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Abstract 1 Introduction

Collective choice settings are the heart of soci-
ety. Game theory provides a basis for engineering
the incentives into the interactianechanisnge.g,
rules of an election or auction) so that a desirable
system-wideoutcome(e.g, president, resource al-
location, or task allocation) is chosen even though
every agent acts based on self-interest.

However, there are a host of computer science is-
sues not traditionally addressed in game theory that
have to be addressed in order to make mechanisms
work in the real world. Those computing, commu-
nication, and privacy issues are deeply intertwined
with the economic incentive issues. For example,
the fact that agents have limited computational ca-
pabilities to determine their own (and others’) pref-
erences ruins the incentive properties of established
auction mechanisms, and gives rise to new issues.
On the positive side, computational complexity can
be used as a barrier to strategic behavior in settings
where economic mechanism design falls short.

Novel computational approaches also enable new
economic institutions. For example, market clear-
ing technology with specialized search algorithms
is enabling a form of interaction that | cakpres-
sive competitionAs another example, selective in-
cremental preference elicitation can determine the
optimal outcome while requiring the agents to de-
termine and reveal only a small portion of their
preferences. Furthermorautomated mechanism
designcan yield better mechanisms than the best
known to date.

Collective choice settings are the heart of society. Citizens
voting determines a president, producers and consumers bid-
ding determines a set of trades, and surfers hitting links in
web browsers determines a bandwidth allocation. A key dif-
ficulty in collective choice is that the agents generally have
conflicting preferences over thmutcomede.g, presidents,
resource allocations, or task allocations). Work in mechanism
design, a subfield of game theory, provides a basis for engi-
neering the incentives into the interactiorechanisme.g,
rules of an election or auction) so that a desirable—according
to some objective—outcome is chosen even though every
party acts based on self-interest.

However, there are a host of computer science issues not
traditionally addressed in game theory that have to be ad-
dressed in order to make mechanisms work in the real world.
Those computing, communication, and privacy issues have
to be handled while simultaneously handling the economic
incentive issues. This is a particularly exciting research area
because those issues are intimately intertwined, as | hope to
convey. For example, the fact that agents have limited com-
putational capabilities can ruin the incentive properties of es-
tablished auction mechanisms, and give rise to new game-
theoretic issues. On the positive side, computational com-
plexity can be used as a barrier to insincere strategic behavior
in settings where economic incentive engineering is known to
fall short.

Novel computational approaches and algorithms can also
enable new economic institutions. For example, sophisti-
cated market clearing technology with specialized search al-
gorithms enables a new form of interaction that | cat
pressive competitionempowering market participants with
potent expressiveness akin to human-to-human negotiation
while at the same time harnessing the forces of competition,
the global scale of the Internet, and the speed and accuracy
of algorithmic market clearing with all relevant information

“This material is based upon work supported by the National Sciln hand. Furthermore, even the mechanism itself (such as the
ence Foundation under CAREER Award IRI-9703122, Grant I1S-rules of an auction) can be designed automatically—in many
9800994, ITR 11S-0081246, and ITR 11S-0121678.

cases yielding better mechanisms than the best known to date.



This writeup begins from distributed peer-to-peer negotiawork was for cooperative agents only: an agent was as-
tion (Section 2), and transitions to markets that have have aumed to take on a task whenever that was feasible. For self-
mediator such as an auction server (Section 3). In this contexmterested agents, more sophisticated methods are needed.
I will lay out the vision and technology for expressive com- A key idea toward this direction was contracting based on
petition. Section 4 discusses multiagent preference elicitatiomarginal cost§Sandholm, 1991; 1993; 19R6When a con-
in auctions and voting settings: can the mediator elicit theract is proposed to an agent, the agent evaluates the cost of
information needed to determine the optimal outcome withtaking on the contract obligations.{, tasks) by solving its
out requiring the agents to determine and reveal their prefeitocal planning problem once with the new obligations and
ences about impertinent aspects of the problem? The issue ofice without. The difference in the costs of those two lo-
how carefully computationally constrained agents should deeal plans is the marginal cost of the obligations. An agent
termine their preferences is addressed in Section 5. It turngsing this scheme accepts the proposal if the proposer pays
out that the computational constraint undermines desirablé more than its marginal cost. Similarly, when proposing a
incentive properties in established auction mechanisms, angbntract, an agent computes its marginal value of unloading
gives rise to new game-theoretic issues, in particular a phesome obligations, and pays another agent up to that amount
nomenon which | calstrategic computingusing one’s lim-  for the other agent to take on those obligations. A desirable
ited computing to approximate others’ preferences at the costingineering facet of this framework is that it separates the
of approximating one’s own. The reverse is shown in Secdomain specific marginal cost calculator (planner) from the
tion 6: computational complexity can be used as a barrier tagent’s domain independent negotiation module.
undesirable strategic behavior. I illustrate this in voting. One practical consideration is that in many settings the lo-

Section 7 discusses a new idea which | aaltomated cal planning problems are intractable, so the marginal costs
mechanism design designing the interaction mechanism have to be approximated. For example, in the TRACONET
computationally for the specific setting at hand. Section &ystem for automatically reallocating trucking tasks among
shows how mechanism design can not only be used to lead tfispatch centers, the local planning problems w&fé-

a desirable outcome in a multiagent system, but also to detecomplete vehicle routing problems with several side con-
mine a way taexecutahe outcome. In particular, the writeup straints. The TRACONET work included heuristic meth-
looks at safe exchange mechanisms for carrying out tradesds for deciding how carefully to approximate marginal
among anonymous parties on the Internet. Finally, conclueosts[Sandholm, 1991; 1993; 1996; Sandholm and Lesser,
sions, perspective, and promising avenues for future researd®954. This issue is revisited more formally in Section 5.
are presented.

2.2 lIterative reallocation and combinatorial
2 Afirst tack: Peer-to-peer negotiation contracts

Work on automated negotiation began in peer-to-peer cONapother early idea in automated negotiation was to have
texts where the negotiating agents (humans or software) makfe agents iteratively reallocate the items (tagBsndholm,
deals with each other. A key insight for analyzing such ne-1991:'1993. An agent that had accepted a task could later
gotiation is to think about the negotiation process as an Alontract out that task to some other agent, who in turn could
search algorithm where the outcome is characterized by decigntract it out, and so on. This proved to be highly effective
sion variables to which the negotiation assigns val$shi i the TRACONET system. Marginal cost based contract-
and Fox, 1989; Sandholm, 1991; Coenal, 1991; Sycar@t g guarantees that every contract improves the utilities of
al., 1991; Sandholm, 1993 For example, in task allocation the contract parties. Therefore, every agent's utility increases
negotiation there is a decision variable for each task, and thgonotonically in the distributed negotiation that keeps real-
variable’s value is the name of the agent that the task is allopcating tasks. It follows that the agents can enter and exit the
cated_to: There are sevgral high-level families of peer'to'p,eerﬁegotiation dynamically without risking a loss.

negotiation search algorithms. For example, the agents might The marginal cost based iterative reallocation negotiation
negotiate one variable at a time, committing to the assigngan pe viewed as a distributed hill-climbing search where the

ment before moving on to the next variable. This is analogou eight on the hill is the sum of the agents’ utilitiESand-
to constructive search in Al. As another example, the searcEmm 1998. Under this interpretation it is easy to show

might start from astatus quaassignment of values to vari- ha; contracting one item (task) at a time against a payment
ables (for examplle,. the |n|_t|al assignment of tasks 10 agentg;a. original (O) contrac) does not generally lead to an
before any negotiation begins), and then the agents might ite

. ! ; nf'gtimal outcome: the search gets stuck in a local optimum.
atively change the variable assignments whenever the agengys can be addressed by combinatorial contracts that enlarge
relevant to the variables in question agf€andholm, 1991;

the neighborhood in the hill-climbing search: contracts where
1993. (For example, the current holder of a task can rea'_‘multiple items are exchanged for a paymentgter (C) con-

locate the tas_k to anothe_r agent if they l_Joth agree.) This ifacts),! where items from one agent are exchanged against
analogous to iterative refinement search in Al. items from another—potentially with a side paymenswép
2.1 Contracting based on marginal cost (S) contracty and where the contract can involve more than

cal-cglatlons ] The TRACONET system was the first to use combinatorial bid-
In the original contract net framewofmith, 1980, agents  ding to allocate trucking tasks—an approach widely used commer-
allocated tasks among themselves. However, the framesially for procuring trucking services today.



two agents ultiagent (M) contracfs If all of these con- and substitutability: the cost of taking on an obligation
tract types are allowed in a single contra®dSM contragt, usually depends on what other obligations one has.

then agents that contract using the marginal cost principle will 1, - aytomated negotiation systems for self-interested
reach a global optimum (that is, a task allocation that maxiygents, contracts have traditionally been binding. They do not
mizessocial welfare which is simply the sum of the agents’ 4o\ agents to accommodate futlre events that are uncertain

utilities) in a finite number of contracts—ar)d no subset ofy e to domain uncertainty or negotiation process uncertainty.
those contract types sufficESandholm, 1998; 2000aThus  gyth of these classes of uncertainty may also include subjec-

the agents can myopically make contracts in any order. Frofjye yncertainty due to an agent's limited capability to pro-
a hill-climbing search perspective, the neighborhood is larg@.ess information—for example computationally limited ca-
enough that from any allocation of tasks, a profitable conyapjity to do mental lookahead in a (sequential) negotiation
tract exists that takes the agents to any other task aIIocatlog:ocess_ If, in a negotiation, an agent has made a commitment
Therein also lies a key weakness. Especially in a distributeg, 41 tyrns out unprofitable in hindsight, the agent would like
setting, it can be difficult to find a combinatorial contract (in- 14 packtrack that commitment. For example, more lucrative

volving multiple items and multiple agents) that willimprove qfters can arrive later, or handling a task can turn out more
the current solution. Also, the sequence of hill-climbing CON-(ostly than anticipated.

tracts can be exponentially long in the worst case. There- ggckiracking in negotiation search can be enabled using an
fore, in practice, the optimal outcome is not found. Nev-ingiryment called &veled commitment contraathere each
ertheless, the combinatorial contracts help reach better outyiract party can unilaterally decommit from the contract
comes than O-contrac{®Andersson and Sandholm, 1999; by paying a predetermined penafigandholm and Lesser,
200d. - L . 1995b; 2001; 2002 This mitigates both domain uncertainty
Another approach for avoiding local optima in search isynq negotiation process uncertainty, whether objective or sub-
backtracking. It turns out that a backtracking instrument Ca'%ective?’ A concern with this isstrategic breach a rational
be constructed for negotiation as well, as the next sectioe|t.inerested agent is reluctant to decommit because there
shows. It can easily be applied to the reallocation negotiatiofy 5 chance that the other party will decommit, in which case
discussed in this section, instead—or in conjunction with—e former agent gets freed from the contract, does not have
the combinatorial contract typg¢éndersson and Sandholm, 4, hay a penalty, and collects a penalty from the breacher.
1999. With that instrument, a backtracking option can be Thjs’is an example issue that arises due to self-interest, and
added to each (or only some) of the contracts. However, thg,nqers inapplicable traditional backtracking techniques like

backtracking instrument applies to basically any negotiationyjstrihuted constraint satisfactioe.g, [Yokoo, 2003) which
setting, and | will discuss it in that broader context. assume that all parties execute the distributed algorithm faith-
; fully.) Given the contract price, decommitting penalties, and
2.3 Leveled commitment contracts to enable theya)gents’ prior distributiopns of the value oft%g contract, one
backtracking can conduct a Nash equilibrium analysis of the decommitting
Negotiating agents usually have to act under uncertaintyyame (in other words, one can find decommitting strategies
yielding behavior that is suboptimal in hindsight. For thefor the agents such that each agent’s strategy is a best re-
purposes of the ensuing discussion, | divide the uncertaintiesponse to the other’s). Each agent’s best-response strategy is
faced by agents in negotiation into two high-level classes: defined by a threshold on the value of the contract for that

« Domain uncertainty stems from an agent not knowing agent. If the value is below that threshold, the agent will
how its local situation will change. Such changes affectd€commit. It turns out that strategic breach indeed occurs:
the value (cost) and feasibility of the deals that the agenfn @gent does not decommit when the contract's value drops
has made. For instance, which of an agent's resourcd3€!ow the point where paying the decommitting penalty is

will break (or become available) that affect the agent’s  3a practical type of subjective uncertainty stems from the fact

costs—or even feasibility—of handling different combi- that computing the value (cost) of taking on the obligations of a con-

nations of its task$? tract is often intractable—as discussed—so the agents have to resort
« Negotiation process uncertaintystems from an agent to approximate marginal value calculation. Leveled commitment al-

- e . lows an agent to bid based on a rough value calculation. If the agent
not knowing what future negotiation events will occur.

