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ABSTRACT
While dynamic matching markets are usually modeled in
isolation, assuming that every agent to be matched enters
that market, in many real-world settings there exist rival
matching markets with overlapping pools of agents. We ex-
tend a framework of dynamic matching due to Akbarpour et
al. [2] to characterize outcomes in cases where two such ri-
val matching markets compete with each other. One market
matches quickly while the other builds market thickness by
matching slowly. We give an analytic bound on the loss—the
expected fraction of unmatched vertices—of this two-market
environment relative to one in which all agents enter either
one market or the other, and numerically quantify its exact
loss, demonstrating that rival markets increase overall loss
compared to a single market that builds thickness. We then
look at two competing kidney exchanges, where patients with
end-stage renal failure swap willing but incompatible donors,
and show that matching with rival barter exchanges per-
forms qualitatively the same as matching with rival match-
ing markets—that is, rival markets increase global loss.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Experimentation, Theory

Keywords
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1. INTRODUCTION
In matching problems, a central clearinghouse pairs agents

with other agents, transactions, or contracts. Most classical
matching problems—matching medical residents to hospi-
tals, matching students to schools—are static, where agents

.

and items exist at the same time, are matched, and then
the market disappears; however, many real-world matching
problems are dynamic, with agents arriving and departing
over time in a persistent market.

Furthermore, many dynamic matching applications in-
volve multiple competing clearinghouses with overlapping
sets of participants. For example, a lonely graduate stu-
dent may register on two dating websites (e.g., Match.com
and OkCupid), or choose to only register on one. Thus, a
member of both sites can be matched to any member of ei-
ther site, while single-site members can only be matched to
members of their specific dating market. The clearinghouses
then compete on a metric like total number of matches. It
is also common for patient-donor pairs in kidney exchange
to register on multiple exchanges, an application we explore
in detail later.

In this paper, we explore, in a dynamic matching setting,
how rival clearinghouses affect global social welfare in terms
of total agents matched relative to a world in which all agents
enter exactly one market, which can optimize for how to
match them independently.

1.1 Our contribution
This paper’s major contribution is the extension of a re-

cent framework of dynamic matching due to Akbarpour et
al. [2] to two rival matching markets with overlapping pools.
Specifically, we formalize a two-market model where agents
enter one market or both markets; they can then be matched
to other agents who have joined the same market or both
markets. The markets adhere to different matching policies,
with one matching greedily and the other building market
thickness through a patient policy. We provide an analytic
lower bound on the loss, or the expected fraction of vertices
who enter and leave the pool without finding a match, of the
two-market model and show that it is higher than running
a single “patient” market. We also provide a quantitative
method for determining the loss of the two-market model.

Our work draws motivation from kidney exchange, an in-
stantiation of barter exchange where patients paired with
willing but medically incompatible donors swap those donors
with other patients. In the United States, multiple fielded
kidney exchanges exist, and patient-donor pairs are entered
simultaneously into one or more of these markets, based on
geographical location, travel preferences, home transplant
center preferences, or other logistical reasons. Individual
kidney exchange clearinghouses have incentive to compete
on number of matches performed within their specific pools;
yet, fragmenting the market across multiple exchanges op-
erating under different matching policies may lower global



welfare. In this paper, we provide the first experimental evi-
dence on dynamic kidney exchange graphs showing that this
may indeed be the case.

1.2 Related work
Most related to our work is a recent paper by Akbarpour

et al. [2], which presents a general framework for bilateral
dynamic matching in a single market and analyzes the effi-
cacy of a variety of matching policies over time. We build
directly on that framework and delay a more in-depth review
of that work until Section 2.

