
Computational Intelligence, Volume 18, Number 4, 2002

eMediator: A NEXT GENERATION ELECTRONIC
COMMERCE SERVER∗

TUOMAS SANDHOLM

Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania

This paper presents eMediator, an electronic commerce server prototype that demonstrates ways in which
algorithmic support and game-theoretic incentive engineering can jointly improve the efficiency of e-commerce.
eAuctionHouse, the configurable auction server, includes a variety of generalized combinatorial auctions and ex-
changes, pricing schemes, bidding languages, mobile agents, and user support for choosing an auction type. We
introduce two new logical bidding languages for combinatorial markets: the XOR bidding language and the OR-
of-XORs bidding language. Unlike the traditional OR bidding language, these are fully expressive. They therefore
enable the use of the Clarke-Groves pricing mechanism for motivating the bidders to bid truthfully. eAuctionHouse
also supports supply/demand curve bidding. eCommitter, the leveled commitment contract optimizer, determines
the optimal contract price and decommitting penalties for a variety of leveled commitment contracting mechanisms,
taking into account that rational agents will decommit strategically in Nash equilibrium. It also determines the
optimal decommitting strategies for any given leveled commitment contract. eExchangeHouse, the safe exchange
planner, enables unenforced anonymous exchanges by dividing the exchange into chunks and sequencing those
chunks to be delivered safely in alternation between the buyer and the seller.
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1. INTRODUCTION

Electronic commerce is taking off rapidly, but the full power of algorithmic support
and game-theoretic tools has not been harnessed to improve its efficiency. This paper
presents eMediator, a next generation electronic commerce server that demonstrates ways
in which these techniques can improve e-commerce both in terms of processes and out-
comes. The server is designed to be used by both human and automated agents. The result
of our four-year design and implementation effort is now available for use on the web at
http://www.cs.cmu.edu/ ∼amem/eMediator. The three components of eMediator are an auc-
tion house, a leveled commitment contract optimizer, and a safe exchange planner. These
are discussed in Sections 2, 3, and 4, respectively. Each one exhibits interesting interplay
between algorithms (such as search) and game-theoretic incentive engineering.

2. eAuctionHouse: A CONFIGURABLE AUCTION

One of the services that eMediator provides is a free-to-use Internet auction and exchange
prototype called eAuctionHouse. Several successful commercial Internet auction sites already
exist—such as eBay and Yahoo—and interesting academic auction houses have recently
appeared on the Internet (Rodriguez-Aguilar et al. 1997; Wurman et al. 1998). Our motivation
in developing an auction server was to prototype novel next generation features, and test
their feasibility both computationally and in terms of user comfort. eAuctionHouse allows
users from across the Internet to buy and sell goods as well as to set up markets. It is a
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third-party site, so both sellers and buyers can trust that it executes the market mechanisms
as stated. It is implemented in Java, with some of the computationally intensive algorithms
in C++. The information about the markets is stored in a relational database to increase
reliability. eAuctionHouse has been in operation on the Web since December 1998 and, to
our knowledge, was the first Internet auction to support combinatorial auctions, bidding via
graphically drawn price-quantity graphs, and bidding by mobile agents. eAuctionHouse also
offers a wide range of market types to be chosen from, and supports the user in choosing the
appropriate market type for the setting at hand. These features are now discussed in order.

2.1. Combinatorial Auctions

In a sequential auction, items are auctioned one at a time. If a bidder has preferences
over bundles, that is, combinations of items (as is often the case, for example, in electricity
markets, equities trading, bandwidth auctions (McAfee and McMillan 1996; McMillan 1994),
and transportation exchanges (Sandholm 1993)), then bidding in such auctions is difficult. To
determine her valuation for an item, the bidder needs to guess what items she will receive in
later auctions. This requires speculation on what the others will bid in the future because that
affects what items she will receive. Furthermore, what the others bid in the future depends on
what they believe others will bid, etc. This counterspeculation introduces computational cost
and other wasteful overhead. Moreover, in auctions with a reasonable number of items, such
lookahead in the game tree is intractable, and then there is no known way to bid rationally.
Bidding rationally would involve optimally trading off the cost of lookahead against the gains
it provides, but that would again depend on how others strike that trade-off. Furthermore,
even if lookahead were computationally manageable, usually uncertainty remains about the
others’ bids because agents do not have exact information about each others’ preferences.
This often leads to inefficient allocations where bidders fail to get the combinations they
want and do get ones they do not (Boutilier et al. 1999; Sandholm 2000).

In a parallel auction the items are open for auction simultaneously and bidders may place
their bids during a certain time period. This has the advantage that the others’ bids partially
signal to the bidder what the others’ bids will end up being for the different items, so the
uncertainty and the need for lookahead is not as drastic as in a sequential auction. However,
the same problems prevail as in sequential auctions, albeit in a mitigated form.

Combinatorial auctions can be used to overcome the need for lookahead and the in-
efficiencies that stem from the related uncertainties (McMillan 1994; Rassenti et al. 1982;
Rothkopf et al. 1998; Sandholm 1993). In a combinatorial auction bidders may place bids on
combinations of items. This allows the bidders to express complementarities between items
instead of having to speculate into an item’s valuation of the impact of possibly getting other,
complementary items. This capability is particularly important in illiquid, highly volatile, or
noncommoditized markets where it is unsure whether one can acquire the items of a desired
bundle one at a time (for the anticipated price).

Although combinatorial auctions can avoid the need for lookahead by the bidders and
tend to therefore lead to more efficient allocations, they impose significant complexity on
the auctioneer because the auctioneer needs to determine the winners. This is a nontrivial
task. For example, the Federal Communications Commission (FCC) saw the desirability of
combinatorial bidding in their bandwidth auctions, but that was not allowed due to perceived
intractability of winner determination (among other reasons). (This is about to change given
the speed improvement in winner determination algorithms. For one, the FCC is planning to
hold its first combinatorial spectrum auction in Spring 2003.)