. for i he followi - h wins the bid, the agent can invest a more thorough value calculation.
Consider, for instance, the following uncertainties thatifhe contract no longer looks beneficial in light of this more refined

an agent may f«_’:lce. Which of my pendm_g bids will get calculation, the agent can decommit. The fact that only the winning
accepted? Which (parts) of my tasks will | be able tobidders carry out a refined calculation can save computation system
subcontract out in the future, and at what prices? Whatvide. Also, the negotiations can be carried out faster because agents
tasks will I be offered and at what prices? The answersan bid based on less computation.

to all of these questions affect the cost of taking on (or Leveled commitment can be used to increase the speed of ne-

letting go of) other obligation due to complementarity gotiation in an additional way as well. An agent can make (low-
commitment) offers to multiple recipients although those offers are

2An additional source of uncertainty arises through the othemutually exclusive from the agent’s perspective. In case more than
agents’ non-negotiation actions. Specifically, how will the othersone recipient accepts, the agent can backtrack from all but one. This
act regarding aspects that have not been contractually bound (th@lows the agent to address the recipients in parallel instead of ad-
is pertinent in domains where those actions can affect the agentdressing them one at a time and blocking to wait for an answer be-
utility by hindering or helping the agent)? fore addressing the next.



worth it; rather it needs to drop to a level further down before3 A paradigm shift to mediated clearing
the agent decommits. However, despite such strategic brea . o L
leveled commitment contracts improve the expected payoff he Achilles heel of peer-to-peer negotiation is negotiation
of all contract parties compared to any contract where backP"C€SS uncertainty. Agents make commitments without vis-
tracking is not an optiodSandholm and Lesser, 24011t |b|||ty into what is going to occur later on in the hegotia-
follows that leveled commitment also enables contracts thatf©" Process (and what has already transpired in negotiation

would not be mutually beneficial without the backtracking 2@MONd other agents). Leveled commitment contracts reduce,
option. but do not eliminate, the negative impact of such uncertainty.

This uncertainty also introduces strategic problems. For ex-
Leveled commitment contracts differ based on whetheample, if an agent expects a better deal in the future (which
agents have to declare their decommitting decisions sequef-cannot profitably handle if it takes on the contract currently
tially or simultaneously, and whether or not agents have taffered to it), the agent may want to pass on the current offer.
pay the penalties if both decommit. These mechanisms |e@o, the agent is not best off acting myopica"y_not even in
to different Nash equilibria. It is easy to see that in the semarginal cost based contracting or leveled commitment con-
quential mechanisms the second mover never decommits ffacts as the basic analysis discussed in the previous section
the first mover does; if the first mover does not, then the secassumes. Rather, a rational agent would want to look ahead
ond mover will decommit if the value of the contract to him into the future, which in turn requires Specu|ating what the
turns out to be so low that it is worth paying the penalty. Inother agents will do. Acting rationally equates to solving for
the simultaneous game where both pay the penalties if botthe agent’s best strategy in a game tree whose depth is at least
decommit, as an agent's penalty approaches zero, the agefie number of contracts that can occur in the system. Such
becomes truthful. On the contrary, in the simultaneous gam@okahead is intractable in practice (although leveled com-
where neither pays if both decommit, as an agent's penaltynitment contracts have been studied in this context with a
approaches zero, the agent does not become truthful but tRgnall number of tasks to allocaandersson and Sandholm,
other contract party does! Despite the fact that the equilibrizz001). Even if an agent can conduct such lookahead, un-
of these mechanisms differ, surprisingly, among risk-neutratertainty about the other agents’ private information (their
agents each of the mechanisms leads to the same expecig@ferences, tasks, resourcess) causes the agent to make
payoffs to the agents if the contract price and decommittingommitments that are suboptimal—in light of later negotia-
penalties are optimized for each mechanism separ8alyd-  tion events—for the agent and for social welfffadersson
holm and Zhou, 2002 For agents with risk attitudes, the dif- and Sandholm, 2001 As discussed, there is an additional
ferent mechanisms yield a different sum of utilities, and theproblem in peer-to-peer negotiation: it can be prohibitively
relative ranking of the mechanisms varies based on the exagbmplex to find a contract that improves the current solution,
utility functions. especially when using combinatorial contracts involving mul-

Computing plays a key role in operationalizing the ideatiPle items and multiple agents.

of leveled commitment. Given the contract price, the de- In light of these problems, it is clear that in many settings,
committing penalties, and piecewise linear prior distributionseconomically better solutions can be obtained by collecting
on the contract’s value for the different contract parties, théhe agents’ information to a mediated clearing point such as
Nash equilibrium decommitting thresholds for each mechaan auction server, and conducting a search (akaeaxing)
nism can be computed in polynomial time in the number ofthere to determine the outcome, rather than conducting a dis-
pieced Sandholnet al, 1999. Furthermore, given the piece- tributed “negotiation” search. The reason is that the mediated
wise linear priors, it turns out that the contract price and declearing has all the information in hand while the distributed
committing penalties that maximize the sum of the contracsearch makes decisions based on incomplete views. Further-
parties’ payoffs can be determined in polynomial time in themore, the mediated clearing can be programmed to execute
number of pieces for each of the leveled commitment mechthe search algorithm faithfully while in the distributed search
anisms. The reader is invited to try a leveled commitmenthe agents will act based on self-interest—potentially caus-
contract optimizer prototyp@Committeyon the wel Sand- ing the search not to find an optimal outcofriehe mediated
holm, 2002. Leveled commitment contracts and the algo-approach can be structured so that it motivates the agents to
rithms also generalize to deals that involve more than twdeveal their information truthfully; this will be discussed in
agents. Section 3.6. In short, the mediated approach removes the
egotiation process uncertainty. (The domain uncertainty re-

ains, and the leveled commitment methodology can be used
0 mitigate it.) In most electronic commerce applications the
ediated approach also saves communication because there
many-to-one communication instead of many-to-many, and
ecause each issue needs to be communicated only once—
ather than repeatedly as is commonly the case in peer-to-peer

The theoretical results discussed above pertain to a sing
contract. In negotiation there is usually a web of contracts
and an agent’s breach can cause the victim of the breach
want to breach on another contract, and so on. There is ger
erally a tradeoff between allowing enough backtracking t
sufficiently explore the space for a good outcome and ngf
wasting time in deep cascades of decommits—or even infi-
nite loops of decommitting and recommitting. That trade- 4 the distributed search it can even be difficult to identify
off can be controlled by carefully increasing the decommit-when an optimal solution has been found, and special termination
ting penalties over tim¢Andersson and Sandholm, 2001; detection algorithms are usually need&handholm, 1993; 1996;
1994. Walsh and Wellman, 2000



negotiation. whereb; is the bid of agent, and.S and S’ are disjoint sets

The shift to mediated clearing introduces the need for techef items. In other words, the current techniques focus on cap-
nology for conducting the clearing. The following subsec-turing synergies (complementarities) among items. However,
tions describe the mediated approach in more detail, differenih many auctions in practice, some items can at least partially
forms of the clearing problem, and algorithms for solving it. substitute for otherse(g, when bidding for an umbrella and

] ] ] ] a raincoat). For instance when bidding for landing slots for

3.1 A canonical example: Combinatorial auction a given airplane flight, the bidder is willing to take any one
Consider a setting where multiple distinguishable iteeng,(  Of @ host of slots, but getting more than one adds only slight
a right shoe and a left shoe) are auctioned sequentially, andv@lue because extra slots beyond the first one obtained only
bidder’s valuation for a bundle of items is not the sum of thoseserve as backup. Substitutability causes bids to be subaddi-
items’ valuations. Most multi-item allocation settings exhibit tive: b;(SUS") < b;(S) +b;(S”). This can lead to problems.
such nonadditivity, for example, strategic sourcing, allocafFor example, what happens if agenbids b;({1}) = $5,
tion of trucking lanes, electricity markets, as well as manyb;({2}) = $4, andb;({1,2}) = $7, and there are no other
task and resource allocation problems in computer scienc®idders? The auctioneer could allocate items 1 and 2 to agent
To bid appropriately for the item that is auctioned first (right 1 separately, chargirp + $4 = $9 instead of$7.
shoe), a bidder needs to guess which other items he will win This problem can be removed by using a bidding language
in the later auction(s). This requires lookahead in a game treayhere the bidders can subri{OR-bids that is, bids on bun-
which is intractable if numerous items are auctioned. Everdlles such that only one of the bids can get accep§zud-
with exact lookahead, the bidder generally does not know deholm, 2002& This allows the bidders to express general
terministically what will transpire in the auction—due to in- preferences with both complementarity and substitutability.
complete information about the other bidders’ valuations ofin other words, the bidder can express any value function
the items. For example, some other bidder could be a col : 2™ — R, wherem is the number of items for sale in
lector of left shoes who also likes right shoes somewhat, buthe auction. For example, a bidder in a 4-item auction may
less than our bidder. This can cause our bidder to win just theubmit the following input to the auctioneer:
right shoe that has no value to him, that is, a bundle of items
that is undesirable to the bidder given the prices. While un-
desirable to our bidder, the outcome (that is, allocation of the ({1},84) XOR ({2},54) XOR ({3},82) XOR
items to the agents) also does not maximize social welfare. It~ ({4},$2) XOR ({1,2},88) XOR ({1,3},$6) XOR
would have been better to give both shoes to the other bidder.  ({1,4},$6) XOR ({2,3},$6) XOR ({2,4},$6) XOR
In general, the outcome might not maximize social welfare
even if each bidder wins a bundle that is worth more than the (13,4},83) XOR ({1,2,3},$10) XOR
bidder had to pay for it: an even better allocation of the items ~ ({1,2,4},810) XOR ({1,3,4},87) XOR

to the bidders might exist. ({2,3,4},%7) XOR ({1,2,3,4},$11)
These problems, that are due to the negotiation process un-_ . . . ,
certainty of a sequential auction, can be overcome iana- While XOR-bids are fully expressive, representing one’s

binatorial auctionwhere bids can be submitted on combina- Préferences in that language often leads to large numbers of
tions (bundles) of item§Rassentet al, 1983. For exam- bids that are all combined with XOR. To maintain full ex-
ple, a bidder can say: “I am willing ’Eo pay up to $100 for pressiveness, but at the same time to make the representa-
items 2,3, and 7 together”. This removes the need for lookallon more concise, one can use a bidding language called
head and for speculation about others because the bidder cQR-0f-XORdSandholm, 2002b; 2000b In this language,
evaluate the value of item i the known context where the & Set Of bids can be combined with XOR, forming X0R-
bidder hypothetically receives items 3 and 7 as whtie bid-  disiunct Multiple XOR-disjuncts can then be combined with
der cannot get stuck with item 2 in an unprofitable way. This"on-exclusive ORs to represent independence (much like a
removal of the so calledxposure risknakes bidding easier. 12Ck of an edge represents independence in a Bayes net). For
It also causes the bidders to bid more aggressively becau§@mple, & bidder who wants to submit the same offer as in
they do not have to factor in the potential downside of gettingt’® €xample above, can do so by submitting the following
stuck with undesirable bundles; the aggressive bidding makd&0re concise input to the auctioneer:

the seller better off. Finally, social welfare is maximized be- ({1}, $4)]
cause the goods are allocated to the bidders that value them ’
the most. OR
: . : ({2}, 34)]
3.2 Substitutability and XOR-constraints OR
The model discussed above, and most other work on com- [({3},$2) XOR ({4},$2) XOR ({3,4},$3)]

binatorial auctions (see for examdlRothkopfet al., 1998;