Dynamic matching in a single market has been explored
in many domain-specific applications. Some examples are
given below for both one-sided and two-sided traditional
matching markets, as well as for barter exchanges; this list
is not exhaustive.
One-sided markets. In these settings, only one side (the
agents) has preferences over the other (the items). Wait-
ing lists are used in many applications as a mechanism for
allocating the items, which are scarce resources, to agents.
Both agents and items arrive over time, and an agents’ pri-
ority for an arriving item can be set by a variety of fac-
tors. Examples of waiting list applications include public
housing assignment [19, 20, 24] and cadaveric organ alloca-
tion [9, 33, 35]. In a two-period dynamic housing allocation
problem, agents can either apply for a public good (e.g., a
house) in the first stage and receive priority in that stage, or
opt out in the first stage and receive priority in the second
stage [1]. Other variants of the dynamic housing allocation
problem have also been addressed where, e.g., agents arrive
and depart and, upon departure, an agent’s allocated item
is then given to an existing agent in the waiting pool [10,23].
Two-sided markets. In two-sided markets, participating
agents belong to one of two disjoint sets (e.g., “firms” or
“workers”), but an agent on either side will have preferences
over those on the other. In online labor marketplaces like
oDesk, employers and applicants arrive and depart over time
and are interested in finding an acceptable match [5, 18].
In the dynamic school choice problem, schools exist perma-
nently and indefinitely, but students arrive and depart peri-
odically in a discrete time model [22]. Students matched to
a school at one time period may be matched to a new school
at a different time period. Schools and students have prefer-
ence orderings over each other, based on the utility provided
to one side by being allocated an element or elements of the
other. Finally, generalizations of the online bipartite match-
ing problem as originally introduced by Karp et al. [21] have
recently seen great real-world impact in Internet ad alloca-
tion [25,26].

We note that our work does not assume a bipartite struc-
ture in the matching graph—as in [1, 5, 10, 17–20, 22–24,
33–35] and much of the static matching mechanism design
literature—and involves more than a single market.
Barter exchange. In barter exchange, agents can directly
swap goods with other agents in cycles of length greater than
or equal to two. One fielded example is kidney exchange [29],
where patients with end-stage renal failure and willing but
incompatible paired donors swap those donors with other pa-
tients. Ünver [34] was the first to address dynamic kidney
exchange, where patient-donor pairs arrive and depart over
time, with recent follow-up work by Ashlagi et al. [6] and An-
derson et al. [3]. All three papers look at matching policies
that aim to maximize (discounted) social welfare. Partic-

ularly relevant to real-world kidney exchanges are batching
policies, where a market clearing occurs at a fixed interval;
some theoretical and empirical explorations of this class of
policy has been performed [3, 4, 6, 8]. Learning approaches
have also been used to determine more complex matching
policies that adhere to specific data distributions [13,14].

To our knowledge, no work in the general barter exchange
or kidney exchange literature has addressed multiple com-
peting exchanges, a problem that is especially relevant in
the US now, and, as kidney exchanges move to international
swapping, will soon become relevant worldwide.

Interacting mechanisms have been studied in a variety of
domains like auctions [12, 27], adaptations of settings from
the classical multi-agent systems literature [32], and in two-
sided networks that typically exhibit winner-take-all dynam-
ics, where only one or a few large players (e.g., credit card
companies, computer operating systems, HMOs) prevail due
to network effects [15]. Recent work by Ostrovsky [28] gen-
eralizes traditional two-sided matching to a supply chain
model with interconnected markets represented as nodes in
a path, such that an “upstream” neighbor’s supply overlaps
with its “downstream” neighbor’s demand. Relatively lit-
tle work focuses on markets competing based on variable
scheduling or clearing policies, with notable exceptions in
cloud or grid computing [7] and in financial markets [11].
To the best of our knowledge, no work looks at competition
between two markets in a general framework of dynamic bi-
lateral matching, as this paper does.

2. GREEDY AND PATIENT EXCHANGES
We begin by restating some of the most important results

of Akbarpour et al. [2], which will serve as the foundation for
our model of competing exchanges. Akbarpour et al. ana-
lyze “greedy” and “patient” matching policies—and interpo-
lations between the two—by building stochastic continuous-
time bilateral matching models of exchanges running these
policies, then measuring the efficacy of the policies in terms
of discounted social welfare.

More specifically, an exchange is running in the continuous-
time interval [0, T ], with agents arriving according to a Pois-
son process with rate parameter m ≥ 1. The exchange de-
termines whether potential bilateral transactions between
agents are either acceptable or unacceptable. The probabil-
ity of an acceptable transaction existing between any pair of
distinct agents is defined as d/m, 0 ≤ d ≤ m, and is indepen-
dent of any other pair of agents in the market. Each agent
a remains in the market for a sojourn s(a) drawn indepen-
dently from an exponential distribution with rate parameter
λ = 1; the agent becomes critical immediately before her
sojourn ends, and this criticality is known to the exchange.
An agent leaves either upon being matched successfully by
the exchange or upon becoming critical and remaining un-
matched, at which point she perishes.