Our auction server supports a variety of combinatorial auctions. The following subsec-
tions discuss some of the main variants.
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2.1.1. The OR Bidding Language. In the combinatorial auction setting that has been
most commonly discussed (Rothkopf et al. 1998), each bidder can bid on combinations of
indivisible items, and her bids are implicitly joined with nonexclusive OR, meaning that
any number of her bids can be accepted. Winner determination in this case is the problem of
deciding which bids win so as to maximize the sum of the bid prices, under the constraint that
every item is allocated to at most one bid. This cannot be done in general in polynomial time
in the size of the input (unless P = NP) because the problem is NP-complete (Rothkopf
et al. 1998) (it is analogous to weighted set packing which is NP-complete (Karp 1972)).

Recently, we proved that even approximate winner determination is hard if one is inter-
ested in worst case guarantees. Specifically, no polynomial time algorithm can guarantee an
allocation within a bound n1−ε from optimum for any ε > 0 (unless NP = ZPP) where n
is the number of bids (Sandholm 2002).1 If the bids exhibit special structure, better approx-
imations can be achieved in polynomial time (Chandra and Halldórsson 1999; Halldórsson
1998; Halldórsson and Lau 1997; Hochbaum 1983; Sandholm and Suri 2000), but even these
guarantees are so far from optimum that they are irrelevant for auctions in practice (Sandholm
2002).

Polynomial time winner determination can be achieved by restricting the combinations
on which the agents are allowed to bid (Penn and Tennenholtz 2000; Rothkopf et al. 1998;
Sandholm and Suri 2000; Tennenholtz 2000). However, because the agents may then not
be able to bid on the combinations they want, similar economic inefficiencies prevail as in
noncombinatorial auctions.

We recently generated another approach to optimal winner determination (Sandholm
2002). The motivation was to

� allow bidding on all combinations;
� strive for the optimal allocation;
� capitalize heavily on the sparseness of bids. In practice, the space of bids is extremely

sparsely populated. For example, if there are 100 items, there are 2100 − 1 combinations,
and it would take longer than the life of the universe to bid on all of them even if every
person in the world submitted a bid per second. Sparseness of bids implies sparseness
of the allocations that need to be checked. Our algorithm constructively checks each
allocation that has positive value exactly once, and does not construct the other alloca-
tions. Therefore, the algorithm only generates those parts of the search space which are
actually populated by bids. The disadvantage then is that the run time depends on the
bids received.

We achieve these goals by a tree search algorithm that does provably sufficient selective
generation of children in the search and by using a method for fast child generation, heuristics
that are accurate and optimized for speed, and four methods for preprocessing the search
space. Whereas the worst-case complexity is exponential in the number of items for sale, it
is polynomial in the number of bids. This is desirable because the auctioneer can control the
number of items that are for sale in a given combinatorial auction, but usually cannot (and
should not) restrict the number of bids submitted. The algorithm scales up well in practice.
For details and experimental results, see Sandholm (2002). The algorithm has been further
refined by others (Fujishima et al. 1999), and we then designed a completely different search
algorithm that promised to be drastically faster (Sandholm and Suri 2000). Recently, we

1We proved this via an approximation-preserving polynomial reduction from a maximum clique (which is known to be
inapproximable (Håstad 1999)).
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developed a yet faster algorithm, CABOB, for the problem. Experimental results show that
it is currently the fastest algorithm for optimal winner determination, scaling to hundreds of
items and thousands or tens of thousands of bids (Sandholm et al. 2001).

2.1.2. The XOR Bidding Language. The OR bidding language implicitly assumes
that the bids are superadditive: bi (S ∪ S′) ≥ bi (S) + bi (S′) where bi (S) is the bid of agent
i on combination S. But what would happen if agent 1 bid b1({1}) = $5, b1({2}) = $4, and
b1({1, 2}) = $7, and there were no other bidders? The auctioneer could allocate items 1 and
2 to agent 1 separately, and that agent’s bid for the combination would value at $5 + $4 = $9
instead of $7. So, the OR bidding language focuses on settings where combinatorial bids
are introduced to capture synergies (complementarities) among items. On the other hand,
in many real-world settings local subadditivities (substitutability) can occur as well. For
example, when bidding for a landing slot for a plane, the bidder is willing to take any one of
a host of slots, but does not want more than one.

To address this, we introduced the XOR bidding language which has since become
popular (e.g. Parkes and Ungar (2000)). In this language, each bidder can submit one XOR
disjunct, that is, each bidder can submit multiple bids (each bid including a set of items and
a price), but only one bid from any given bidder can be accepted. eAuctionHouse supports
the XOR bidding language. This allows the bidders to express general preferences with both
positive and negative complementarities. In other words, the language is expressive enough
to represent any mapping from combinations of items to prices.

Optimal winner determination in the XOR bidding language is at least as hard as in
the OR bidding language. The reason is that any problem instance from the OR bidding
language can be converted into the XOR bidding language (simply have each bid come from
a separate virtual bidder; in this way there would be no XOR constraints). Therefore, the
negative results, NP-hardness and inapproximability, apply to the XOR bidding language as
well. Our winner determination algorithms extend to the XOR bidding language by inserting
the extra constraints that no two bids from the same bidder can be accepted (Sandholm 2002).
These extra constraints actually reduce the size of the search space. However, this does not
imply that the search becomes faster.

To enable an economically efficient allocation to be reached, it would be desirable to
extract truthful valuation revelations as bids from the bidders. This is an issue because in
traditional “pay-your-winning-bid” auctions, the bidders have incentive to underbid strategi-
cally. Bidding truthfully can be made incentive compatible (a weakly dominant strategy) by
using the Clarke-Groves mechanism (Clarke 1971; Groves 1973) (a.k.a. generalized Vickrey
auction (MacKie-Mason and Varian 1995)). This means that each bidder is motivated to bid
truthfully irrespective of how the others bid. This renders counterspeculation unnecessary.
With unrestricted bidder preferences, the Clarke-Groves mechanism requires a fully expres-
sive bidding language. Therefore, our XOR bidding language enables incentive-compatible
combinatorial auctions, where the traditional OR bidding language does not.