DeMartini et al, 1999), are based on a setting where eachThe XOR-bidding language is a special case of the OR-
bidder can bid on bundles of items, and any number of a bidef-XORs language. Therefore, the shortest way to repre-
der’s bids can be accepted (except, of course, that bids osent any particular value function in the OR-0f-XORs lan-

overlapping bundles cannot be accepted). This works welyjuage is never longer than in the simple XOR-bidding lan-
when bids are superadditivé; (S U S’) > b,(S) + b;(S’), guage. The reader is invited to try out XOR bidding and



OR-0f-XORs bidding in our Internet auction server pro- ample in a reverse auction, a buyer may want 200,000 nuts
totype, eMediator (see http:// www.cs.cmu.edu/~ and 100,000 bolts. A bidder’s bid may state: “I offer 50,000
amem/eMediator ). Later other logical bidding languages nuts and 20,000 bolts for $2,500".

were proposed, namely the XOR-of-ORs language where Finally, markets differ based on whether or not extra units
XORs combine OR-disjuncts, and the OR* language wherean be thrown away for free. This is calléee disposal
XOR-constraints can be submitted between arbitrary pairs dflost markets have free disposal. It makes the clearing prob-
bids [Nisan, 2000. Recently, recursive logical bidding lan- |em easier because any solution where supply ecurag-
guages have also been propo$eldos and Boutilier, 2001; ceedsiemand is feasible. Without free disposal, supply needs
Boutilier, 2003. to equal demand on every item.

3.3 Expressive competition beyond combinatorial ~ Side constraints on the clearing: A form of extremely
auctions concise expressiveness

One can view combinatorial auctions as an extremely specidfxPressive bidding enables the bidders to express their
case of a broader approach that | dpressive competition strengths an_d to a\_/0|d the exposure problem. Bidding on bun-
The vision is to empower market participants with potent ex-dles (potentially with a language such as OR-of-XORs to en-
pressiveness akin to human-to-human negotiation while at thdble substitutability to be expressed) is a simple form of ex-
same time harnessing the forces of competition (rather thaRressive bidding, but representing one’s preferences in such
1-to-1 negotiation), the global scale of Internet auctions, and 'anguage may require an expression of exponential length
the speed and accuracy of algorithmic market clearing witin the number of items. More concise forms of expressive-

all relevant information in hand. ness can be used instead—or better, in addition. A key ap-
proach for accomplishing this is to allow bidders to express
Market types side constraints on the clearifi§andholm and Suri, 2001b;

There are three high-level market types for expressive comKalagnananet al, 200]. For example in a reverse auction, a
petition, each of which can involve bidding on bundles, andbidder could submit a number of bids (maybe on bundles, and
expressions of substitutability (for example with XOR con- potentially with XOR constraints), but in addition he could
straints using the OR-of-XORs language). Irc@mbina-  state that his capacity to produce tomatoes is only 60 tons.
torial auction, there is one seller, and multiple buyers who This would render infeasible all clearing solutions in which
bid. Theclearing problem(aka. winner determination prob- he is allocated more than 60 tons of tomato production. This
lem) is that of determining which bids win and which lose is an instance of a class of constraints that | calit con-

so as to maximize the sum of the winning bids’ prices—straints Similarly, in an auction, a bidder could submit a
under the constraint that every item can be allocated to atumber of bids (maybe on bundles, and potentially with XOR
most one bid. In aombinatorial reverse auctigrthere is  constraints), but in addition he could state that he has a bud-
one buyer with a set of items he wants to procure, and mulget constraint of $35,000,000. This is an instance of a class
tiple sellers who bidSandholm, 2002b; Sandholet al., of constraints that | catost constraintsYet another form of
2004. The clearing problem is that of determining which concise expressiveness is to allow bidders to submit discount
bids win and which lose so as to minimize the sum of theschedulesg.g, “If | get to supply at least $9,000,000 of toma-
winning bids’ prices—under the constraint that every itemtoes to you, | will give you a 2% discount. At $15,000,000,
in the set gets procured. Inambinatorial exchangéaka. | will raise the discount to 3%.” Or the bidder could sub-
combinatorial double auctions) there are multiple buyers andhit a supply (demand) curve where the per-unit price of
multiple sellers[Sandholm, 2002b; Sandholet al, 2002; tomatoes is a function of the quantifgandholm, 2002b;
Walshet al, 2004. A bidder can also act both as a buyer Sandholm and Suri, 2001a; 2402

and as a seller, even in one bid. For example, one of his bids While work on combinatorial auctions has traditionally fo-
may state: “| want to buy a car, sell a boat, buy a bike, anccused on increasing the expressiveness for the bidders, | view
get paid $150". There are two natural clearing objectives foexpressive competition as having two equally important parts,
exchange$Sandholm and Suri, 2003In surplus maximiza- expressive biddingndexpressive bid takingA key approch
tion, the goal is to maximize the sum of the payments col-toward expressive bid taking is to allow the bid taker to sub-
lected from winning bids that offer a payment, minus the sunmit side constraints on the clearing. This allows him to model
of the payments paid to winning bids that require a paymentand honor legal constraints, for example the following cost
In liquidity maximizationthe goal is to maximize the number constraint: “minority bidders have to win 10% of the auc-
or dollar volume of trades. In an exchange, the constraint otion”. It also allows the bid taker to honor contractual obli-
the clearing is that among the winning bids, supply meets degation. For example, the buyer in a reverse auction for trans-
mand on every item (if the exchange sells an item to someongortation services may have a contract that states that Joe’s

it also has to buy it from someone). Trucking has to get at least $30,000,000 of business. This can
For each of these market types, there are two variants: thiege modeled as a side constraint in the clearing, and the clear-
single-unitvariant (described above), and tmelti-unitvari-  ing algorithm will decide exactly what services are procured

ant. In the latter, there are multiple indistinguishable units offrom Joe’s Trucking and what services from other providers.
each distinguishable item in the mark&andholm, 2002b; This approach allows one to reap the benefits of both long-
Sandholm and Suri, 2003; Leyton-Browet al, 2000b; term contracts and dynamic pricing—modes of trade tradi-
Gonen and Lehmann, 2000; Sandhaltval., 2004. For ex-  tionally considered mutually exclusive. Finally, the bid taker



can submit his business rules as side constraints. He may ugerse auction)—either before or after the auction to character-
counting constraintsuch as “l don’t want to deal with more ize his preferences. (For example, the buyer of sea freight ser-
than 200 winning suppliers, and | do not have the capabilitwices may give a 4% advantage to bids that include less than
to handle more than 3 at my plant in Chicago”. He may alsa3 interim ports on the route from source to destination.) The
use cost constraints like “I don’t want any one supplier to winclearing problem is then solved using these revised prices.
more than 15% of the business (so that my supply chain stays Unlike in auctions and reverse auctions where multiple at-
competitive for the long run)”. tributes can be handled in a preprocessor to the clearing prob-

The use of side constraints allows one to find a marketem as shown above, in exchanges multiple attributes cannot
clearing solution that ismplementablén the world because be handled in a preprocessor. The reason is that in an ex-
the real-world constraints are honored. By changing side corehange there are multiple bid takers (each buyer and each
straint and running the clearing algorithm again, the bid takeseller is a bid taker in this sense), and they may have dif-
can also conduct quantitative what-if analyses. For examplderent preference functiorysover attribute vectors. Multiple
“How much would my procurement cost in this reverse auc-attributes can still be handled, but their handling has to be
tion increase if | decrease my supply base down to 17 suphcorporated into the clearing problem itself. This can be ac-
pliers?” Or, “How much more would | save in this reverse complished as follows. Treat items that have different values
auction if 1 did not go with a sole-source contract for elec-of the item attributes as different items. Then use a separate
trical supplies in my Cincinnati plant, but rather allowed 2 decision variable not just for each such item, but for each
suppliers?” item, buyer, sellel tuple. This way each buyer (seller) can

In the 70 markets with expressive competition that we havesondition his bid price on the item attributes and on whom he
fielded to date (see.g, [CombineNet, Inc., 2003e; 2003c; is buying from (selling to). Conditioning on whom he is buy-
2003b; 2003d; 20033 we have seen hundreds of side con-ing from (selling to) is pertinent when bidder attributes have
straint types. We abstracted them into seven general classdg,be taken into accoufit.
the most prevalent of which are cost constraints, unit con- . .
straints, and counting constraints. This abstraction allows thd-4 Complexity of the clearing problem
clearing algorithm to be designed for a few classes rather thapxpressive competition is a new way of conducting business,
for hundreds of constraint types. and has a host of advantages as discussed above. However,
: . . . it requires solving the clearing problem—a combinatorial op-
Non-price attributes in the clearing timization problem. Many variants of it are hard, and the
An additional form of expressive competition stems from thevariants span an intriguing spectrum of worst-case complex-
fact that in many markets there are non-price attributes thaty when it comes to the complexity of finding a feasible so-
are pertinent to the clearing problem, such as color, widthjution, an approximately optimal solution, or an optimal so-
delivery date, quality, insurance terms, and so on. There angtion:
at least two reasons for introducing multi-attribute techniques . . . . . .
into the clearing problem. First, in a basic combinatorial auc- ® AS discussed, in the canonical combinatorial auction
tion (or reverse auction or exchange), each item has to be there is one unit of each item, bids can be submitted
completely specified. In many settings, this is overly restric- ~ ©n bundles (and bids on overlapping bundles cannot
tive. It is more desirable to leave some of the item attributes ~ POth Win), there is free disposal, and there are no XOR-
unspecified, so that each bidder can propose in his bids the ~constraints or other side constraints. Optimal clearing in
attribute vector that is most suitable to him. Each bidder can  this setting is\P-completefRothkopfet al, 1994.
also submit multiple bids with alternative attribute vectors, e That problem is also inapproximable: no polynomial-
which is desirable because different attribute vectors are gen-  time algorithm can guarantee a solution that is better
erally not equally valuable to the bid taker. Second, a bid than a bounch!—< from optimal, wheren is the num-
from one bidder can be more valuable than the same bid from  ber of bids (unless P=ZPP$andholm, 2004a
another bidder (due to bidder attributes such as historical data
on timeliness and quality), and this should be taken into ac-
count in the clearing.