At any time t ≥ 0, the network of acceptable transactions
among agents forms a random graph Gt = (At, Et), where
the agents in the exchange at time t form the vertex set
At, and the acceptable transactions between agents forms
the edge set Et. We assume A0 = ∅. Let Ant denote the
set of agents who enter the exchange at time t, such that
with probability 1, |Ant | ≤ 1 for any t ≥ 0. Finally, let
A = ∪t≤TAnt .

Akbarpour et al. [2] present a parameterized space of
online matching policies, with a focus specifically on two:



Patient and Greedy. (In the next section, we will present a
novel model of two overlapping exchanges, one running the
Patient policy and the other running the Greedy policy.) As
described above, vertex arrivals are treated as a continuous-
time stochastic process. These policies behave as follows.
Greedy. The Greedy matching algorithm attempts to match
each entering agent immediately by selecting one of its neigh-
bors (if a neighbor exists at the time of entry) uniformly at
random. One obvious consequence of this is that the re-
maining graph of unmatched agents at any instant is always
empty. We refer to a market running this policy as the
Greedy market or simply Greedy for the rest of the paper.
Patient. The Patient matching algorithm attempts to match
each agent only at the instant she becomes critical. As with
Greedy, if a critical agent has multiple neighbors, only one is
selected uniformly at random. We refer to a market running
the Patient policy as a Patient market or simply Patient
when appropriate.

If the random graph model is Erdős-Rényi [16] when not
considering arrivals, departures, and matching, then the re-
maining graph at any instant is also Erdős-Rényi with pa-
rameter d/m; furthermore, d is the average degree of the
agents. Both the Patient and Greedy policies maintain this
observation.

The main result of Akbarpour et al. [2] is that waiting
to thicken the market can be substantially more important
than increasing the speed of transactions. Formally, the
Patient exchange dramatically reduces the number of agents
who perish (and thus leave the exchange without finding a
match) compared to the Greedy exchange.

In the Akbarpour et al. [2] paper, an agent a receives
zero utility if she perishes, or u(a) = 0. If she is matched,
she receives a utility of 1 discounted at rate δ, or u(a) =

e−δs(a). In this work, we focus on the special case of δ = 0
in this paper (i.e., we only consider whether or not an agent
is matched), and leave the δ 6= 0 case for future research.
Let ALG(T ) := {a ∈ A : a is matched by ALG by time T}.
Then, in this model, the loss of an algorithm ALG is defined
as the ratio of the expected number of perished agents to the
expected size of A, as shown in Equation 1.

L(ALG) =
E[|A−ALG(T )−AT |]

E(|A|)
=

E[|A−ALG(T )−AT |]
mT

(1)

At any time t ∈ [0, T ], let Zg,t, Zp,t represent the size
of the pools under the Greedy and Patient matcing poli-
cies, respectively. Then, Akbarpour et al. [2] proved that
the Markov chain on Z·,t has a unique stationary distribu-
tion under either of those policies. Furthermore, let πg, πp :
N→ R+ be the unique stationary distribution of the Markov
chain on Zg,t, Zp,t, respectively, and let ξg := EZg∼πg [Zg], ξp :=
EZp∼πp [Zp] be the expected size of the pool under the sta-
tionary distribution under Greedy and Patient. Then, the
following observations can be made.
Loss of Greedy. If a Greedy exchange is run for a suffi-

ciently long time, then L(Greedy) ≈ ξg
m

. The intuition here
is that the Greedy pool is (almost) always an empty graph.
Equation (2) formalizes the loss.

L(Greedy) =
1

mT
E
[∫ T

0

Zg,tdt

]
=

1

mT

∫ T

0

E [Zg,t] dt (2)

Loss of Patient. If a Patient exchange is run for a suffi-
ciently long time, at any point in time it is an Erdős-Rényi

random graph. So once an agent becomes critical, she has
no acceptable transaction with probability (1− d/m)Zp,t−1.

Thus, L(Patient) ≈ ξp(1−d/m)ξp−1

m
. Equation (3) formalizes

the loss of a Patient market.