With our XOR bidding language, the Clarke-Groves mechanism can be applied to the
combinatorial auction setting as follows. Winning bids are determined so as to maximize
the auctioneer’s revenue under the constraint that each item can be allocated to at most
one bid (while honoring the XOR constraints). The amount that an agent needs to pay is the
sum of the others’ winning bids had the agent not submitted any bids, minus the sum of the
others’ winning bids in the actual optimal allocation. Therefore, the winner determination
problem has to be solved once overall, and once per winning agent without any of that agent’s
bids. This makes fast winner determination even more crucial. Note that, for example, just
removing one winning bid at a time would not constitute an incentive-compatible mechanism.
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Incentive compatibility can also be lost if either winner determination or price determination
is conducted only approximately.2

2.1.3. The OR-of-XORs Bidding Language. In addition to full expressiveness, the
convenience of using combinatorial auctions is another important issue. Whereas the XOR
bidding language is fully expressive, in the worst case expressing one’s preferences requires
one to submit a bid on each of the 2m − 1 bundles of items (where m is the number of
items). A shorter representation of preferences without loss of expressive power could be
possible by allowing a richer input language.3 To this end, we introduced the OR-of-XORs
bidding language. Each bidder can submit multiple XOR disjuncts, where these disjuncts are
combined with OR. For example, a bidder could offer

[({1, 2}, $30) XOR ({1, 3}, $25)]

OR [({4, 5}, $75) XOR ({3, 5}, $55) XOR ({6}, $25)]

OR [({7, 8}, $25)]

Such OR-of-XORs expressions maintain full expressive power, but lead to shorter (at
least no longer) input descriptions than in the XOR bidding language (because the latter is
a special case). We also believe that OR-of-XORs expressions are a more natural way to
input preferences. The OR connectors represent independence. For example, if a company
bids for inputs to its production, and has three plants, it could submit 3 XOR disjuncts (one
for each plant, and the different alternative inputs would be XOR’ed) to represent the fact
that the plants’ production plans are independent. This avoids the combinatorial listing of
combinations of bundles (as would be the case with XOR bids) in cases where the values of
the bundles are independent.

In eAuctionHouse, the bidder can submit such OR-of-XORs expressions in table form.
Each row in the table is a combinatorial bid (that lists the set of items and a price), and
the rows are combined with XOR. These XOR disjuncts are combined together with a
nonexclusive OR. We do this by allowing the user to submit multiple tables—an intuitive
way of representing independence across XOR disjuncts (tables). Winners can be determined
with the same algorithm as in the case of XOR bids by using exclusivity constraints only
between bids that are in the same XOR disjunct (table).

Other enrichments to the language are also possible. Since even the XOR bidding lan-
guage is fully expressive, expressiveness should be viewed as a necessary, but not sufficient,
condition in designing bidding languages. Between fully expressive input languages the ap-
propriate comparison criterion is the convenience of their use in the particular application
domain in question.4

2.1.4. Other Combinatorial Auction Generalizations. eAuctionHouse also supports
multi-unit combinatorial markets where there can be multiple indistinguishable units of each

2A recent paper shows that if each bidder is interested in only one bundle, then incentive compatibility can be guaranteed
even under approximate winner determination (Lehmann et al. 1999).

3One idea toward this direction was presented early on by Rassenti et al. (1982). They allowed each bidder to place
combinatorial bids and to state the maximal number of bids that could be accepted from that bidder. Our XOR bidding language
could be viewed as a special case of this where that number is one.

4A recent paper proposes a generalization of the OR-of-XORs language called OR∗. In that language, a bidder can submit
bids as nodes in a graph, and can submit edges into the graph corresponding to arbitrary XOR constraints. Because the OR*
language is a generalization of the OR-of-XORs language, it is fully expressive and never less compact. Furthermore, it was
shown that there exist preferences for which it is exponentially more compact than the OR-of-XORs language (Nisan 2000).
We believe, however, that the OR-of-XORs language is more natural.
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item for sale. Furthermore, it supports combinatorial exchanges, that is, combinatorial double
auctions where there can be multiple buyers and multiple sellers. Some of the buyers may be
sellers as well. Even in a single bid, a bidder can buy some items while selling others. Figure 1
illustrates the table-based bidding interface in a multi-unit combinatorial exchange that uses
our OR-of-XORs bidding language (the number of units is specified in each cell of the table).
Recent research has focused on developing even faster winner determination algorithms for
multi-unit combinatorial auctions (Leyton-Brown et al. 2000; Sandholm and Suri 2000),
and for single- and multi-unit combinatorial exchanges (Sandholm and Suri 2000; Sandholm
et al. 2002).

FIGURE 1. An XOR disjunct in a multi-item, multi-unit combinatorial exchange. The example is from an
electricity market scenario where the agents can bid for combinations of electricity for different hours of the day,
and for multiple megawatt hours for each hour of the day. In this example, a refinery operator wants consecutive
hours of electricity for her plant. She prefers to run the plant for three hours at a rate of 4 MWh per hour, but
running for two hours at 6 MWh per hour is also feasible. In the last alternative she acts both as a buyer and as a
seller of different items in one combination.
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2.2. Bidding via Price-Quantity Graphs

For markets where there is one item for sale, but multiple indistinguishable units of it,
eAuctionHouse supports price-quantity graphs (that is, supply curves and demand curves) so
that bidders can express continuous preferences (see Figure 2). For example when a bidder
buys a larger quantity, she might only accept a lower unit price. Naturally, a bidder accepts
anything below the curve as well (automatically colored region) because she will get the
same quantity as on the curve, but at a lower price. Similarly, a seller would accept anything
above her curve.5

In our implementation, the curves are piecewise linear both for the bidders’ drawing
convenience and for the convenience of winner determination. In single-sided auctions with
price-quantity graph bidding, the winner determination algorithm works as follows. It sums
the demand for every unit price (it does not loop though prices but uses the endpoints of each
linear piece of the curve to do this). Then, it picks the unit price that maximizes the aggregate
price under the constraint that not more is demanded than is available. Each bidder then gets
the amount that she bid for at that unit price. In double auctions, both supply and demand
curves are separately aggregated, and any one of the points where supply meets demand is
chosen. If the curves were noncontinuous, it would be possible that no match exists. This
holds both for single and double auctions. To prevent this, we use continuous curves, that is,
the slope of each linear segment is finite. We do not assume that the curves are monotonic;
for example, the curve in Figure 2 is nonmonotonic.