Mu_ltiattribgte considerations can be integrated into combi- constraints or other side constraii8andholmet al.
natorial auctions and reverse auctions as follg@sndholm 2007
and Suri, 2001b Leta; be a vector of attributes. These can - _ ) _
be item attributes and/or bidder attributes. Some of the at- ® Combinatorial reverse auctions are not as inapprox-
tributes can be specific to one bid (sgywhile others might imable as combinatorial auctions: a boufidt In M)
not (such as quality of a certain line of products). The vec-  can be obtained in polynomial time even in the multi-
tor can include attributes revealed by the bidder as well as  unit case, wheré\/ is the largest number of units that

attributes whose values the bid taker gets from other sources 5— . . . .
There also exist auctions and reverse auctions where the multi-

such as hlstorlcal performance da'ga}bases. The bid prices Calkribute aspects cannot be handled in a preprocessor. This occurs if
be re-weighted based on the a(jd't'ona' attributes. The newe hig taker's way of evaluating attributes depends on which bids
price of any bidj is p; = f(p;,a;), wherep; is the origi-  win. In such cases, as in exchanges, the way in which the attributes
nal price of that bid. The re-weighting functighis usually  are to be taken into account can be modeled in the clearing problem
expressed by the bid taker (seller in an auction, buyer in a reitself.

e Optimal clearing in a combinatorial reverse auction and
a combinatorial exchange )¢ P-complete even if there
is only one unit of each item, free disposal, and no XOR-



any bid containgSandholnet al,, 2004. (This assumes
the canonical setting where there is free disposal, and no
XOR-constraints or other side cosntraints.)

Finding a feasible solution is trivial in combinatorial
auctions (accept no bids, or any one bid) and in com-
binatorial reverse auctions (accept all the bids; if this
does not cover the demand, then nothing will). Without
free disposal, even finding a feasible solution\is-
complete in these variants, even in the single-unit case
with no XOR-constraints or other constraif®&ndholm

et al, 2009 (this implies inapproximability to any ra-
tio bound). The same results apply to combinatorial ex-
changes (the hardness applies if the trivial “no bids ac-

straint on the number of items he wins, the auction
can be optimally cleared in polynomial time using b-
matching[Tennenholtz, 2000 If bids can be accepted
fractionally, winners can be determined in polynomial
time using linear programming even with budget con-
straints. Under XOR-constraints (or other counting con-
straints), clearing i$V'P-complete even if bids can be
accepted fractionallySandholm and Suri, 2001Lb (If
each bidder places an XOR-constraint betweeery
pair of his bids—so that at most one of his bids can
be accepted—then the problem becomes dbsign-
ment problemSandholm and Suri, 2001LbThe assign-
ment problem can be solved in polynomial tifik@ihn,

1954.)

e Even if there is just one item in the market (multi-
ple units of it), piecewise linear supply/demand curves
are V' P-complete to clear optimally (in an exchange,
auction, and reverse auction), but with linear sup-

auctions (even in the single-unit case with free dis-  Ply/demand curves, optimal clearing can be done in
posal)[Sandholmet al, 2004. In other words, com- polynomial time[Sandholm and Suri, 2001a; 2402

binatorial reverse auctions are more approximable than |n summary, there is a tradeoff between expressiveness
comblnatorlal_ auctions, but this ordering reverses whenwith its economic and usability advantages) and the com-
XOR-constraints are introduced. putational complexity of clearing the market. While many

Combinatorial exchanges inherit the inapproximability variants of the clearing problem are hard in the worst case, in
of both combinatorial auctions and combinatorial re-practice problems of real-world sizes can usually be solved.
verse auctionfSandholmet al., 2004. (This is most likely due to the co-evolution of clearing tech-

. . . nology and expressive markets.) Experiments show that com-
Cost constraints and unit constraints do not affect the,inaiq1ia) reverse auctions tend to be easier to clear optimally
complexity class of the clearing problem when bids ca

. . . "than combinatorial auctions, which in turn are easier than
be submitted on bundles: the basic case where bids ha%mbinatorial exchangdSandholnet al, 2003.

to be accepted all or nothing remainéP-complete,

and the case where bids can be accepted fractionally g Algorithms for the clearing problem

can be solved in polynomial time using linear program- . . ) . . .
ming [Sandholm and Suri, 200Lb However, XOR- While the idea of a basic canonical combinatorial auction is

constraints and other counting constraints make evefvo decades old, combinatorial auctions have traditionally

the fractional case\ P-complete[Sandholm and Suri not been used. The main reason is that the clearing problem
2001H. There exist severe side constraints that restricts tough. In the last few years, hardware and especially clear-
the search space enough so that even the case where blf€ algorithms, have reached a level of scalability that enables

have to be accepted all or nothing is optimally clearablecOmbinatorial auctions of real-world sizes to be cleared opti-
in polynomial ime[Sandholm and Suri, 2001Lb mally. As a consequence, humerous combinatorial auctions

. . . . have emerged in industry.
If bids can be accepted fractionally, a combinatorial €x- e rest of this section focuses solely on clearing algo-
change (and auction and reverse auction) can be optj;

; X hms that find an optimal solution. Optimal clearing is im-
mally cleared by accepting a very small number of bids,,tant pecause real money is at stake, because approximate
fractionally: m + 1 if the objective is to maximize sur-

; I TS L Les clearing yields solutions extremely far from optimal (at least
plus, andm + 2 if the objective is to maximize lia- i, the worst case), because a large change in the winners can
uidity [Kothari et al, 2003. Herem is the number of 400 even if the solution changes slightly from optimum, and
distinguishabletemsin the market. This clearing can pecayse suboptimal clearing ruins the incentive properties of
be found using linear programming. However, if XOR- o market (as will be discussed in the next subsection).
constraints are allowed, finding the surplus-maximizing

learing iSA'P | in the fractional The first-generation special-purpose clearing algorithms
clearing is/ N .>-complete even In the fractional case, ¢, the canonical combinatorial auction used a search tree

even i1_‘ ther_e is just one item in the market with multi- \, oo branching was on items (Figure 1 Idf§andholm,

ple units of it[Kothariet al, 2003. 2002a; 2000b; Fujishimat al, 1999. The newer, and sig-

In an auction where bids can be submitted on indi-nificantly faster, clearing algorithms use a search tree where
vidual items only (not on bundles), winner determina- branching is on bids instead (Figure 1 rigi§andholm and
tion is trivial: simply accept the highest bid on each Suri, 2003; Sandholret al, 2001. It has the advantage that
item. Under budget constraints, optimal winner de-there is more flexibility in variable ordering: at each branch
termination becomed/P-complete. Curiously, if in- point, commitment occurs on only one bid rather than on
stead of a budget constraint each bidder submits a corall of the bids that include a specific item. Another ben-

cepted” solution is excluded).

XOR-constraints do not change the approximability
of canonical combinatorial auctiofiSandholmet al,

2004. However, XOR-constraints make finding a fea-
sible solution A’ P-complete in combinatorial reverse



efit is that, unlike the branch-on-items tree, the branch-ontend to be very easy compared to totally random distribu-
bids tree easily supports all of the market designs for expredions [Sandholmet al,, 2001. Similarly, real clearing prob-
sive competition discussed abd@andholm and Suri, 2003; lems are often easier than totally random ones. Our fielded
Sandholnet al, 2003. algorithms systematically solve real reverse auctions with up
to tens of thousands of items, hundreds of thousands of bids,
and hundreds of thousands of side constraints to optimum.

Bidsin thisexample (only items of each bid are shown; pricesare not shown):
{12, {23} {3}, {13}

3.6 Incentives to bid truthfully: The
Branch-on-items formulation Branch-on-bids for mulation Vickrey-Clarke-Groves (VCG) mechanism

Dummy bids {1}, (2 {id egwne One concern is that bidders may bid insincerely. For example,
in an auction where each winning bidder is charged the sum
of the prices of his winning bids, the bidders are motivated to
bid less than their true valuations of the items.
This issue can be overcome under the traditional assump-
tion that each biddei has aquasilinear utility function:
u; (S, pi) = v;(S) — p;, whereS is the bundle that bidder
wins, andp; is the price that he has to pay. It turns out that un-
der this assumption, a fully expressive bidding language com-
bined with an optimal clearing algorithm is sufficid®and-
holm, 2002b; 2000band necessafNisan and Ronen, 2000
for being able to design auction mechanisms that yield a so-
cial welfare maximizing allocation and where every bidder’s
dominant strategy is to bid truthfulfyWith such technology,
Figure 1:Branching on items vs. branching on bids. bidding truthfully can be made a dominant strategy by using
theVickrey-Clarke-Groves (VCG) mechanifviickrey, 1961;
Interestingly, although the problem.Aé P-complete, both  Clarke, 1971; Groves, 19¥.3This means that each bidder is
the branch-on-items trdSandholm, 2003aand the branch- motivated to bid truthfully regardless of how others bid—thus
on-bids tree[Sandholm and Suri, 200&re of polynomial rendering speculation about others fufile.
size in the number of bids even in the worst case (and expo- The VCG mechanism can be applied to markets with ex-
nential in the number of items). This is desirable because thpressive bidding as follows. The optimal clearing outcome is
auctioneer usually controls the number of items for sale, bufirst computed as usual. The amount that an agent needs to
not the number of bids that happen to be submitted. pay is the sum of the others’ winning bids had the agent not
The techniques that make the branch-on-bids search faptrticipated, minus the sum of the others’ winning bids in the
in practice include bid ordering heuristics that dynamicallyactual optimal outcome. So, the clearing problem has to be
choose the next bid to branch on, techniques for dynamsolved once overall, and once per winning agent without any
ically choosing the bid ordering heuristic itself based onof that agent’s bids or side constraifits.
context, upper bounding based on a linear programming re-
laxation of the remaining subproblem (and intelligent ad-4  preference elicitation in multiagent systems

dition of cutting planes that reduce the size of the linear o ) )
programming polytope, but do not cut out the optimal in-Most, but not all, game-theoretic interaction mechanisms are

teger solution), lower bounding based on rounding techSO calleddirect-revelation mechanismhere each partici-

niques, decomposition of the problem when the bid grapypa}nt reyeals al] of his privape informatiom.(, bundle valu-
(Figure 1 right) splits into independent components, techations in combinatorial auctions) completely up front. There

niques. for enhan_cir]g upper and lower bounding based_on in- SUnder extremely strong assumptions about the bidders’ util-
formation from sibling components, and methods for iden-ity functions, truth-dominance can be accomplished with approxi-
tifying and solving potential polynomially-solvable special mate clearing (see.g, [Lehmanret al, 2002; Mu'alem and Nisan,
cases at each node. In the interest of flow, | will not go fur-2003), but because the clearing problem is inapproximable, the al-
ther into those techniques here. Many of them are describddcation is extremely far from optimal in the worst case.
in detail in specialized papefSandholm and Suri, 2003; "The VCG mechanism has also been used in mediated plan-
Sandholmret al, 2001). ning among software agerSphrati and Rosenschein, 1991; 1993;
Suffice it to say that the CABOB algorithfSandholmet ~ Ephrati, 1994 o
ical combinatorial auction clearing problem currently, based©cts the nonnegative amounts paid by the bidders. In exchanges, an
on the widely adopted approach of evaluating clearing al__external_benefactor is usually needed. In fact, with private valuation
. . . information on both the buy side and the sell side of the market, there
gorithms on standard randomly generated benchmark distr,