L(Patient) =
1

mT
E
[∫ T

0

Zp,t(1− d/m)Zp,t−1dt

]
=

1

mT

∫ T

0

E
[
Zp,t(1− d/m)Zp,t−1

]
dt

(3)

3. OVERLAPPING EXCHANGES
The key result of Akbarpour et al. [2] is that a greedy dy-

namic matching market leads to significantly lower global so-
cial welfare than a patient matching market with full knowl-
edge of criticality. The central question of this paper is
what happens in a situation where a greedy exchange and
a patient exchange exist simultaneously and compete with
each other to match some shared portion of the population.
Agents in this overlapping subset of the population join both
exchanges simultaneously and accept the first match offer
from either of the constituent exchanges.

Drawing on Section 2, we model this in a similar stochas-
tic, continuous-time framework as follows. Agents arrive at
the Competing market (a model for the whole system, incor-
porating both the Greedy and Patient exchanges) at some
rate m according to a Poisson process. For each agent, the
probability of entering both the Greedy exchange and the
Patient exchange is γ, the probability of entering the Greedy
exchange alone is (1−γ)α, and the probability of entering the
Patient exchange alone is (1− γ)(1−α), where γ, α ∈ [0, 1].
The probability that a bilateral transaction between each
pair of agents is acceptable remains d/m, conditioned on both
agents being mutually “visible” to an exchange. The agents’
rates of perishing, received utility for being (un)matched,
and other settings are otherwise the same as in Section 2.

We analyze the Competing market as three separate evolv-
ing pools:

Greedyc is the pool consisting of agents who enter the
Greedy exchange only (with probability α(1− γ)).

Patientc is the pool consisting of agents who enter the
Patient exchange only (with probability (1−α)(1−γ)).

Bothc is the pool consisting of agents who enter both ex-
changes (with probability γ).

We use Ẑg,t, Ẑp,t and Ẑb,t to denote the size of Greedyc,
Patientc and Bothc, respectively, at any time t. Similar
to an exchange running a single Greedy or Patient match-
ing policy, the Markov chain on Ẑ·,t also has a unique sta-
tionary distribution. Let π̂· : N → R+ be the unique sta-
tionary distribution of the Markov chain on Ẑ·,t, and let

ξ̂· := EẐ·∼π̂·
[Ẑ·] be the expected size of the pool under the

stationary distribution. Using this, we will define the loss of
Greedyc, L̂(Greedyc), the loss of Patientc, L̂(Patientc), and

the loss of Bothc, L̂(Bothc).
First, note that the graph formed by the agents in Greedyc

is empty, so the loss—as in Equation (2)—can be approxi-

mated by L̂(Greedyc) ≈
ξ̂g
m

.
Next, we consider the agents in Bothc. If an edge exists

between an agent in Bothc and an existing agent in Greedyc
or another agent in Bothc, she will be matched immedi-
ately by the Greedy exchange (and thus does not contribute



to the loss). Similar to the Greedyc case, at any point in
time t, the Bothc pool is an empty graph; thus, any un-
matched agents who become critical in Bothc will only be
matched to agents in Patientc. Thus, these leftover agents
in Bothc have no acceptable transactions with probability

(1 − d/m)Ẑp,t . Since each agent becomes critical with rate
1, letting Competing market run for a sufficiently long time

results in L̂(Bothc) ≈ ξ̂b(1−d/m)ξ̂p

m
, where ξ̂b, ξ̂p are the pre-

viously defined expected sizes of Bothc and Patientc.
Finally, we consider the Patientc pool. At any time t,

the agents who remain in Patientc potentially have accept-
able transactions with only the agents in Bothc and the
agents in Patientc. Hence, in Ẑp,t, once an agent is criti-
cal, she has no acceptable transactions with probability (1−
d/m)Ẑp,t+Ẑb,t−1. Similarly, each agent becomes critical with
rate 1; thus, if we allow the Competing market a sufficiently

long execution window, L̂(Patientc) ≈ ξ̂p(1−d/m)ξ̂p+ξ̂b−1

m
.

Because the three pools of agents—Greedyc, Patientc, and
Bothc—are disjoint (although they may be connected via
possible transactions in the ways listed above), we can define
the total loss of the Competing market as follows.

