is NP-hard to approxi-
mate SW-MAXIMIZING-CONCESSIONS to any positive ra-
tio, even under the same constraints.

Hardness with positive
and negative externalities

We first show that if we do not make the assumption of only
negative externalities, then finding a feasible solution is NP-
complete even when each agent controls only one variable.
(In all the problems that we study, membership in NP is
straightforward, so we just give the hardness proof.)

Theorem 1 FEASIBLE-CONCESSIONS is NP-complete,
even when all utility functions decompose (and all the com-
ponentsuki are step functions), and each agent controls only
one variable.

Proof: We reduce an arbitrary SAT instance (given by
variablesV and clausesC) to the following FEASIBLE-
CONCESSIONS instance. Let the set of agents be as fol-
lows. For each variablev ∈ V , let there be an agentav, con-
trolling a single variablexav . Also, for every clausec ∈ C,
let there be an agentac, controlling a single variablexac .
Finally, let there be a single agenta0 controllingxa0 . Let all
the utility functions decompose, as follows: For anyv ∈ V ,
uavav (xav ) = −δxav≥1. For anyv ∈ V , ua0

av (xa0) = δxa0≥1.
For anyc ∈ C, uacac(xac) = (n(c) − 2|V |)δxac≥1 where
n(c) is the number of variables that occur inc in negated
form. For anyc ∈ C, ua0

ac(xa0) = (2|V | − 1)δxa0≥1. For
any c ∈ C andv ∈ V where+v occurs inc, uavac (xav ) =
δxav≥1. For anyc ∈ C andv ∈ V where−v occurs inc,
uavac (xav ) = −δxav≥1. ua0

a0
(xa0) = −|C|δxa0≥1. For any

c ∈ C, uaca0
(xac) = δxac≥1. All the other functions are

0 everywhere. We proceed to show that the instances are
equivalent.

First suppose there exists a solution to the SAT instance.
Then, letxav = 1 if v is set totrue in the solution, and
xav = 0 if v is set tofalsein the solution. Letxac = 1 for
all c ∈ C, and letxa0 = 1. Then, the utility of everyav is at
least−1 + 1 = 0. Also, the utility ofa0 is−|C|+ |C| = 0.
And, the utility of everyac is n(c) − 2|V | + 2|V | − 1 +
pt(c) − nt(c) = n(c) − 1 + pt(c) − nt(c), wherept(c) is
the number of variables that occur positively inc and are
set totrue, andnt(c) is the number of variables that occur
negatively inc and are set totrue. Of course,pt(c) ≥ 0
and−nt(c) ≥ −n(c); and if at least one of the variables
that occur positively inc is set totrue, or at least one of
the variables that occur negatively inc is set tofalse, then
pt(c)−nt(c) ≥ −n(c)+1, so that the utility ofac is at least
n(c)−1−n(c)+1 = 0. But this is always the case, because
the assignment satisfies the clause. So there exists a solution
to the FEASIBLE-CONCESSIONS instance.

Now suppose there exists a solution to the FEASIBLE-
CONCESSIONS instance. If it were the case thatxa0 < 1,
then for all theav we would havexav < 1 (or av would



have a negative utility), and for all theac we would have
xac < 1 (because otherwise the highest utility possible for
ac is n(c) − 2|V | < 0, because all thexa0 are below1).
So the solution would be trivial. It follows thatxa0 ≥ 1.
Thus, in order fora0 to have nonnegative utility, it follows
that for all c ∈ C, xac ≥ 1. Now, let v be set totrue
if xav = 1, and to false if xav = 0. So the utility of
every ac is n(c) − 2|V | + 2|V | − 1 + pt(c) − nt(c) =
n(c)−1+pt(c)−nt(c). In order for this to be nonnegative,
we must have (for anyc) that eithernt(c) < n(c) (at least
one variable that occurs negatively inc is set tofalse) or
pt(c) > 0 (at least one variable that occurs positively inc is
set totrue). So we have a satisfying assignment.

Hardness with only negative externalities
Next, we show that even if we do make the assumption of
only negative externalities, then finding a feasible solution
is still NP-complete, even when each agent controls at most
two variables.

Theorem 2 FEASIBLE-CONCESSIONS is NP-complete,
even when there are only negative externalities, all utility
functions decompose (and all the components are step func-
tions), and each agent controls at most two variables.