. 2 I° IS no mechanism for general quasilinear utility functions—even with
butions[Sandholm, 2002a; Fujishimet al, 1999; Leyton-  j,st one unit to trade and only one buyer and one seller—that mo-

Brown et al, 2000a; Anderssoret al, 2000. Interest- tivates the parties to participate in the mechanism, yields the social
ingly, economically motivated random distributions (Specif- welfare maximizing outcome, and is budget balaniddgerson and
ically the ones from CATYLeyton-Brownet al, 2000d)  Satterthwaite, 1993

item 1




are fundamental results that show that, in the absence of comaiways holds in practice. It gives structure to the elicita-
putation/communication limitations, this restriction comes attion problem because for each agent, the value of a bundle
no loss in any sensecf( the revelation principle[Mas- is no greater than the value of any superbundle of that bundle
Colell et al,, 1995). However, in practice such mechanisms (v;(S) < v;(S’) wheneverS C 5).
are problematic because the agents may need to determine
their own preferences via costly deliberatiang, comput- 1€ general case
ing [Sandholm, 1993; 1996; 2000c; Larson and Sandholmizven with free disposal, the worst-case communication com-
2001b; 2001] or information gathering, and communicat- plexity for even approximately optimally clearing the market
ing complete preferences may be undesirable from the peis exponential in the number of items, regardless of the query
spective of privacy or conserving bandwidth. types or the elicitation policyNisan and Segal, 2003 The
This issue can be addressed using a methodology where tléscussion below will focus on natural value queries: “what is
mediator incrementally elicits the agents’ private informationyour valuation of bundle?” (Other query types can increase
on an as-needed basis in a manner directed to being able tioe efficiency of elicitation[Conen and Sandholm, 2001,
determine the outcome (that would have come about had thidudson and Sandholm, 2002; Conen and Sandholm, 2002b;
agents revealed all of their private information to the medi-20024.%) It turns out that in practice elicitation is very
ator) [Conen and Sandholm, 20011t turns out that often promising: only a vanishing fraction of all the queries are
the outcome can be determined while eliciting only a smallasked before the elicitor can clear the auction provably opti-
portion of the agents’ private information. A key insight is mally [Hudson and Sandholm, 2002The preference elici-
that in multiagent systems, what information is needed frontation methodology is also very promising in combinatorial
a party depends on what information the other parties haveeverse auctionfHudson and Sandholm, 2043and combi-
revealed. This is a central motivation for interleaved prefer-natorial exchangelSmithet al, 2003.
ence elicitation from multiple agents. The approach offers One may also ask whether there existsnaversal revela-
the advantages of incremental problem solving (as in peettion reducerfor combinatorial auctions, that is, a general elic-
to-peer negotiation) while reaping the benefits of mediatedtor algorithm that saves some elicitation (finishes finding an
clearing discussed earlier. The rest of this section studies thigptimal outcome and proving its optimality without asking alll
approach as applied to combinatorial markets and voting. value queries) on all instances where some instance-specifc
o ) ] elicitor saves some elicitation (that is, where the shortest cer-
4.1 Preference elicitation in combinatorial tificate for verifying that a proposed outcome is optimal is
auctions shorter than the number of agents times the number of bun-

Preference elicitation is crucial in combinatorial markets bedles). It turns out that a deterministic universal revelation
cause each agent has an exponential number of bundié&ducer cannot exist, but randomized ones are easy to con-
to evaluate (and again, each such evaluation problem catiruct{Hudson and Sandholm, 20d3b

be hard[Sandholm, 1993; Sandholm and Lesser, 1995b;

. ) Restricted preferences for which the worst-case number
Sandholm, 2000c; Larson and Sandholm, 2001b; 2)01c of queries is polynomial in items

Each agent would like to focus on a small number of bun- : .
dles in order to minimize evaluation effort, communication, FOr restricted classes of functions, the worst-case number
f value queries needed is polynomial in the number of items

and loss of privacy. On the other hand, the social welfare’" | ) 3
P 4 %}elng sold. Many of these classes are rich enough to exhibit

among the agents, the seller’s revenue, and the agent’s utili . T . .
will usually suffer if the agent's evaluation of a bundle that oth complementarity and substutitability. This subsection

he would win is not communicated to the auctioneer. In aVill present classes like that., which are also arguably natural
usual combinatorial auction it is difficult for the agent to de- Or capturing valuation functions.
cide which bundles to bid on because others’ bids determine First, consideread-once formulasA read-once formula
what bundles the agent would be competitive on. is a function that can bg represented as a tree, where _the
To address this problem, we developed a methodolog ems.for sale in thg auction are at.the Ieayes, together with
where arelicitor software, residing at the auctioneer, incre- the bidder's valuations for the individual items. The for-
mentally builds a model of the agents’ valuation functionsmula’s output value is obtained by feeding in a bundle
v; [Conen and Sandholm, 2001 The elicitor queries the ©f items to the leaves and reading the valuatipft) from
agents about;, and fully assimilates the answers into its the root. A leaf sends the item’s valuation up the tree if
model. The next query to be asked is always chosen basdhe item is included inS, otherwise t.he leaf sends 0. Dif-
on the answers so far. The elicitor in a sense opens up tHg"eNt types of gates can be used in the nodes of the tree.
clearing algorithm and elicits the inputs needed for determin®r SUM node sums the values of its inputs;MéAX node
ing the optimal outcome (allocation of items to agents). The@kes the maximum value of its inputs; &L node sums
agents are never asked for information that the elicitor caffS inputsunlessone of the inputs is zero, in which case

already infer from the answers, or that is known to be im- %Ascending combinatorial auctions.§, [Bikhchandaniet al,

pertinent for determining the optimal allocation. The elicitor 5541."parkes and Ungar, 2000; Wurman and Wellman, Bag
terminates the process when it has found a provably optimale yiewed as a special case of the preference elicitation framework
allocation. . ) ) ] ] where the queries are of the form: “Given these prices on items

The rest of this section will focus on combinatorial auc- (and possibly also on bundles), which bundle would you prefer the
tions under the usual free disposal assumption, which almostost?”.



the output is 0. For example, a legal function on 3 inputsquiring a specific set of tools (the variables in the term) and
might beALL(2z,, MAX(10z9, 42:3)), which gives value 12 each having its own value (the coefficient on that term). For
to the bundl€{1,2}, 6 to bundle{1,3}, and 0 to bundig2,3}.  example, the tools may be medical patents, and producing
Read-once formulas of this type allow for many natural pref-each medicine requires a specific set of patents. The value of
erences. For example, suppose items are flights and hotalset of items to the agent is the sum of the values of the tasks
rooms in different locationse(g, inputz; ; o represents the that the agent can accomplish with those items. It turns out
ith flight to locationj, andz; ; ; represents théh hotel room  that any toolbox DNF valuation function; can be elicited

in location j) and we want to take just one trip. Then for in a polynomial number of value queri¢Zinkevich et al,,

each locatiory we could comput\LL(MAX{v; j oz; jo0}i,  200d.

MAZX{w; ;12; 1}i), and then at the root of the tree we would ] S

take aMAX over the different destinations. More general The power of interleaved preference elicitation from

gates are also possible. LetAX,, output the sum of thé ~ Multiple parties

highest inputs, andTLEAST}, output the sum of its inputs The above two example classes of valuation functions can be
if there are at leagt positive inputs, and 0 otherwise. Finally, elicited efficiently even if there is only one party whose pref-
let GENERAL, ; be a parameterized gate capable of repreerences are to be elicited. So, the efficiency does not derive
senting all the above types of gates. For instance, imagine th&om the fact that information from other agents restricts the
on a vacation to the Bahamas, Alice wanted entertainment. imount of information needed. The next class, on the other
she got to go out on at least three nights, then the trip woulthand, derives its ease of elicitation from this phenomenon.

be worthwhile. Otherwise, she would rather stay home. Each Consider a combinatorial auction with two buyers that have
night, she takes the maximum valued entertainment optiortheir valuation functions in the form of the XOR bidding lan-
Then there is aldTLEAST3 node combining all of the dif- guage discussed earlier, where each bidder can submit bids
ferent nights. In a different situation, imagine that Joe wants @n bundles, and all of the bidder’s bids are mutually exclu-
more relaxing vacation in Hawaii, where he does not want tasive. It turns out that if no bid includes more thag, m

go out more than three nights. In this casdlaX3 gate will  items (wherem is the number of items in the auction), then
be useful. For each night, he chooses the best possible entefie provably optimal allocation of items to the bidders can
tainment given to him. Then, he takes the best three nights dfe determined in a worst-case polynomial number of value
entertainment. Finally, imagine that Maggie wants a moderqueried Blum et al., 2003.

ater active vacation, and is interested in going to Paris for a |nteresting|y, there are classeswpffunctions where learn-
week, and wants at least three but no more than four nights gg the functions requires an exponential number of value
entertainment. Then @ENERAL;3 4 gate will describe her  queries, while the provably optimal allocation can be con-
preferences. It turns out that if the user’s valuation functionstructed in a polynomial number of value querf&um et

v; can be expressed as a read-once formula with these gatgs, 2004. For other classes of, being able to elicit enough
(even if the user is not aware of that), thencan be elicited  to find the provably optimal allocation in a polynomial num-
with a number of value queries that is polynomial in the num-per of value queries implies that the functions themselves
ber of items in the auction even in the worst cE&ekevichet  can be learned in a polynomial number of value queries. So,
al., 2003.%° Furthermore, if a bidder's valuation functioen  sometimes there is an exponential benefit to interleaving the
is close to some read-once function with the gates discusseflieries made to the different parties, while at other times the
above, then a close model of can be constructed with a penefit between that and eliciting each agent’s preferences

polynomial number of value queries. separately is polynomially bounded.
Second, consider the class of preferences that can be ex- o
pressed as monotone polynomials. For examplér) = Incentives to answer truthfully: Ex post equilibriumin an

az1Ty + brorsry + crszy. This class is calledoolbox DNF  incremental push-pull multiagent elicitation mechanism

because it captures settings where each agent has a set of tabkstivating the bidders to answer queries truthfully is another

to accomplish (one per term in the polynomial), each task rekey issue, and is exacerbated by the fact that the elicitor’s
queries leak information to the bidder about the answers that