L(Competing) ≈ ξ̂g + ξ̂p(1− d/m)ξ̂p+ξ̂b−1 + ξ̂b(1− d/m)ξ̂p

m
.

(4)
A more precise version of Equation (4) follow as Equa-

tion (5); we will make use of this form in Section 5.

L(Competing) =
1

mT
E
[∫ T

0

Ẑp,t(1− d/m)Ẑp,t+Ẑb,t−1

+ Ẑb,t(1− d/m)Ẑp,t + Ẑg,tdt

]
=

1

mT

∫ T

0

E
[
Ẑp,t(1− d/m)Ẑp,t+Ẑb,t−1

+ Ẑb,t(1− d/m)Ẑp,t + Ẑg,t
]
dt

(5)

Unfortunately, we do not have a closed form expression
for the stationary distribution or the expected size of the
pool under the stationary distribution. We note that each
of ξ̂g, ξ̂p, and ξ̂b can be approximated well using Monte Carlo
simulations—thus, Equation (4) can be solved numerically.
We do this in Section 5.1 for two parameterizations of the
rival market setting.

4. A BOUND ON TOTAL LOSS
While we do not have a closed form for the exact ex-

pected loss of the Competing market as described by Equa-
tion (4), we can provide bounds on the overall loss. In this
section, we give one such bound for the global loss under
the constraint that Greedyc is more likely to receive agents
than the overlapping Bothc exchange. Formally, this occurs
when γ ≤ 0.5 and α ≥ γ

1−γ . We also impose some loose
requirements on the arrival rate of vertices to the exchange
and the probability of an acceptable transaction existing be-
tween two agents; intuitively, the exchange cannot be “too
small” or “too sparse,” which we formalize below. Under
these assumptions, we use the bound to prove Theorem 1,
which states that a single Patient market outperforms the
Competing market.

Theorem 1. Assume γ ≤ 0.5, m > 10d, and α(1− γ) ≥
max

{
γ, 1

2
e−d/2(1 + 3d)

}
. Then, as m → ∞ and T → ∞,

almost surely

L(Competing) > L(Patient).

Proof. We prove the theorem by giving a lower bound
on L̂(Greedyc), the loss of only the greedy portion of the
Competing market. In our model, the fraction of agents en-
tering only the Greedyc side of the market is α(1 − γ); for
notational simplicity, we use x := α(1−γ) in this proof. Sim-
ilarly, the fraction of agents entering Bothc is γ; again, for
notational simplicity, we use y := γ throughout this proof.

As before, let Ẑg,t be the size of Greedyc at any t ∈ [0, T ],
and τ̂ the expected size of the Greedyc pool. Similarly, let

Ẑb,t be the size of Bothc at any t ∈ [0, T ], and η̂ the expected
size of the Bothc pool. That is,

τ̂ := E
t∼unif[0,T ]

[
Ẑg,t

]
and η̂ := E

t∼unif[0,T ]

[
Ẑb,t

]
.

By assumption, α(1 − γ) ≥ γ; that is, the arrival rate
of Greedyc is greater than or equal to the arrival rate of
Bothc. In this case, τ̂ ≥ η̂; the Greedy matching policy
removes verties from both Bothc and Greedyc, while the
Patient matching policy removes vertices from only Bothc,
which means the matching rate for Bothc is greater than the
matching rate for Greedyc.

From Akbarpour et al. [2], we know the expected rate of
perishing of the individual Greedy exchange is equal to the
pool size because the Greedy matching policy does not react
to the criticality of an agent at any time t in its pool and
each critical agent will perish with probability 1. Therefore,
we can draw directly on Equation (2) to write

L̂(Greedyc) =
1

xmT
E[

∫ T

t=0

dt Ẑg,t] =
τ̂

xm
. (6)

We know x and m, so lower bounding τ̂ will result in an
analytic lower bound on L̂(Greedyc). Following the ideas
of Akbarpour et al. [2], we do this by lower bounding the
probability that an agent a does not ever have an acceptable
transaction for the duration of her sojourn s(a). Because
these agents cannot be matched by any matching policy,
this directly gives a lower bound on L̂(Greedyc). Toward
this end, fix an agent a ∈ A who enters Greedyc at time
t0 ∈ unif[0, T ] and draws a sojourn s(a) = t. Let fsa(t) be
the probability density function at t of s(a). Then we can
write the probability that a will never have a neighbor (i.e.,
possible match) as