If the objective is to maximize economic efficiency (welfare among the buyers
and sellers), then the best way to clear a fixed set of supply/demand curves is to pick
a solution that maximizes the amount of trade under the constraint that supply meets
demand. On the other hand, recently Sandholm and Suri studied the complexity of clearing
supply/demand curves so as to maximize the profit of the party who runs the market (prices
paid by buyers minus prices paid to sellers). They showed that under that objective, it is
usually best to reduce the amount of trade. It turns out that with piecewise-linear curves,
nondiscriminatory clearing (where each buyer is cleared at the same price, and each seller
is cleared at the same price—which is generally different from the buyers’ price) can be
done optimally in polynomial time. However, optimal discriminatory clearing (where each
party is cleared at a potentially different price) is NP-complete. If the curves are linear,
then even discriminatory clearing can be done in polynomial time. These results hold both
for auctions (Sandholm and Suri 2001) and for exchanges (Sandholm and Suri 2002).

2.3. Support for Choosing an Auction Type

The auction server, eAuctionHouse, supports a wide variety of auction types. The user
that sets up a given auction (she may be a buyer, a seller, or a third-party facilitator) decides
the auction type. However, since the space of different auction types is enormous, the
auction server helps the user in making the choice. First, only choices that are sensible,
based on game-theoretic analyses or economics experiments, are provided as alternatives.
Furthermore, there is an expert system that restricts the choice of auction types given the
auction setting (Figure 3). For any given auction setting, it tells the user what kinds of bids can
be accepted, and what price determination scheme should be used. The auction setting differs
based on whether it is a single or double auction, whether there are one or multiple items, and
whether there are one or multiple units of each item. Furthermore, the units can be divisible

5Optimark Technologies, Inc. does a fuzzier match where each bidder specifies how much she prefers different regions
of the price-quantity plane (Lupien and Rickard 1997).
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FIGURE 2. A price-quantity graph allows the user to express continuous preferences in the auction server of
eMediator. This figure corresponds to the user being able to hold a videoconference at three alternative picture
resolutions requiring a bandwidth of 15, 60, or 120 Mbps. The auctioned item could be a prebundled combination
of items. For example, the virtual circuit from Los Angeles to Prague can use several network links owned by
different backbone providers.
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Auction settingBid type Pricing scheme

Price-quantity
graph bid

Regular
price bid

OR bid

OR-of-XORs
bid

First-price

2nd price
(Vickrey)

Multi-unit
Vickrey

Groves

Middle
price
(50:50)

Single auction,

Single auction,
multiple units of 1 item

Single auction,
multiple items, 1 unit of each

Single auction,
multiple items,
multiple units of each

Double auction,
1 unit of 1 item

Double auction,
multiple units of 1 item

Double auction,
multiple items, 1 unit of each

Double auction,
multiple items,
multiple units of each

1 unit of 1 item

FIGURE 3. Expertise showing valid combinations of choices of some of the parameters of eAuctionHouse.

or indivisible. The bid types include a regular price bid where the bidder specifies the price
for a good; a price-quantity graph bid (Figure 2); an OR bid; and an OR-of-XORs bid.

The first-price pricing scheme charges the buyer the price of her bid. This scheme leads
to strategic underbidding. In single-unit ascending open-cry auctions, each bidder’s best
strategy is to bid a small increment more than the current price, and stop when her valuation
is reached. In sealed-bid auctions with common knowledge assumptions about the priors
from which the bidders’ private valuations are drawn, a Nash equilibrium analysis can be
conducted to determine how much each agent should underbid as a function of her valuation
(e.g., Wolfstetter (1994)).

The second-price (Vickrey) auction charges the winning bidder the price of the second-
highest bid. Under certain restrictions (Sandholm 2002), it is each bidder’s best strategy to
bid her true valuation (Vickrey 1961).

The multi-unit Vickrey auction is a generalization of the Vickrey auction to settings with
multiple units of an item, or in other words, multiple indistinguishable goods. The bidders can
use any of the following fully expressive bidding languages: (1) the XOR bidding language,
where each bid includes a price and a quantity, (2) the OR-of-XORs bidding languages, where
each bid includes a price and a quantity, or (3) a price-quantity curve as described above.
(Even in this restricted setting, the OR bidding language would not be fully expressive.
For example, it would not enable an agent to state that the value of 5 units is lower than
the value of 2 units plus the value of 3 units.) The units are assigned to the bidders so as to
maximize the sum of the accepted bid prices. Incentive-compatible pricing is achieved, again,
using the Clarke-Groves mechanism. Specifically, the amount a bidder has to pay is the sum
of the prices of the others’ accepted bids had the bidder not participated, minus the sum of the
prices of the others’ accepted bids. Another possible generalization of the Vickrey auction
to the multi-unit setting is to charge every bidder the price of the highest bid that just did not
win (a.k.a. the uniform-price auction). Our auction server uses the former method because
the latter is not incentive compatible: it falls prey to demand reduction lies by the bidders
(Ausubel and Cramton 1996).

For multi-item auctions (with one or more units per item), the Clarke-Groves mechanism,
as discussed earlier, is the appropriate generalization of the Vickrey auction. Each bidder’s
dominant strategy is to bid truthfully.
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In double auctions (exchanges), our server splits the gains equally in the standard way. The
price is halfway between the bid and the ask. In combinatorial double auctions (exchanges),
we maximize the surplus (prices of accepted bids minus prices of accepted asks). The surplus
can be divided arbitrarily between the buyers, the sellers, and the exchange—as long as no
buyer pays more than the prices of her accepted bids (this guarantees that each bidder is
motivated to participate, even in hindsight).