An algorithm for the case of only negative
externalities and one variable per agent

We have shown that with both positive and negative exter-
nalities, finding a feasible solution is hard even when each
agent controls only one variable; and with only negative ex-
ternalities, finding a feasible solution is hard even when each
agent controls at most two variables. In this section we show
that these results are, in a sense, tight, by giving an algorithm
for the case where there are only negative externalities and
each agent controls only one variable. Under some mini-
mal assumptions, this algorithm will return (or converge to)
the maximal feasible solution, that is, the solution in which
the variables are set to values that are as large as possible.
Although the setting for this algorithm may appear very re-
stricted, it still allows for the solution of interesting prob-
lems. For example, consider governments negotiating over
by how much to reduce their countries’ carbon dioxide emis-
sions, for the purpose of reducing global warming.

We will not require the assumption of decomposing utility
functions in this section (except where stated). The follow-
ing claim shows the sense in which the maximal solution is
well-defined in the setting under discussion (there cannot be
multiple maximal solutions, and under a continuity assump-
tion, a maximal solution exists).

Theorem 3 In a concessions setting with only neg-
ative externalities and in which each agent con-
trols only one variable, let x1, x2, . . . , xn and
x′1, x

′
2, . . . , x

′
n be two feasible solutions. Then

max{x1, x
′
1},max{x2, x

′
2}, . . . ,max{xn, x′n} is also

a feasible solution. Moreover, if all the utility functions are
continuous, then, lettingXi be the set of values forxi that

occur in some feasible solution,sup(X1), sup(X2), . . . ,
sup(Xn) is also a feasible solution.

We are now ready to present the algorithm. First, we give
an informal description. The algorithm proceeds in stages:
in each stage, for each agent, it eliminates all the values for
that agent’s variable that would result in a negative utility
for that agent regardless of how the other agents set their
variables (given that they use values that have not yet been
eliminated).

ALGORITHM 1
1. for i := 1 to n {
2. X0

i := R≥0 (alternatively,X0
i := [0,M ] whereM

is some upper bound)}
3. t := 0
4. repeat until ((∀i) Xt

i = Xt−1
i ) {

5. t := t+ 1
6. for i := 1 to n {
7. Xt

i := {xi ∈ Xt−1
i : ∃x1 ∈ Xt−1

1 , x2 ∈ Xt−1
2 , . . . ,

xi−1 ∈ Xt−1
i−1 , xi+1 ∈ Xt−1

i+1 , . . . , xn ∈ Xt−1
n :

ui(x1, x2, . . . , xi, . . . , xn) ≥ 0} } }

We note that the set updates in step 7 of the algo-
rithm are simple to perform, because all theXt

i always
take the form[0, r], [0, r), or R≥0 (because we are in
a concessions setting), and in step 7 it never hurts to
choose values forx1, x2, . . . , xi−1, xi+1, . . . , xn that are
as large as possible (because we have only negative ex-
ternalities). Roughly, the goal of the algorithm is for
sup(Xt

1), sup(Xt
2), . . . , sup(Xt

n) to converge to the maxi-
mal feasible solution (that is, the feasible solution such that
all of the variables are set to values at least as large as in any
other feasible solution). We now show that the algorithm is
sound, in the sense that it does not eliminate values of thexi
that occur in feasible solutions.

Theorem 4 Suppose we are running Algorithm 1 in a con-
cessions setting with only negative externalities where each
agent controls only one variable. If for somet, r /∈ Xt

i , then
there is no feasible solution withxi set tor.

However, the algorithm is not complete, in the sense that
(for some “unnatural” functions) it does not eliminate all the
values of thexi that do not occur in feasible solutions.

Proposition 2 Suppose we are running Algorithm 1 in a
concessions setting with only negative externalities where
each agent controls only one variable. For some (discontin-
uous) utility functions (even ones that decompose), the algo-
rithm will terminate with nontrivialXt

i even though the only
feasible solution is the zero solution.

However, if we make some reasonable assumptions on the
utility functions (specifically, that they are either continuous
or piecewise constant), then the algorithm is complete, in
the sense that it will (eventually) remove any values of the
xi that are too large to occur in any feasible solution. Thus,
the algorithm converges to the solution. We will present the
case of continuous utility functions first.