P [N(a) = ∅] =

∫ ∞
t=0

fsa(t)E
[
(1− d/m)Ẑg,t0+Ẑb,t0

]
E
[
(1− d/m)|AG

n
t0,t0+t+AB

n
t0,t0+t|

]
dt,

where AGnt0,t0+t (resp. ABnt0,t0+t) denotes the set of agents
who enter Greedyc (resp. Bothc) in time interval [t0, t0 + t].
The first expectation captures the probability that agent a
has no matching at the moment of entry and the second
expectation considers the probability that no new agents
that can match with a arrive during her sojourn.



Using Jensen’s inequality, we have

P [N(a) = ∅] ≥
∫ ∞
t=0

e−t(1− d/m)E[Ẑg,t0+Ẑb,t0 ]

(1− d/m)E[|AG
n
t0,t+t0

+ABnt0,t+t0
|]dt

=

∫ ∞
t=0

e−t(1− d/m)τ̂+η̂(1− d/m)(x+y)mtdt.

From the assumptions in the theorem statement, d
m
< 1

10
,

so 1−d/m ≥ e−d/m−d
2/m2

. Also, as described earlier, τ̂ ≥ η̂
(when γ ≤ 0.5 and α ≥ γ

1−γ , as assumed). Therefore,

L̂(Greedyc) ≥ P [N(a) = ∅]

≥ e−(τ̂+η̂)(d/m+d2/m2)

×
∫ ∞
t=0

e−t−(x+y)td−(x+y)td2/mdt

≥ 1− (τ̂ + η̂)(1 + d/m)d/m

1 + (x+ y)d+ (x+ y)d2/m

≥ 1− 2τ̂(1 + d/m)d/m

1 + (x+ y)d+ (x+ y)d2/m
,

(7)

where the third inequality is obtained from the fact that
e−z ≥ 1− z when z ≥ 0, here z = (τ̂ + η̂)(d/m+ d2/m2).

Combining Equation (6) and Equation (7),

L̂(Greedyc) =
τ̂

xm
≥ 1− 2τ̂(1 + d/m)d/m

1 + (x+ y)d+ (x+ y)d2/m
,

which gives us a lower bound for τ̂ ,

τ̂ ≥ xm

1 + (3x+ y)d+ (3x+ y)d2/m
.

Thus, as m→∞, we get,

L̂(Greedyc) ≥
1

1 + (3x+ y)d+ (3x+ y)d2/m

≥ 1

1 + 3d
.

We are interested in bounding the total loss of the Com-
peting market, which is L(Competing) = xL̂(Greedyc) +

(1− α)(1− γ)L̂(Patientc) + yL̂(Bothc). By definition, both

L̂(Patientc) ≥ 0 and L̂(Bothc) ≥ 0, and by Equation (4),

L̂(Greedyc) ≥ 1
1+3d

. Thus,

L(Competing) ≥ x

1 + 3d
.

Akbarpour et al. [2] showed that running an individual
Patient market results in exponentially small loss L(Patient) <
1
2
e−d/2. Thus, as T,m→∞, we can get,

L(Competing) > L(Patient). (8)

We note that the result of Theorem 1 holds for only a
section of the possible parameterizations of a Competing
market—specifically, when γ ≤ 0.5 and α ≥ γ

1−γ . In the
next section, we will give numerical results showing that
this result—that the loss of the Competing market is greater
than the loss of an individual Patient exchange—appears to
hold for a vastly larger space of values of γ and α. Indeed,
experimentally, we will see that the loss of the Competing
market is sometimes greater than the loss of an individual
Greedy exchange, which itself is substantially greater than
the loss of an individual Patient exchange.

5. EXPERIMENTAL VALIDATION
In this section, we provide experimental validation of the

theoretical results presented in Sections 3 and 4. Section 5.1
quantifies the loss due to competing markets as described by
Equation (4), while Section 5.2 expands the model to kidney
exchange and draws from realistic data to quantify the loss
of competing kidney exchange clearinghouses.