The auctions in eAuctionHouse also have several other parameters, including

� whether or not matches have to be exact in multi-unit auctions
� tie-breaking rule: random, older bid overrides, or newer bid overrides
� when to clear the auction: when a specific time is reached, every time a bid is received,

periodically, or when no bids have been received for a specified time
� when the auction permanently closes: when it is cleared, when no bids have been received

for a specified time, or when the auction’s owner cancels it
� whether or not bid retraction is allowed (possibly for a penalty) before winners are

determined
� whether or not bid retraction is allowed (possibly for a penalty) after winners are deter-

mined
� what information is revealed to the bidders during bidding: all bids, highest bids, or none
� what information is revealed to the bidders after clearing: all bids, winning bids, or none

2.4. NOMAD: Mobile Proxy Agents

Our auction house supports mobile agents so that a user can have her agent actively
participating in the auction while she is disconnected. For example, the user can launch
her agent over the phone from an airplane using a laptop, and then disconnect. Mobile
agents that execute on the agent dock which is on (or near) the host machine of the auction
server also reduce the network latency—an issue of key importance in time-critical bidding.
The Michigan Internet AuctionBot (Wurman et al. 1998) provides a TCP/IP-level message
protocol via which agents could participate in their auction. Their auction server differs
from ours in that they do not provide support for mobile agents. Our auction server uses
the commercial Concordia agent dock from Mitsubishi to provide mobile agents a safe
execution platform from which they can observe what is transpiring in the auctions, bid, set
up auctions, move to other hosts, etc. The user has the full flexibility of Java programming
at her disposal when designing her mobile agent. We also provide an easy-to-use HTML
interface for nonprogrammers where the user can specify what she wants her agent to do, and
our system automatically generates the Java code for the corresponding mobile agent, and
launches it. The following parameterizable mobile agent templates are currently available:

1. The information agent goes to an auction and sends an e-mail to the user when specified
events occur. Using this agent, the user does not have to poll the auction, and gets notified
of important events immediately.

2. The incrementor agent implements the best strategy on the user’s behalf in single-item
single-unit ascending open-cry first-price private-value auctions. It bids a small increment
more than the current highest price, and stops if the user’s reservation price is reached.
With this agent the user does not have to follow the auction, and her best strategy in these
settings is to report her valuation truthfully to the agent.

3. The N-agent underbids optimally on the user’s behalf in single-item single-unit sealed-
bid first-price auctions where the number of bidders, N , is known, and the bidders’
private valuations are independently drawn from a uniform distribution. Specifically,
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the symmetric Nash equilibrium strategy is to bid the user’s valuation times (N − 1)/N
(Rasmusen 1989). The user is then motivated to reveal her true valuation to the agent.

4. The control agent goes to an auction and submits very low noncompetitive bids. It is a
speculator’s tool to artificially increase the number, N , of bidders in an auction to mislead
others, e.g., the N-agent. For example, it is in the seller’s interest to submit control agents
so that N-agents would bid higher.

5. The discover agent computes the expected gain from bidding a small amount more than
the current highest price according to the agent’s current distribution of her valuation.
This is intended for settings where the user does not know her exact valuation for the
item, but only a probability distribution on it. In the future, the probability distribution
could be updated based on new information, or in non–private-value auctions, based on
what others have bid.

Unlike current electronic negotiation servers which usually only provide an auction house,
eMediator provides other types of services for facilitating ecommerce in addition, such as a
leveled commitment contract optimizer, and a safe exchange planner. These are discussed in
Sections 3 and 4, respectively.

3. eCommitter: A LEVELED COMMITMENT CONTRACT OPTIMIZER

Normal full commitment contracts are unable to take advantage of the possibilities that
unknown future events provide. Once an agent agrees to a contract, she has to follow through
no matter how future events unravel. Although a contract may be profitable to an agent when
viewed ex ante, it need not be profitable when viewed after some future events have occurred.
Similarly, a contract may have too low an expected payoff ex ante, but in some realizations
of the future events, it may be desirable.

Contingency contracts have been suggested for utilizing the potential provided by future
events among self-interested agents (Raiffa 1982). The contract obligations are made con-
tingent on future events. In some games this increases the expected payoff to both parties
compared to any full commitment contract. However, contingency contracts are often im-
practical because the space of combinations of future events may be large and unknown. Also,
when events are not mutually observable, the observing agent can lie about what transpired.

Leveled commitment contracts are another method for capitalizing on future events
(Sandholm and Lesser 2001). Instead of conditioning the contract on future events, a mech-
anism is built into the contract that allows unilateral decommitting. This is achieved by
specifying in the contract the level of commitment by decommitment penalties, one for each
agent. If an agent wants to decommit—that is, to be freed from the contract obligations—it
can do so simply by paying the decommitment penalty to the other party. The method requires
no explicit conditioning on future events: each agent can do her own conditioning dynami-
cally. No event verification mechanism against lying is required either. The decommitment
possibility increases each agent’s expected payoff under very general assumptions (Sandholm
and Lesser 2001).

eMediator includes an optimizer for leveled commitment contracts. We call it eCom-
mitter. We analyze contracting situations from the perspective of two risk-neutral agents,
each of which attempts to maximize his own expected payoff: the contractor who pays to
get a task done, and the contractee who gets paid for handling the task. The framework can
be interpreted as modeling other types of settings than task allocation also—for example,
general allocation of rights and obligations where the agents’ costs and gains of the rights and
obligations may change. In what follows, we word the results in the context of task allocation.
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The contractor tries to minimize the contract price ρ that he has to pay to get the task
handled. The contractee tries to maximize the payoff ρ that she receives from the contractor
for handling the task. We study a setting where the future of the agents involves uncertainty.
Specifically, the agents might receive outside offers.6 The contractor’s best outside offer ă is
only probabilistically known ex ante, by both agents, and is characterized by a probability
density function f (ă). If the contractor does not receive an outside offer, ă corresponds to its
best outstanding outside offer or its fallback payoff, i.e., payoff that it receives if no contract
is made. The contractee’s best outside offer b̆ is also only probabilistically known ex ante,
and is characterized by a probability density function g(b̆). If the contractee does not receive
an outside offer, b̆ corresponds to its best outstanding outside offer or its fallback payoff.7

The variables ă and b̆ are assumed to be statistically independent, and f and g are assumed
to be common knowledge.