19An analogous issue arises with shopping agents. Consider tHgther bidders have given. Recently, a methodology was pro-
following scenario. Alice goes to her software agent and asks iP0sed by which elicitors can be made incentive compatible
to help her purchase a vacation. In order to act on her behalf, th# the sense that every bidder (with a quasilinear utility func-
agent first needs to find out Alice’s preferences (how much is a trigion) answering the queries truthfully is a&x post equilib-
to Hawaii worth compared to a trip to the Bahamas, does it subfium [Conen and Sandholm, 2001This means that bidding
stantially increase the value to her if she can get some entertainmefuthfully is each bidder’s best strategy (for any prior proba-
booked in advance(c). Then, after scouring the Internet, the agent pjjity distribution that he may hold about the other bidders)
needs to solve the computational problem of deciding on the be?iven that the other bidders bid truthfully. In other words,

r

vacation package—the one that maximizes Alice’s valuation minu o . : .
the cost of the trip. In this scenario, there is no auctioneer. Rather.UtthI bidding strategies form a (Bayesian) Nash equilib

the elicitor is the buyer’s helper. Again, the amount of querying canr'um even in hlnd_S|ght. (This dc_JeS not mean that bidding
be prohibitively large when the buyer has general (monotone) preftruthfully is a dominant strategy; if some of ﬂje other agents
erences, but with these types of read-once preferences, Alice’s valtid insincerely and conditional on the elicitor's query stream
uation function can be determined in a polynomial number of valudo them, one may do better by bidding insincerely. In sum-
queries. mary, implementation iex postequilibrium is stronger than



implementation in (Bayesian) Nash equilibrium, but weakerelicited if the voter is queried at all) this can be avoided by
than implementation in dominant strategies.) making sure that the voter does not know how many voters
The methodology is the following. The mechanism ishave been queried before him. fine elicitation(where a
structured so that if all the bidders answer truthfully, the finalvoter is asked pairwise preferences one pair of candidates at
allocation and payments follow the VCG mechanism. Thea time) this can be avoided by making sure that the voter does
amount a bidder has to pay is the sum of the others’ renot know what/how many queries have been made to others,
vealed valuations for the bundles they get had the bidder nand by making sure that the@der in which queries are made
been given any of the items, minus the sum of the othersto this voter is fixed up front rather than dependent on others’
revealed valuations for the bundles they get in the actual opanswers.
timal allocation. The elicitor can determine these payments
by a_ski_n_g enough queries to be able to d_etermine the V\_/elfars Hard valuation problems
maximizing allocation overall, antly asking extra queries
to determine the welfare maximizing allocation for the auc-As discussed in the previous section, preference elicitation
tions where each agent is ignored in turfihe extra queries can significantly reduce the agents’ effort of evaluating bun-
needed to determine the VCG payments are a negligible fraglles in combinatorial auctions. However, it cannot eliminate
tion of the queries needed to determine the optimal allocatiotthe need to evaluate at least some bundles to some extent. In
in practice[Hudson and Sandholm, 20d3and in some elic- this section | present a deeper look into an agent’s evaluation
itation policies that information comes purely as a side effecproblem with an explicit model of computation, and illustrate
with no extra queries at a[lConen and Sandholm, 2002b; new strategic issues that stem from it.
20023. In many markets, even computing one’s valuation for a sin-
Truthful answering is aex postequilibrium even in elici-  gle bundle (or individual item) is complex. For example when
tation mechanisms where the bidders are allowed to pass dndding for trucking lanesif., tasks), this involves solving
some queries (as long as they answer enough queries to d&vo A P-complete local planning problems: the vehicle rout-
termine the optimal allocation and the VCG payments) and tang problem with the new lanes of the bundle and the problem
answer queries that were never ask@dnen and Sandholm, without them[Sandholm, 1998 The difference in the costs
2001]. This yields a pull-push mechanism where the elici-of those two local plans is the cost (valuation) of taking on
tor guides the preference revelation, but each bidder can aldbe new lanes.
proactively reveal values on bundles on which it thinks it is However, in practice bidders (humans or their software

competitive. agents) have limited computation and time, so they cannot
S ) exactly evaluate all, or even any, bundles—at least not with-
4.2 Preference elicitation in voting out cost!

Multiagent preference elicitation can also improve the effi- This leads to interesting incentive issues. For example,
ciency of running electionkConitzer and Sandholm, 2002d even in an auction where one object is being sold, should a
To determine the optimal outcome for a given voting proto-bidder evaluate the object if there is a cost to doing so? Ac-
col, itis generally not necessary to elicit complete preferencesording to traditional auction theory, truthful bidding is the
from all voters, and some voters’ preferences may not needominant strategy in the celebrated Vickrey auction where the
to be elicited at all. Selective preference elicitation increasesbject is given to the highest bidder at the price of the second-
privacy, and reduces the cost of voting (traveling to the vothighest bid Vickrey, 1961 (this is the VCG mechanism, dis-
ing site, spending timestc). Again, what, if any, information cussed earlier, applied to single-object auctions). However, it
should be elicited from an agent depends on what other agenritérns out that the Vickrey auction loses its dominant-strategy
have revealed about their preferences so far. property if the bidder has the option to evaluate the object or
However, it turns out that effective vote elicitation gives not[Sandholm, 200dc Whether or not the bidder should pay
rise to challengingcomputationalproblems. In the Sin- the evaluation cost depends on the other bidders’ valuations.
gle Transferable Vote protocol (defined later), even knowing The issues run even deeper. If a bidder has the opportunity
when enough has been elicited to determine the provably optio approximate its valuation to different degrees, how much
mal outcome i\ P-complete, while this is easy for all other computing time should the bidder spend on refining its val-
common voting protocols (defined later). Even for these prouation? If there are multiple items for sale, how much com-
tocols, determining whose votes to elicitASP-complete, puting time should the bidder allocate on different bundles?
even with perfect suspicions about how the agents will voteA bidder may even allocate some computing time to evaluate
(The exception is the plurality protocol—the most commonother bidders’ valuationge(g, how much it would cost for a
voting protocol. There, everyone votes for one candidate andompeting trucking company to take on a given set of lanes)
the candidate with the largest number of votes wins. In thaso as to be able to bid more strategically; | call thistegic
protocol, effective elicitation is easy.) If the elicitor's sus- computing
picions are imperfect, then effective elicitation can even be To answer these questions, we developed a deliberation
PSPAC E-hard. control method called gerformance profile tredor pro-
Elicitation can also introduce additional opportunities for jecting how an anytime algorithm (a blackbox from the per-
strategic manipulation by the voters because the elicitor'spective of the deliberation controller) will change the valu-
queries leak information among the voters. clwarse elic-  ation if additional computing is allocated toward refining (or
itation (where each voter’s entire ranking of candidates isimproving) it[Larson and Sandholm, 2001c; 2001b; 2001a;



2004. Unlike earlier deliberation control methods for any- 6  Using computational complexity as a

time algorithms, the performance profile tree is a fully nor-  harrier to strategic manipulation

mative model of bounded rationality: it takes into account all . ) . o .

the information that an agent can use to make its deliberatioftS the discussion of valuation computation in the previous
control decisions. (This is necessary in the game-theoretigeCtion shows, agents’ computational limitations can have ad-
context; otherwise a self-interested agent could take into ac/erse effects on the incentive properties of interaction mech-
count some information that the model does not.) Specifidnisms. This section demonstrates that the reverse can also
cally, the projection of the anytime algorithm's performancebe made to be true: one can use the fact that agents are com-
is conditioned on th@ath of the run on the current problem Putationally limited to achieve things that are not achievable

instance, as well as static instance features. via any mechanism among perfectly rational agents. In par-
ticular, | illustrate in a voting context that computational in-

Using this deliberation control method, the auction can bearactability can be used as a barrier to undesirable strategic
modeled as a game, where computing actions are part of thgshavior, thus circumventing a seminal economic impossibil-
game. At every point, each agent can decide on which burity result.
dle to allocate its next step of computing as a function of the One key problem voting mechanisms are confronted with
agent’s computing results so far (and in open-cry auction foris that of manipulationby the voters. An agent is said to
mat also the others’ bids observed so far). At every pointmanipulate (vote strategically) when it does not rank the al-
the agent can also decide to submit bids. One can then solyernatives according to its true preferences, but rather so as to
this model for the (Bayesian) Nash equilibrium, where eachmake the eventual outcome most favorable to itself. For ex-
agent’s (deliberation and bidding) strategy is a best-responsgmple, if an agent prefers Nader to Gore to Bush, but knows
to the others’ strategies. | call thigaliberation equilibrium  that Nader has too few other supporters to win, while Gore
Table 1 shows in which settings strategic computing can angind Bush are close to each other, the agent would be better
cannot occur in equilibrium. First, this depends on the auctiomff by declaring Gore as its top candidate. Manipulation is an
mechanisnt! Interestingly, this also depends on whether theundesirable phenomenon because collective choice schemes
agent has limited computing (such as a free desktop computeie tailored to aggregate preferences in a socially desirable
on which it can run until the auction's deadlifiéarson and  way, and if the agents reveal their preferences insincerely, a
Sandholm, 2001]bor costly computing (such as being able socially undesirable candidate may be chosen.
to buy any amount of supercomputing time where each cycle The issue of strategic voting has been studied extensively.
comes at a cosf).arson and Sandholm, 2001¢ A seminal negative result, th&ibbard-Satterthwaite theo-

rem, states that if there are three or more candidates, then in
any nondictatorial voting scheme, there are candidate rank-

_ _ Strategic computing? ings of the other voters, and preferences of the agent un-
o < Spgg;‘f':g;’; by clc;lrerl)tL?t?ng co?\?psfllgi/ng der which the agent is better off voting strategically than
rational agents? sincerely[Gibbard, 1973; Satterthwaite, 1975(A voting
Single item | First price yes yes ves scheme is called dictatorial if one of the voters dictates the
Dutch yes yes yes outcome no matter how the others vote). So, a reasonable
\E/Ir;?('r'jy‘ A A= z: general nonmanipulable voting protocol does not exist! One
[Multiple fiems | Firstprice | VoS e [ ves ] approach around this impossibility is to construct desirable

IS \ no [ ves | yes | general nondictatorial voting protocols (under which manip-
] ] ] ulations exist by the impossibility theorem), but under which
Table 1:Does strategic computing occur? The most interestfinding a beneficial manipulation is prohibitively hard com-
ing results are in bold. As a benchmark from classical auctionpytationally.
theory, the table also shows whether or not perfectly rational |y order to discuss specific hardness results, | first review
agents, that can determine their valuations instantly withouthe most common protocols. In each protocol, each voter ex-
cost, would benefit from considering each others’ valuationsyresses his preferences as a linear order over candidates. The
when deciding how to bid. protocol then takes those expressions and imposes one of the
candidates as the chosen outcome. In the protocols that are
based on scores, the candidate with the highest score wins. In
each of the listed protocols (even the ones that have multiple
rounds), the voters submit their preferences up front. That is,
the voters are not allowed to change their preference revela-
"The Vickrey and VCG mechanisms were discussed earliertions during the execution of the protocol.
The first-price auctions are sealed-bid auctions where the winning o scoring protocols Let&@ = (ay, ..., a.) be a vector of

bidders pay their winning bid prices. The Dutch auction is a :
descending-price auction where the first bidder gets the object at the integers such thai; > as... > a.. For each voter,

current price. The English auction is an open-cry ascending auction ~ @ candidate receives; points if it is ranked first by

where the highest bidder wins and pays the price of his bid. the voter,a, if it is ranked seconeetc. The scoress
2In these settings one can also determine how much such self-  Of a candidate is the total number of points the candi-
ish computing hurts social welfare in the worst deliberation equilib- date receives. ThBorda protocol is the scoring proto-

rium [Larson and Sandholm, 20P3 colwithd@ = (¢ — 1,¢ — 2,...,0). Theplurality pro-



tocol (aka. majority rule) is the scoring protocol with that before the original protocol is executed, one pairwise

a = (1,0,...,0). Thevetoprotocol is the scoring pro-
tocol witha = (1,1,...,1,0).

maximin(aka.Simpsol For any two distinct candidates
1 andj, let N (i, j) be the number of voters who prefer
to 7. Themaximin scoref i is s(i) = min;»; N(, j).