Theorem 5 Suppose we are running Algorithm 1 in a con-
cessions setting with only negative externalities where each



agent controls only one variable. Suppose that all the utility
functions are continuous. Also, suppose that all theX0

i are
initialized to[0,M ]. Then, all theXt

i are closed sets. More-
over, if the algorithm terminates after thetth iteration of the
repeat loop, thensup(Xt

1), sup(Xt
2), . . . , sup(Xt

n) is feasi-
ble, and it is the maximal solution. If the algorithm does not
terminate, thenlimt→∞ sup(Xt

1), limt→∞ sup(Xt
2), . . . ,

limt→∞ sup(Xt
n) is feasible, and it is the maximal solution.

We observe that piecewise constant functions are not con-
tinuous, and thus Theorem 5 does not apply to the case
where the utility functions are piecewise constant. Never-
theless, the algorithm works on such utility functions, and
we can even prove that the number of iterations is linear in
the number of pieces. There is one caveat: the way we have
defined piecewise constant functions (as linear combinations
of step functionsδx≥a), the maximal solution is not well de-
fined (the set of feasible points is never closed on the right,
i.e. it does not include its least upper bound). To remedy
this, call a feasible solutionquasi-maximalif there is no fea-
sible solution that is larger (that is, all thexi are set to values
that are at least as large) and that gives some agent a different
utility (so it is maximal for all intents and purposes).

Theorem 6 Suppose we are running Algorithm 1 in a con-
cessions setting with only negative externalities where each
agent controls only one variable. If all the utility func-
tions decompose and all the componentsuki are piecewise
constant with finitely many steps (the range of theuki is fi-
nite), then the algorithm will terminate after at mostT it-
erations of therepeat loop, whereT is the total number
of steps in all the self-componentsuii (i.e. the sum of the
sizes of the ranges of these functions). Moreover, if the
algorithm terminates after thetth iteration of therepeat
loop, then any solution(x1, x2, . . . , xn) with for all i, xi ∈
arg maxxi∈Xti

∑
j 6=i

uij(xi), is feasible and quasi-maximal.

Proof: If for somei andt, Xt
i 6= Xt−1

i , it must be the case
that for some valuer in the range ofuii, the preimage of
this value is inXt−1

i −Xt
i (it has just been eliminated from

consideration). Informally, one of the steps of the function
uii has been eliminated from consideration. Because this
must occur for at least one agent in every iteration of
the repeat loop before termination, it follows that there
can be at mostT iterations before termination. Now,
if the algorithm terminates after thetth iteration of the
repeat loop, and a solution(x1, x2, . . . , xn) with for all
i, xi ∈ arg maxxi∈Xti

∑
j 6=i

uij(xi) is chosen, it follows that

each agent derives as much utility from the other agents’
variables as is possible with the setsXt

i (because of the
assumption of only negative externalities, any setting of a
variable that maximizes the total utility for the other agents
also maximizes the utility for each individual other agent).
We know that for each agenti, there is at least some setting
of the other agents’ variables within theXt

j that will give
agenti enough utility to compensate for the setting of its
own variable (by the definition ofXt

i and using the fact that
Xt
j = Xt−1

j , as the algorithm has terminated); and thus it

follows that the utility maximizing setting is also enough to
makei’s utility nonnegative. So the solution is feasible. It
is also quasi-maximal by Theorem 4.

Algorithm 1 can be extended to cases where some agents
control multiple variables, by interpretingxi in the algo-
rithm as thevectorof agenti’s variables (and initializing the
X0
i as cross products of sets). However, the next proposition

shows how this extension of Algorithm 1 fails.

Proposition 3 Suppose we are running the extension of Al-
gorithm 1 just described in a concessions setting with only
negative externalities. When some agents control more than
one variable, the algorithm may terminate with nontrivial
Xt
i even though the only feasible solution is the zero solution

(all variables set to0), even when all of the utility functions
decompose and all of the componentsuk,ji are step functions
(or continuous functions).

In the next section, we discussmaximizing social welfare
under the conditions under which we showed Algorithm 1
to be successful in finding the maximal solution.