The contractor’s options are either to make a contract with the contractee or to wait for ă.
Similarly, the contractee’s options are either to make a contract with the contractor or to wait
for b̆. The two agents could make a full commitment contract at some price. Alternatively,
they can make a leveled commitment contract which is specified by the contract price, ρ,
the contractor’s decommitment penalty, a, and the contractee’s decommitment penalty, b.
We restrict our attention to contracts where a ≥ 0 and b ≥ 0, that is, agents do not get
paid for decommitting.8 The contractor has to decide on decommitting when he knows his
outside offer ă but does not know the contractee’s outside offer b̆. Similarly, the contractee
has to decide on decommitting when she knows her outside offer b̆ but does not know the
contractor’s. This seems realistic from a practical contracting perspective.

3.1. Nash Equilibria for a Given Contract

One concern is that a rational self-interested agent is reluctant to decommit because there
is a chance that the other party will decommit, in which case the former agent gets freed
from the contract, does not have to pay a penalty, and collects a penalty from the breacher.
Sandholm and Lesser (2001) showed that despite such insincere decommitting the leveled
commitment feature increases each contract party’s expected payoff, and enables contracts
in settings where no full commitment contract is beneficial to all parties.

The contractor decommits if he gets a low enough outside offer, e.g., he can get his task
handled at a low cost. We denote his decommitting threshold by ă∗, so his decommitting
probability is

pa =
∫ ă∗

−∞
f (ă) dă (1)

The contractee decommits if she gets a high enough outside offer, e.g., gets paid for han-
dling a task. We denote her decommitting threshold by b̆∗, so her decommitting probability is

pb =
∫ ∞

b̆∗
g(b̆) db̆ (2)

6The framework can also be interpreted to model situations where the agents’ cost structures for handling tasks and for
getting tasks handled change, e.g., due to resources going offline or becoming back online.

7Games where at least one agent’s future is certain are a subset of these games. In such games all of the probability mass
of f (ă) and/or g(b̆) is on one point.

8A recent paper shows that this restriction does not reduce the welfare of the contract parties (Sandholm and Zhou 2002).
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3.1.1. Sequential Decommitting Mechanisms. In our sequential decommitting mech-
anism, one agent has to reveal her decommitting decision before knowing whether the other
party decommits. While our implementation analyzes both orders of decommitting, here we
only discuss the setting where the contractee has to decide first. The case where the contractor
decides first is analogous. There are two alternative leveled commitment contracts that differ
on whether or not the agents have to pay the penalties to each other if both decommit.

If the contractee has decommitted, the contractor’s best move is not to decommit, because
−ă − a + b ≤ −ă + b (because a ≥ 0). This also holds for a contract where neither agent
has to pay a decommitment penalty if both decommit since −ă ≤ −ă + b. In the subgame
where the contractee has not decommitted, the contractor’s best move is to decommit if
−ă − a > −ρ, i.e.,

ă∗ = ρ − a (3a)

The contractee gets b̆ − b if she decommits, b̆ + a if she does not but the contractor
does, and ρ if neither decommits. Thus the contractee decommits if b̆ − b > pa(b̆ + a) +
(1 − pa)ρ. If pa = 1, this is equivalent to −b > a which is false because a ≥ 0 and b ≥ 0. In
other words, if the contractee surely decommits, the contractor does not. On the other hand,
the above is equivalent to

b̆ > ρ + b + apa

1 − pa

def= b̆∗ when pa < 1 (4a)

3.1.2. Simultaneous Decommitting Mechanisms. In our simultaneous decommitting
mechanisms, agents have to reveal their decommitment decisions simultaneously. We first
discuss the variant where both have to pay the penalties to each other if both decom-
mit. The contractor decommits if pb · (−ă + b − a) + (1 − pb)(−ă − a) > pb · (−ă + b) +
(1 − pb)(−ρ). If pb = 1, this equates to a < 0, but we have already ruled out contracts where
an agent gets paid for decommitting. On the other hand, this equates to

ă < ρ − a

1 − pb

def= ă∗ when pb < 1 (3b)

The contractee decommits if (1 − pa)(b̆ − b) + pa(b̆ − b + a) > (1 − pa)ρ + pa(b̆ +
a). If pa = 1, this equates to b < 0, but we ruled out contracts where an agent gets paid for
decommitting. However, this equates to

b̆ > ρ + b

1 − pa

def= b̆∗ when pa < 1 (4b)

In another type of simultaneous decommitting mechanism, neither agent has to pay if
both decommit. The contractor decommits if pb · (−ă) + (1 − pb)(−ă − a) > pb · (−ă +
b) + (1 − pb)(−ρ). If pb = 1, this equates to b < 0, but we have already ruled out contracts
where an agent gets paid for decommitting. On the other hand, this equates to

ă < ρ − a − bpb

1 − pb

def= ă∗ when pb < 1 (3c)

The contractee decommits if (1 − pa)(b̆ − b) + pab̆ > (1 − pa)ρ + pa(b̆ + a). If pa =
1, this equates to a < 0, but we have ruled out contracts where an agent gets paid for
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decommitting. However, this equates to

b̆ > ρ + b − apa

1 − pa

def= b̆∗ when pa < 1 (4c)

3.1.3. Using eCommitter to Find the Nash Equilibria for a Given Contract. To use
the eCommitter optimizer, the user inputs the probability distributions f and g graphically or
textually. The user also inputs the contract price ρ and the decommitment penalties (a and b).
For each one of the decommitting mechanisms (which vary based on who has to reveal her de-
committing decision first—the simultaneous mechanisms are also considered—and whether
or not the agents have to pay the penalties to each other if both decommit), eCommitter finds
all the Nash equilibria. In other words, eCommitter determines decommitting threshold pairs.
eCommitter does this by solving the simultaneous Equations (3) and (4) which use (1) and
(2).9 Given an equilibrium, it is easy to compute the agents’ expected payoffs under the con-
tract. Finally, eCommitter presents all the equilibria and the associated expected payoffs to the
user.

3.2. Using eCommitter to Find Optimal Contracts

In addition to determining how agents should play under a given leveled commitment
contract, eCommitter also determines the optimal leveled commitment contracts. Again,
the user inputs the distributions f and g graphically or textually. However, the user does
not input the contract price or decommitment penalties. Rather, eCommitter determines the
values of these (ρ, a, b) in a way that maximizes the sum of the contract parties’ expected
payoffs (Sandholm et al. 1999). (Again, that optimization algorithm takes into account that
the agents decommit insincerely in Nash equilibrium according to Equations (1)–(4).) The
expected benefit from the contract is the sum of the agents’ expected payoffs under the
contract, minus the sum of the agents’ (expected) payoffs under the status quo where they do
not make a contract.