Copeland For any two distinct candidateésand j, let
C(i,j) = +11if N(i,5) > N(j,1?) (in this case we say
thati beats; in their pairwise election)(C'(é,j) = 0

if N(i,j) = N(j,i) andC(i,j) = —1if N(i,j) <
N(j,4). The Copeland scoref candidatei is s(i) =
252 O, ).

single transferable votéSTV). The protocol proceeds
through a series of — 1 rounds. At each round, the
candidate with the lowest plurality scoriee(, the least
number of voters ranking it first among the remaining
candidates) is eliminated. The winner is the last remain
ing candidate.

plurality with run-off. In this protocol, a first round elim-
inates all candidates except the two with the highest plu
rality scores. Then votes are transferred to these (as i
theSTVprotocol). After that, a second round determines
the winner among these two.

elimination round is executed among the candidates, and
only the winning candidates survive to the original proto-
col (so, about half of the candidates are eliminated in the
preround). This makes the protocoléP-hard, # P-hard,

or PSPAC E-hard to manipulate constructively, depending
on whether the schedule of the preround is determined be-
fore the votes are collected, after the votes are collected, or
the scheduling and the vote collecting are carefully inter-
leaved, respectivelyConitzer and Sandholm, 2003eWe
proved general sufficient conditions on voting protocols for
this tweak to introduce the hardness, and showed that the
plurality, Borda, maximin, and STV protocols satisfy those
conditions. So, these commonly used voting protocols can
be made hard to manipulate by simply using one elimination
round.

6.2 Complexity of manipulation when the number

of candidates is constant

All of the hardness results discussed above rely on both the
number of voters and the number of candidates growing. The
Humber of candidates can be large in some domains, for ex-
ample when voting over task or resource allocations, but in
many elections—such as presidential elections—the number
of candidates is small. If the number of candidates is a con-

cup(sequential binary comparisons). The cup is definedstant, both constructive and destructive manipulation are in

by a balanced binary trég with one leaf per candidate, P, regardless of the number of votdi@onitzer and Sand-
and an assignment of candidates to leaves (each leaf geislm, 2002f. This holds even if the voters are weighted, or
one candidate). Each non-leaf node is assigned the wirif a coalition of voters tries to manipulate, but not both. When
ner of the pairwise election of the node’s children; thea coalition of weighted voters tries to manipulate, complexity
candidate assigned to the root wins. The cup protocotan arise even for a constant number of candidates, as sum-
assumes that the assignment of candidates to leaves nsarized in Tables 2 and Conitzer and Sandholm, 2002b;

known by the voters before they vote. In trendom-
ized cupprotocol[Conitzer and Sandholm, 200Rtthe

Conitzeret al, 2003. One lesson is that randomizing over
instantiations of the mechanisms (such as schedules of a cup)

assignment of candidates to leaves is chosen uniformlgan be used to make manipulation hard.

at random after the voters have voted.

There are two natural alternative goals of manipulation. |

constructive manipulatigrthe manipulator tries to find an or-

der of candidates that he can reveal so that his favorite can

date wins. Indestructive manipulatigrthe manipulator tries

to find an order of candidates that he can reveal so that h

hated candidate does not win. These are special cases of {fendomized cup

utility-theoretic notion of improving one’s utility, so the hard-

Number of candidate§ 2 [ 3 [ 456 [ >7 |
Borda P | NP-compl. | N P-compl. [ N P-compl.
. veto P | N P-compl. | N'P-compl. | N P-compl.
[-STV P | NP-compl. | N P-compl. | N P-compl.
plurality with runoff P | NP-compl. | N'P-compl. | N P-compl.
~Copeland PP N P-compl. | N P-compl.
~maximin PP N P-compl. | N P-compl.
P | P P N P-compl.
cup P | P P P
plurality P | P P P

ness results carry over to that setting.

6.1 Complexity of manipulation when the number
of voters and the number of candidates grows

Table 2:Complexity of constructive weighted coalitional ma-
nipulation.

Unfortunately, finding a constructive manipulation igirfor

Number of candidate§ 2 | >3 |

the plurality, Borda, and maximin voting protocéBartholdi

STV N P-compl.

et al, 1989, which are commonly used. The only voting

plurality with runoff N P-compl.
?

protocol for which constructive manipulation is known to be

randomized cup

N P-hard is the STV protocdBartholdi and Orlin, 1991113

Borda

veto

However, by slightly tweaking the voting protocols that

Copeland

are easy to manipulate, they can be changed into ones th

ainaximin

are hard to manipulate. In particular, we revise them s

cup

)| 9| 9| 9| 9| 9| 9|99

| 9| 9| 9| 99|

plurality

Bt is AN P-hard also for theSecond Order Copelangroto-

col [Bartholdiet al, 1989, but the hardness is driven solely by the Table 3: Complexity of destructive weighted coalitional ma-

tie-breaking rule.

nipulation.



All of the hardness results discussed above hold even if thEven when the optimal mechanism—created automatically—
manipulators know the nonmanipulators’ votes exactly. Un-does not circumvent the impossibility, it always minimizes
der weak assumptions, if weighted coalitional manipulationthe pain entailed by impossibility. Third, it may yield better
with complete information about the others’ votes is hard inmechanisms (in terms of stronger nonmanipulability guaran-
some voting protocol, then individual and unweighted ma-tees and/or better outcomes) than the canonical mechanisms
nipulation is hard when there is uncertainty about the othershecause the mechanism capitalizes on the particulars of the
votes[Conitzer and Sandholm, 2002b setting (the probabilistic information that the mechanism de-

Computation not only serves as a means to circumventingigner has about the agents’ preferences). Given the vast
incentive problems as dicussed above, but it can also serve agount of information that parties have about each other to-
the means for designing appropriate incentives as discussély, it is astonishing that the canonical mechanisms (such as
in the next section. first-price reverse auctions), which largely ignore that infor-

mation, have prevailed thus far. | foresee an imminent revolu-
q hani desi tion, where future mechanisms will be created automatically.
7 Automated mechanism design For example, imagine a Fortune 1000 company automatically

The aggregation of conflicting preferences for choosing arpreating its procurement _mechanlsm bas_ed on its statlst|c_:al
outcome is a central problem in multiagent systems, be thEnowledge aboutits suppliers (and potentially also the public
agents humans or software. The key difficulty is that thePrices of the suppliers’ inputgtc). | call this visionauto-
agents may report their preferences insinceridy, (manip- mated mechanism desif@onitzer and Sandholm, 2002¢
ulate, as we just discussed in a voting settiniglechanism .
designis the art of designing the rules of the game so that the7'1 The computational problem
agents are motivated to report their preferences truthfully anés a first step toward fulfilling this vision, we modeled mech-
a desirable outcome is chos¥n The desirability objective ~anism design as an optimization problem, and studied its
can be, for example, social welfare, seller’s revenue, fairnes§omplexity. In the model, each agent can have any one of
or some tradeoff among these. a finite number of utility functions. An agent's utility func-
Mechanism design has traditionally been a manual ention is private information. The mechanism designer has a
deavor. The designer uses experience and intuition to hyRrior probability distribution over each agent's possible util-
pothesize that a certain rule set is desirable in some ways, angf functions. The first constraint to the problem (tineen-
then tries to prove that this is the case. Alternatively, the delive compatibility constraints that each agent has to be moti-
signer formulates the mechanism design problem mathemaYﬁ!t?d to re\(eal its utility function truthfully rc_egardless.of what
ically and characterizes desirable mechanisms analytically iHtility function the agent has. This comes in two variants. In
that framework. These approaches have yielded a small nuni€ first (calleddominant strategy implementatiprthe agent
ber of canonical mechanisms over the last 40 years, each BfiS 0 be no worse off by revealing his true utility function
which is designed for a class of settings and a specific objed_egardless of what utility functions the other agents reveal.
tive. For example, th&¥/CG and JAGVA[d’Aspremont and  In the second, the agent has to be no worse infiexpec-
Gérard-Varet, 1979; Arrow, 1979naximize social welfare tation, by revealing hI.S true utility function. (The expecta-
among the agents in the class of settings where the agerfi€n iS taken as a weighted average over the possible truth-
have quasilinear utility functions. Mechanism design re-ful utility fun_ctlon revelations of the.o.ther. agents). Thta_ sec-
search has also yielded impossibility results that state that n@nd constraint to the problem (tiperticipation constraintis
mechanism works across a class of settings (for varying defhat €ach agent has to be no worse off by participating in the
initions of “works” and varying classes). For example, theMechanism than not participating (otherwise a rational agent
Gibbard-Satterthwaite theorem discussed in the previous seould not participate). This again comes in two variants. In
tion states that for the class of general preferences, no mecH€ first, the agent has to be no worse off regardless of what
anism works in the sense that 1) the mechanism’s outcom€lility functions the other agents revegl. In the second, the
can be any one of at least three candidates, 2) the mechanig¥€nt has to be no worse aff expectation The input to the

is nondictatorial, and 3) every agent’s dominant strategy is t@Ptimization also includes the designer’s objective. The out-
reveal his preferences truthfully. put is a mapping from utility function revelations to outcomes

In sharp contrast to manual mechanism design, | envisiofor in the case of randomized mechanisms, to probability dis-

a systematic approach where the mechanism is automaticalljjoutions over outcomes). . .
created for the setting and objective at hand. This has sey- N Settings without side payments, such as voting, design-
eral advantages. First, it can be used even in settings that digd @n optimal €., expected social welfare maximizing) de-

not satisfy the assumptions of the classical mechanisms. Sefgministic mechanism i8/P-complete] Conitzer and Sand-
ond, it may allow one to circumvent the impossibility results: holm, 2002¢.'° If side payments are allowed, designing a

when the mechanism is designed to the setting (instance) at 15\ote that automated mechanism design is completely different
hand, it does not matter that it would not work on prefer-from so calledalgorithmic mechanism desigiNisan and Ronen,
ences beyond those in that settiegy, for a class of settings). 2001. In the latter, the mechanism is designed manually with the
goal thatexecutinghe mechanism is computationally tractable. On
14 central result in game theory, thevelation principleallows  the other hand, in automated mechanism design, the mechanism it-
the designer to restrict attention to such truthful mechanisms withouself is designed automatically.
loss in the objectivéMas-Colellet al, 1999. 6This actually holds fomny solution concept from noncoopera-



deterministic mechanism is easy if the designer’s objective
is social welfare, but\' P-complete more generally (for ex-
ample, if the objective is to maximize the expected revenue
collected from the bidders—as is the objective in some auc-
tions) [Conitzer and Sandholm, 200BUdnterestingly, if one
allows randomized mechanisms, the mechanism design prob-
lem becomes solvable in polynomial time using linear pro-
gramming’ In other words, the designer can tackle the com-
putational complexity, introduced by its uncertainty about the
agents, by making the agents face additional uncertainty. This
comes at no loss, and in some cases at a gain, in the mecha-
nism designer’s objective.

If the agents’ utility functions are additively decomposable
into independent issues, the input to automated mechanism
design can be represented (potentially exponentially) more
concisely. In that representation it /¢ P-complete (even
under strong restrictions) to design a mechanism that maxi-
mizes one of the following objectives: 1) expected social wel-
fare when payments are not possible, 2) a general objective
function even when payments are possible, and 3) expected
revenue collected from the agen@Gonitzer and Sandholm,
20034. Again, a randomized mechanism can be designed in
polynomial time. So, the complexity as a function of the input
length is the same in the concise representation as it is in the
flat representation. In other words, due to its potentially ex-
ponentially shorter input length, the structured representation
allows potentially exponentially faster automated mechanism
design.