5.1 Dynamic matching
In Section 3, we gave a method for computing the expected

loss due to competing markets as Equation (4); however,
we were unable to derive closed forms for the expected size
of the competing, patient, and greedy pools (ξ̂b, ξ̂p, and

ξ̂g, respectively) under the stationary distribution. These
quantities can be estimated using Monte Carlo simulation
for different entrance rates m. We do that now.

Figures 1 and 2 simulate agents entering the Greedyc,
Bothc, and Patientc markets according to a Poisson process
with rate parameter m = 1000 and remaining for a sojourn
drawn from an exponential distribution with rate parameter
λ = 1. An agent chooses to enter Bothc with probability γ,
only Greedyc with probability α(1 − γ), and only Patientc
with probability (1− α)(1− γ), as in the theory above. We
vary α ∈ {0, 0.1, . . . , 1} and γ ∈ {0, 0.1, . . . , 1}, and plot the
global loss realized for each of these parameter settings.
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Figure 1: Average loss (y-axis) as the overlap be-
tween markets γ increases (x-axis), with entrance
rate parameter m = 1000 and d = 20, for different val-
ues of α. The loss of individual Patient and Greedy
markets are shown as thick black and thick dashed
bars, respectively.

Immediately obvious is that running a single Patient mar-
ket results in dramatically less loss than competing markets,
for all different values of α and γ. Furthermore, we see that
the loss of a single Greedy market is also dramatically higher
than the loss of a single Patient market, as predicted by Ak-
barpour et al. [2]. Indeed, from Equation (3) we would ex-
pect the single Patient market to have essentially zero loss,
so these experiments show that adding in a rival Greedyc
market increases loss. In fact, as the left side of Figure 1
and the right side of Figure 2 show, it is the case that if
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Figure 2: Average loss (y-axis) as the probability
α of entering Patientc or Greedyc changes (x-axis),
with entrance rate parameter m = 1000 and d = 20,
for different values of the market overlap γ. The loss
of individual Patient and Greedy markets are shown
as thick black and thick dashed bars, respectively.

the markets do not overlap substantially (i.e., γ is low) and
agents are more likely to enter the greedy side of the market
(i.e., α is near 1), then the loss of the competing market is
worse than running a single Greedy market! This is due in
part to the decrease in market thickness on the Patientc side
of the market—a behavior we will see exacerbated below and
in the kidney exchange experiments of Section 5.2.

Figure 3 decreases the rate parameter of the entrance
Poisson process to m = 100, while holding the probabil-
ity of an acceptable transaction between two agents at that
of Figures 1 and 2 (so d = 2, leading to 2/100 = 2%).
With fewer participants in the market overall, all the qual-
itative results of the m = 1000 markets above are ampli-
fied. The individual Greedy market’s loss is now 5.9% worse
than the individual Patient market (as opposed to 3.3% in
the m = 1000 case); both individual markets’ losses are
substantially higher as well. Similarly, the parameter set-
tings for which the competing market scenario has higher
loss than either individual market are much broader than
the m = 1000 case, which is a product of market thinness.

5.2 Dynamic kidney exchange
In this section, we expand our matching model to one of

barter exchange, where agents endowed with items partici-
pate in directed, cyclic swaps of size greater than or equal
to two. One recently-fielded barter application is kidney ex-
change, where patients with kidney failure swap their willing
but incompatible organ donors with other patients. We fo-
cus on that application here. Dynamic barter exchange gen-
eralizes the matching model presented above, so we would
not expect the earlier theoretical results to adhere exactly.
Interestingly, as we show in Sections 5.2.1 and 5.2.2, the
qualitative ranking of matching policy loss (with a patient
market outperforming a greedy market, both of which out-
perform two rival markets) remains.

This section’s experiments draw from two kidney exchange
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Figure 3: Average loss as the probability α of enter-
ing Patientc or Greedyc (top) or the overlap between
the two markets γ (bottom) changes, with entrance
rate parameter m = 100 and d = 2. The loss of in-
dividual Patient and Greedy markets are shown as
thick black and thick dashed bars, respectively.

compatibility graph distributions. One distribution, which
we call Saidman, was designed to mimic the characteris-
tics of a nationwide exchange in the United States in steady
state [31]. Yet, kidney exchange is still a nascent concept
in the US, so fielded exchange pools do not adhere to this
model. With this in mind, we also include results per-
formed on a dynamic pool generator that mimics the United
Network for Organ Sharing (UNOS) nationwide exchange,
drawing data from the first 193 match runs of that exchange.
We label the distribution derived from this as UNOS.