The contract is optimized separately for each one of the decommitting mechanisms,
which vary based on who has to reveal her decommitting decision first—the simultaneous
mechanisms are also considered—and whether or not the agents have to pay the penalties to
each other if both decommit. The optimal contracts for each mechanism are then presented
to the user. For each mechanism, there is a continuum of optimal contracts that vary based
on how the expected benefit is divided between the agents. eCommitter visualizes how each
agent’s payoff changes as a function of the contract price ρ, and shows how the decommitment
penalties (a and b) should be tailored to the contract price so as to maximize the expected
benefit.10 eCommitter also points out, for each of the mechanisms, the fair optimal contract,
that is, the contract that maximizes the expected benefit and divides it equally between the
agents.

9Although solving this equation group is complex in general, we have the user input piecewise-linear f and g. This allows
the problem to be decomposed into rectangles (corresponding to one piece of f and one of g), where f and g are linear within
each rectangle. In that case, the equation group can be easily solved in constant time. Our optimizer solves the problem in this
way for each rectangle separately. For details, see Sandholm et al. (1999).

10The expected benefit can be maximized while dividing the benefit in any way—as long as each party gets a nonnegative
portion of the benefit (Sandholm et al. 1999; Sandholm and Zhou 2002). In other words, here integrative bargaining (increasing
the expected benefit) does not hinder distributive bargaining (dividing the expected benefit). However, this independence only
holds if the decommitment penalties are tailored to the chosen contract price.
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4. eExchangeHouse: A SAFE EXCHANGE PLANNER

Contract execution is more difficult in electronic commerce than physical commerce
because the parties may be anonymous and can disappear easily. The problem will be exac-
erbated in the future by software agents for automated negotiation. Such an agent can vanish
by simply killing its process, and litigation is infeasible unless the other contract party knows
which real-world entity the agent represented. Another problem is the lack of uniform laws on
electronic commerce—and particularly agent-mediated commerce—in different countries.

An important aspect of contract execution is making sure that the seller gets paid, and
that the buyer gets the goods. The risk is that once one party has received the item, he may be
motivated to vanish without delivering his part of the contract. In fact, 6% of Americans with
online buying experience have reported nondelivery (National Consumers League 1999).

Nondelivery could be avoided by having a trusted third party that takes the payment and
goods, and carries out the transaction only after all parties have delivered their part to the
intermediary. Today’s electronic commerce implements a coarse one-sided variant of this
where the third party takes the payment into escrow, and releases it to the seller only after the
buyer has verified receipt of the goods. A disadvantage of these third-party escrow companies
like Tradenable and Tradesafe is the cost of running such an intermediary, which is recovered
as fees—currently about 3 to 5% of the contract price—from the contract parties.

A method for tackling this problem without third parties was developed in Sandholm
and Lesser (1995). The exchange is divided into chunks where each party delivers a small
amount at a time, and the exchange proceeds with such alternation. The method targets
settings where dividing the goods into chunks is relatively inexpensive, such as is often the
case, for example, with information goods and computational services. A sequence is called
safe if each party is motivated to follow the exchange at every step in anticipation of the profit
from the rest of the exchange instead of vanishing with what the other party has delivered
so far. (Specifically, a safe sequence can be executed in subgame-perfect Nash equilibrium.)
Some chunkings allow a safe sequence while others do not (Sandholm 1996; Sandholm and
Lesser 1995). Similarly, some sequences of delivering given chunks are safe whereas others
are not.

As part of eMediator, we built a safe exchange planner called eExchangeHouse. As input,
the planner takes the following information:

� the contract price,
� how the seller’s cost accrues as a function of how much he has delivered so far in the

transaction,
� how the buyer’s valuation accrues as a function of how much he has received so far in

the transaction,
� how much gain the seller is willing to forego to avoid possible reputation costs from de-

fecting in the exchange (or costs associated with the risk of getting caught after defecting),
and

� how much gain the buyer is willing to forego for the same reasons.

The form of the cost and valuation accrual information depends on the setting. The setting
can have one item, multiple independent items, or multiple dependent items to be exchanged.
Also, there can be one unit of each item, multiple independent units of each item, or multiple
dependent units of each item. Finally, the units can be divisible or indivisible.

For example, in the case where a single divisible item is exchanged, the user inputs a
graph of how the buyer’s valuation accrues as a function of how much has been delivered,
and another graph that shows how the seller’s cost accrues. As another example, in the case
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of multiple distinguishable items, the user lists the items and how many units of each item
are to be exchanged. For each possible state of the exchange (units of item 1 delivered ×
units of item 2 delivered × . . . ) the user inputs the buyer’s valuation and the seller’s cost.
Combining indistinguishable goods into units of a single item significantly reduces the state
space because within each good, only the number of units delivered matters, not which specific
units have been delivered.

Based on this input, the planner finds a safe chunking that minimizes the number of
chunks and a safe chunk sequence if they exist. If they do not exist, the user is alerted of this.
The planner can determine the optimal safe exchange plan under any of the following four
alternative objectives: (1) minimizing the number of deliveries, (2) minimizing the number
of payments, (3) minimizing the number of payments plus the number of deliveries, and
(4) minimizing the number of steps, where each step may include both a payment and a
delivery. The chunking algorithms and the chunk sequencing algorithms are highly nontrivial;
they are described and analyzed in detail in other papers (Sandholm 1996; Sandholm and
Ferrandon 2000; Sandholm and Lesser 1995).

Generally, a user (buyer or seller) only knows the desired information about himself. He
can use bounds on the other party’s values and the exchange plan will still be safe. An upper
bound can be used on how the buyer’s value accrues and a lower bound on how the seller’s
cost accrues. Similarly, an upper bound can be used on the seller’s cost of the completed
contract and a lower bound can be used on the buyer’s valuation of the completed contract.
Finally, lower bounds can be used on the amounts that the agents are willing to forego in
order to avoid defection-related adverse reputation costs or the chance of getting caught after
nondelivery. Although the planned exchange will be safe when such bounds are used as the
input, the planning problem may be infeasible if the bounds are too far off. In that case,
eExchangeHouse reports that no safe exchange plan exists given the inputs.