7.2 Applications

In initial experiments, automated mechanism design pro-
duced the following highlightdConitzer and Sandholm,
20034:

o It reinvented the celebrated Myerson auctithyerson,
1981], which maximizes the seller’s expected revenue in
a 1-object auction.

e It created expected revenue maximizing combinatorial ®
auctions. This has been a long-standing recognized open
research problem in (manual) mechanism de$iyn
ery and Hendershott, 2000; Vohra, 200The general

VCG mechanism could be used in this setting as long
as each agent’s utility function is quasilinear. However,
in the VCG mechanism, nonnegative payments are col-
lected from the voters (intuitively, the payments are col-
lected in order to avoid the free rider problem), and those
payments have to be burned. According to a seminal
impossibility result, this problem plaguesyy mecha-
nism that applies to general quasilinear utility functions,
yields a social welfare maximizing decision, and makes
truthful reporting of utility functions a dominant strat-
egy[Green and Laffont, 1949 The automated mecha-
nism design approach allowed us to incorporate money
burning as a loss in the social welfare objective, and
maximize that revised objective. We had automated
mechanism design create an optimal mechanism for the
bridge building scenario under each variant of the incen-
tive compatibility constraint discussed above (with the
deterministic participation constraint). In neither vari-
ant was money ever burned. In the probabilistic variant,
the bridge was always built if and only if that was best
for the agents. (In the deterministic variant this was not
always the case.) For the probabilistic variant of incen-
tive compatibility, the general-purposAGVAmecha-
nism could be used to yield the social welfare maximiz-
ing choice without burning monefd’Aspremont and
Geérard-Varet, 1979; Arrow, 19T9However, a seminal
economic impossibility result shows that no mechanism
for general quasilinear utility functions yields the social
welfare maximizing choice, maintains budget balance,
and satisfies the participation constraint (even the prob-
abilistic variant)[Myerson and Satterthwaite, 1982\s

the experiment above showed, automated mechanism
design can circumvent this impossibility. It constructed
a mechanism that satisfies all these desiderata, and actu-
ally the deterministic(i.e., stronger) variant of the par-
ticipation constraint.

It created optimal mechanisms for public goods prob-
lems with multiple goods. This is the public goods ana-
log of combinatorial auctions.

form for such an auction is still unknown, but automated8 ~ Safe exchange mechanism design

mechanism design created prior-specific optimal mech
nisms. (In the manual mechanism design literature, eve
the problem with only two objects for sale is open; only
a case with very special form of complementarity and no
substitutability has been solvéArmstrong, 2000)

a}g/lechanism design is not only needed for deciding on an out-
come among agents. Itis also key &xecutinghe outcome.

For example, if the outcome is a joint plan, how should it be

executed so that no agent is motivated to deviate along the
way [Braynov, 1994; Braynov and Sandholm, 1¥®%rom

e It created optimal mechanisms for divorce settlementsihe perspective of markets, an important type of joint plan
both with a benevolent arbitrator that tries to maximizejs the p|an for exchanging items and payments between par-
the sum of the divorcees’ utilities (with and without side ties. Nondelivery is a major problem in exchanges, especially
payments), and an arbitrator that tries to maximize revin electronic commerce: the supplier might not deliver the

enues collected from the divorcees.

goods or the demander might not pay. A recent study shows

e It created optimal mechanisms for a public good prob-that 6% of consumers with on-line shopping experience re-
lem (deciding whether or not to build a bridge). The ported products or services that were paid for, but never re-

tive game theoryConitzer and Sandholm, 2002aot just the ones
discussed through the constraints above. All of the hardness resul§
discussed in this section hold even with just 2 agents.

ceived[National Consumers League, 1999

.1 Deal chunking

This holds for any mechanism design objective that is linear inln some settings, mechanism design can be used to enable

the outcome probabilities.

safe exchanges without legal enforcement or escrow compa-



nies. One such approach is our methodology where the exrovides a basis for engineering the incentives into the inter-
change is split into chunks which the agents deliver in alternaaction mechanism so that a desirable outcome is chosen even
tion [Sandholm, 1996; 19978 The mechanism is practical though every agent acts based on self-interest. However, a
when such splitting incurs little cost, as is the case with digitahost of computer science issues not traditionally addressed
goods, computation time, many web services, and many inin game theory have to be addressed in order to make mech-
vestment instruments, for instanceExchangeHousea safe  anisms work in the real world. Those computing, commu-
exchange planner prototype, automatically determines a safécation, and privacy issues are deeply intertwined with the
exchange plan for the exchange setting at hand such that nedeonomic incentive issues, as this writeup has illustrated.
ther party has incentive to vanish before completing the ex- Here, | would like to draw some high-level conclusions
change[Sandholm and Ferrandon, 2Q0@nly some ways from the results presented above. Peer-to-peer negotiation
of splitting the exchange into chunks and some sequences gfiffers from negotiation process uncertainties that can be
delivering the chunks are safe in this sefSandholm, 1996;  eliminated by using a mediator, such as an auction server, that
Sandholm and Lesser, 1995&he planner’s algorithms for collects the agents’ private information and runs a clearing
chunking and chunk sequencing provably find a safe exalgorithm on that data to determine the outcdth@omain
change plan if one exists, and determine the shortest safghcertainty remains even in this approach, saled com-
plan. The algorithms, as well as the amount of input that isnitment contractsan be used to mitigate it to the economic
solicited from the users, vary based on whether the exchangasknefit of all contract partie¥. Expressive competitiois a
items and units of each item are dependent or independent iew form of interaction that empowers market participants

terms of their value to the exchange parties. with potent expressiveness akin to human-to-human negotia-
tion (this has economic advantages and makes bidding easier)
8.2 A general model for safe exchange while at the same time harnessing the forces of competition,

In order to more broadly study the possibilities of usingthe global scale of the Internet, and the accuracy of market
mechanism design to enable safe exchange, we developetkaring with all relevant information in hand. The mediated
a unified model of exchange mechanisf@ndholm and approach with optimal clearing is feasible at a grand scale
Wang, 2002. A key idea behind the model is that at any point even with expressive competition, despite the fact that most
of the exchange, each agent has a (potentially empty) set eriants of the clearing problem are hard and inapproximable
items that he possesses, and a (potentially engiiygation  in the worst case. The economic and computational efficien-
setthat includes the items that he can reallocate—except naties that mediated expressive competition offers suggest that
to himself—or destroy. The two sets need not be the samén the future, marketplaces will merge into larger ones. To a
An item can simultaneously be in one agent's possession sekrtain extent this trend is already underway. For example,
and in another agent's allocation set. Other aspects of thia the last couple of years large corporations have undergone
model include transfer costs and defection costs (how much massive transition from plant-based procurement to global
of a reputation loss or risk would an agent face if he defaultegorocurement.

before completing the exchange). _ The mediated approach can be made to require dramati-
The model captures the disparate earlier safe exchang@ly less information from the agents—especially in combi-
approaches such as cryptographic coin rippligkobsson, natorial markets—by using selective incremental multiagent
1994, digital signatures, and our game-theoretic ChU”"_‘”Qﬁreference elicitation. This decreases the agents’ valuation
mechanism discussed above. It also allows one to creativelyetermination costs (and other preference determination ef-
and systematically think about, and analyze, novel exchangrts) and communication costs. It also enhances privacy. It
mechanisms. For example, aaputation lockingnechanism  can be made into an incentive-compatible push-pull mecha-
stemmed from this model. It works as follows: 1) agent A al-nism where the information revelation is guided by both the
lows agent B to encrypt A's reputation in the public databaseslicitor (auctioneer) and each agent. This makes sense be-
(e.0, eBay), 2) agent B delivers to A, 3) agent A delivers to
5’1’. and 4% B 'decr)g)ts As tretputa_ttlon bgck into Ft)la'PFteXt' tlhn '“The clearing algorithm—usually a specialized tree search—can
. '.‘Q’ mec anls_m, S reputa !on IS ,use as _a viriual irem aFun on multiple machines. This is usually the case in large-scale
is is temporarily transferred into B's allocation set. If A does gppiications, but the machines are usually co-located rather than at
not deliver, B does not give back the reputation. each agent's location. Also, there is no notion of one machine repre-
Being an overarching framework, the model also allowssenting one agent. So, the distribution that is motivated by compu-
one to study what is inherently possible and impossible irtational efficiency does not correspond to the distribution of agents
safe exchange (with and without a trusted third party, andthatis, the distribution of self-interest and private information).

with an offline third party that only gets involved if the ex- 2L eveled commitment can also mitigate the negotiation process
change fails). uncertainty that arises if an agent participates in negotiations medi-
ated by different mediators, and the negotiations’ outcomes are not

. . independent from the perspective of the agent's valuation. In that

9 Conclusions and perspectlve sense, leveled commitment can serve as part of the “glue” needed

Collective choice settings are ubiquitous and importantpetween marketplaces. Furthermore, leveled commitment can be

whether the agents are humans or software. Game theokped to mitigate the uncertainty that arises if one mediator runs mul-
- tiple clearings over time, for example at fixed intervals or every

18Similar protocols have recently been studied by otherstime a new bid arrives. (For online algorithms for market clearing,
e.g, [Matsubara and Yokoo, 2000 see[Blum et al,, 2004.)



cause each agent has private information that suggests whagents would behave in a given mechanism. This allows
should be revealed by the agent, and the auctioneer accruese to evaluate mechanisms for computationally constrained
information about the other agents that affects what informaagents, and hopefully paves the way to designing such mech-
tion from the agent is pertinent. anisms. Not only auction and voting mechanisms, but also
A deeper look into an agent’s evaluation problem showsnultiagent preference elicitation mechanisms should be de-
that valuation determination costs ruin the incentives of classigned with this methodology. This methodology could also
sical auction mechanisms, and give rise to a new phenomendre used to design mechanisms that are computationally hard
| call strategic computingusing one’s limited computing to to manipulate, where hardness is measured not in terms of
approximate others’ preferences at the cost of approximatingorst-case complexity, butinformed by game-theoretic delib-
one’s own. Whether strategic computing occurs depends oeration control. (Other approaches to improving upon worst-
the auction mechanism and the type of computational conease measures include designing mechanisms where manipu-
straint (costly computing vs. limited computing). lation is average-case hard, or even hard on every—carefully
While computational constraints can cause strategic probeonstructed—instance such as in factoring.) This methodol-
lems, the reverse can also be made to be the case. Compegy could even yield new mechanism design principles. As
tational hardness can be used as the barrier to manipulatiogiscussed, the central design principle in mechanism design,
This is especialy desirable in settings where economic mectihe revelation principle ceases to meaningfully hold under
anism design (incentive engineering) is known to fall short. computational or communication constraints. In such set-
Computing can also be used to automatically design th&ngs it can be better to use multi-stage mechanisms such
mechanism, for instance the rules of a divorce settlemengs preference eliciation, unlike the principle suggests. Also,
auction, or public goods problem. Because the mechanism i§ such settings it has been theoretically demonstrated that
designed for the specific setting at hand (objective and inforthere is some benefit to allowing for mechanisms where in-
mation about the agents), it often yields a better mechanisrgincere preference revelation occl@®nitzer and Sandholm,
than the ones known to date. It can also circumvent semin&003d, unlike the principle suggests. Is there a significant
impossibility results. practical benefit to be gained from such mechanisms? What
Carefully designed mechanisms are needed not only fopould such mechanisms look like? Are there principles for
choosing an outcome, but also for executing the outcomegonstructing them?

such as a joint plan. | illustrated this in the context of de- Finally, are there unforeseen novel ways—beyond enabling
signing safe exchange mechanisms for anonymous parties fikpressive competition, multiagent preference elicitation, and
Internet commerce. automated mechanism design—of using computing to en-

hance collective choice?
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