Maximizing social welfare remains hard

In a concessions setting with only negative externalities
where each agent controls only one variable, the algorithm
we provided in the previous section returns themaximal
feasible solution, in a linear number of rounds for utility
functions that decompose into piecewise constant functions.
However, this may not be the most desirable solution. For
instance, we may be interested in the feasible solution with
the highest social welfare (that is, the highest sum of the
agents’ utilities). In this section we show that finding this
solution remains hard, even in the setting in which Algo-
rithm 1 finds the maximal solution fast.

Theorem 7 The decision variant of SW-MAXIMIZING-
CONCESSIONS (does there exist a feasible solution with
social welfare≥ K?) is NP-complete, even when there are
only negative externalities, all utility functions decompose
(and all the componentsuki are step functions), and each
agent controls only one variable.

Hardness with only two agents

So far, we have not assumed any bound on the number of
agents. A natural question to ask is whether such a bound
makes the problem easier to solve. In this section, we show
that the problem of finding a feasible solution in a conces-
sions setting with only negative externalities remains NP-
complete even with only two agents (when there is no re-
striction on how many variables each agent controls).

Theorem 8 FEASIBLE-CONCESSIONS is NP-complete,
even when there are only two agents, there are only nega-
tive externalities, and all utility functions decompose (and
all the componentsuk,ji are step functions).



A special case that can be solved to optimality
using linear programming

Finally, in this section, we demonstrate a special case in
which we can find the feasible outcome that maximizes so-
cial welfare (or any other linear objective) in polynomial
time, using linear programming. (Linear programs can be
solved in polynomial time (Khachiyan 1979).) The special
case is the one in which all the utility functions decompose
into piecewise linear, concave components. For this result
we will need no additional assumptions (no bounds on the
number of agents or variables per agent,etc.).

Theorem 9 If all of the utility functions decompose, and all
of the componentsuk,ji are piecewise linear and concave,
then SW-MAXIMIZING-CONCESSIONS can be solved in
polynomial time using linear programming.

Conclusions
In recent years, certain formalizations of combinatorial
negotiation settings, most notably combinatorial auctions,
have become one of the most-studied research topics in mul-
tiagent systems. A pervasive assumption has been that of
no externalities: the agents deciding on a variable (such as
whether a trade takes place between them) are the only ones
affected by how this variable is set. This does not capture
significant aspects of many important negotiation settings,
leading to a loss in welfare. For instance, when an agent is
deciding whether to build apublic goodsuch as a bridge,
many other agents may be affected by this decision, as they
could make use of the bridge. As another example, a com-
pany setting its pollution level may affect the health and
safety of many. To date, there has been no widely studied
formalization of combinatorial negotiation settings with ex-
ternalities.6 In this paper, we introduced such a formaliza-
tion. The following table gives a summary of our results.

Restriction Complexity
one variable per agent NP-complete to find

nontrivial feasible solution
negative externalities; NP-complete to find
two variables per agent nontrivial feasible solution

Algorithm 1 finds maximal
negative externalities; feasible solution (linear time
one variable per agent for utilities that decompose

into piecewise constant
functions); NP-complete to
find social-welfare
maximizing solution

negative externalities; NP-complete to find
two agents nontrivial feasible solution
utilities decompose; linear programming finds
components piecewise social-welfare maximizing
linear, concave solution

Complexity of finding solutions in concessions settings. All
of the hardness results hold even if the utility functions de-
compose into step functions.

6Recent work on negotiation over donations (Conitzer & Sand-
holm 2004) may be seen as a restricted combinatorial negotiation
setting in which externalities occur (whose restriction is different
from restrictions studied in this paper).

The most important direction for future research is to
study incentive compatibility aspects of our setting—that
is, how to give agents incentives to report their preferences
truthfully. If payments can be made, the agents can be
made to report their true preferences using (for example)
VCG payments (Vickrey 1961; Clarke 1971; Groves 1973),
if we always choose the social welfare maximizing outcome.
Without payments, though, there are results that prove that
it is impossible to make the agents report their true prefer-
ences while always choosing a good outcome (Myerson &
Satterthwaite 1983). Given the computational hardness re-
sults that we established in this paper, this may be an inter-
esting setting foralgorithmic mechanism design(the design
of mechanisms that can be executed in polynomial time).
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