Each trade party could have a software agent execute its sequence of delivery chunks.
This would provide a level of isolation between the user and the exchange so that the user
need not even know that the trade is occurring in chunks instead of all at once.

4.1. Example of Exchanging Independent Units of Independent Items

In this example the agents exchange multiple indivisible independent units of multiple
independent items. Specifically, they exchange five stocks (multiple units of each): Microsoft
(MSFT), Hewlett-Packard (HWP), Dell (DELL), eBay (EBAY) and Procter & Gamble (PG).
The stocks have different values for the supplier and the demander (for example, because the
supplier and the demander have different portfolios, and the value of a stock in a portfolio
depends on how correlated the stock is with the rest of the portfolio statistically).

The input to the planner includes the contract price ($25,864.60) and the amounts the
agents are willing to forego to avoid reputation-related problems (the seller is ready to forego
$1000, and the buyer is ready to forego $1500). The input also includes the information in
Table 1. The user actually submits this information by filling in such a table in eExchange-
House. Note that the seller’s cost per unit (�vs/�xi ) can be greater than the demander’s
valuation per unit (�vd/�xi ) for some items i—but not all of them—to allow safe exchange.

Based on this input, eExchangeHouse determines an optimal safe exchange plan which
is shown in Figure 4.

4.2. Example of Exchanging Dependent Units of Dependent Items

Consider a software system consisting of two parts, a main package and a plug-in. The
former takes four floppy disks (units) whereas the latter takes only one. They depend on each
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TABLE 1. Input form for Exchanging Independent Units of Independent Items

Number of Units
Item Name to Exchange �vs

�xi

�vd

�xi

MSFT 60 $90.81 $98
HWP 30 $102.63 $109.90
DELL 10 $41.81 $42.50
EBAY 100 $120.25 $127.25
PG 40 $85.10 $88.44

FIGURE 4. Output from the planner. This optimal plan is 16 steps long. Each step of the exchange is described
in detail in the bottom window (only the end of the safe exchange plan, with summary statistics, is visible).
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TABLE 2. Input From for Exchanging Dependent
Units of Dependent Items

Plug-in Package vs vd

0 0 0 0
0 1 5 3
0 2 9 6
0 3 13 10
0 4 17 14
1 0 10 6
1 1 13 10
1 2 16 15
1 3 18 20
1 4 19 26

other in the sense of the cost function of the seller (vs) and the value function of the demander
(vd), as the user has expressed in Table 2.11

We see in this example that—without a plug-in—the cost of one disk of the package
decreases (5, 4, 4, 4) depending on how many disks have been delivered so far. Also, the
value of one disk increases (3, 3, 4, 4) depending on how many disks have been delivered
so far. Therefore, the units of the item “package” are dependent. Moreover, once the plug-in
is delivered, the cost and value of one disk of the package change (respectively (4, 4, 3, 2)
and (4, 4, 5, 5)). Therefore, the item “package” depends on the item “plug-in.” (Similarly,
the plug-in depends on the package.)

Let the contract price be $22, and let each agent be willing to forego $2 to avoid negative
reputation effects associated with defecting.

Given this input, and the objective of minimizing the number of exchange steps (where
each step could include both a delivery and a payment), eExchangeHouse returns the
following optimal safe exchange plan. In the first step, the supplier delivers 2 units of item
“package” and the demander pays $5. In the second step, the supplier delivers 1 unit of
item “package” and the demander pays $9. In the third step, the supplier delivers 1 unit
of item “package” and the demander pays $4. In the fourth step, the supplier does not deliver,
but the demander pays $4. In the fifth step, the supplier delivers 1 unit of item “plug-in”
and the demander does not pay anything. So, the exchange is completed safely in five steps,
containing four deliveries and four payments.

In a recent theoretical paper, we develop a unified model of safe exchange which cap-
tures the known safe exchange mechanisms such as cryptographic signatures, cryptographic
coin ripping, and our chunking technique (as well as new safe-exchange mechanisms). In
that general framework we uncover the conditions under which safe exchange is inherently
possible or impossible—not just using our chunking mechanism, but using any mechanism
(Sandholm and Wang 2002).

5. CONCLUSIONS

The eMediator electronic commerce server prototype exemplifies several new features
that can facilitate more efficient ecommerce in the future. Each one of the three components

11In settings where the items are dependent, but the units within each item are independent, the amount of input required
from the user can be reduced (Sandholm and Ferrandon 2000).
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exhibits an interesting interplay between algorithms and game-theoretic incentive
engineering.

eAuctionHouse, the configurable auction server, includes a variety of generalized combi-
natorial auctions and exchanges, pricing schemes, bidding languages, mobile agents, and user
support for choosing an auction type. We introduced two new logical bidding languages for
combinatorial markets: the XOR bidding language and the OR-of-XORs bidding language.
Unlike the traditional OR bidding language, they are fully expressive. They therefore enable
the use of the Clarke-Groves pricing mechanism for motivating the bidders to bid truth-
fully. eAuctionHouse also supports supply/demand curve bidding for single-item multi-unit
markets.

eCommitter, the leveled commitment contract optimizer, determines the optimal con-
tract price and decommitting penalties for a variety of leveled commitment contract-
ing mechanisms, taking into account that rational agents will decommit strategically. It
also determines the optimal decommitting strategies for any given leveled commitment
contract.

eExchangeHouse, the safe exchange planner, enables unenforced anonymous exchanges
by dividing the exchange into chunks and sequencing those chunks to be delivered safely in
alternation between the buyer and the seller.

Each component can be used separately, but they can also be used together. For example,
if a deal is reached using eAuctionHouse or eCommitter, then eExchangeHouse could be
used to carry out the deal. As another example, the contract determined using eCommitter
could be auctioned using eAuctionHouse.

In the future we are planning to add to eMediator nonmanipulable reputation mainte-
nance algorithms, product evaluation methods, a nonmanipulable voting server, and coalition
formation support.
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