Formally, we represent a kidney exchange pool with n
patient-donor pairs as a directed compatibility graph G =
(V,E), such that a directed edge exists from patient-donor
pair vi ∈ V to patient-donor pair vj ∈ V if the donor at vi
can give a kidney to the patient at vj . Edges exist or do not
exist due to the medical characteristics (blood type, tissue
type, relation, and many others) of the patient and potential



donor, as well as a variety of logistical constraints. Our
generators take care of these details; for more information
on how edge existence checking is done in the Saidman and
UNOS distributions, see Saidman et al. [31] or Dickerson
and Sandholm [14], respectively. Importantly, under either
distribution, there is no longer a costant probability“d/m”of
an acceptable transaction existing between any two agents.

Vertices arrive via a Poisson process with rate parameter
m = 100 and depart according to an exponential clock with
rate parameter λ = 1 as before, and choose to enter either
exchange or both with the previously-defined probabilities γ
and α. However, a “match” now only occurs when a vertex
forms either a 2-cycle or 3-cycle with one or two other ver-
tices, respectively.1 Section 5.2.1 performs experiments on
2-cycles alone, which adheres more closely to the theoretical
setting above (2-cycles can be viewed as a single undirected
edge between two vertices), while Section 5.2.2 expands this
to both 2- and 3-cycles.

Code to replicate the experiments in this section is avail-
able at github.com/JohnDickerson/KidneyExchange. This
codebase includes our experimental framework, dynamic ex-
change simulator, and graph generators but, due to privacy
concerns, does not include the real match runs from the
UNOS kidney exchange.

5.2.1 Kidney exchange with 2-cycles only
We now present results for dynamic matching under com-

peting Patientc and Greedyc kidney exchanges, both of which
use only 2-cycles. Figure 4 and Figure 5 show losses in-
curred in our parameterized market when run on Saidman-
generated and UNOS-generated pools, respectively.
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Figure 4: Average loss under various values of γ and
α for the Saidman distribution with 2-cycles only.

1In fielded kidney exchange, cycles longer than some short
cap L (e.g., L = 3 at the UNOS exchange and many oth-
ers) are typically infeasible to perform due to logistical con-
straints, and thus are not allowed. We adhere to that
constraint here. Fielded exchanges also realize gains from
chains, where a donor without a paired patient enters the
pool and triggers a directed path of transplants through the
compatibility pool. We do not include chains in this work.
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Figure 5: Average loss under various values of γ and
α for the UNOS distribution with 2-cycles only.

While the barter exchange environment under either the
Saidman or UNOS distributions clearly breaks the struc-
tural properties of the stationary distribution of the underly-
ing Markov process used in our theoretical results, the quali-
tative results of these experiments align with the traditional
dynamic matching results of Section 5.1. The overall loss re-
alized by UNOS is substantially higher than that realized by
Saidman because, in general, UNOS-generated graphs are
more sparse than those from the Saidman family. Similarly,
in either distribution there exist “highly-sensitized” vertex
types that are extremely unlikely to find a match with an-
other randomly selected vertex, and thus almost certainly
create loss. Indeed, both Figure 4 and 5 exhibit higher loss
than the similarly-parameterized Figure 3 of Section 5.1.

5.2.2 Kidney exchange with both 2- and 3-cycles
We now extend our experiments to allow for “matches”

that include both 2- and 3-cycles. Unlike Section 5.1 or 5.2.1,
where a matched edge was chosen uniformly at random from
the set of all acceptable transactions between a distinguished
vertex and its neighbors, in these results we may wish to
distinguish a potential match from others (for example, by
choosing a 3-cycle before a 2-cycle, as the former results in
a larger myopic decrease in the market’s loss). Thus, given
a set of possible 2- and 3-cycle matches, we consider two
matching policies: Uniform selects a cycle at random from
the set of possible matches, regardless of cycle cardinality,
while Uniform3 selects a 3-cycle randomly (if one exists),
otherwise a random 2-cycle.

Figures 6 and 7 show results for the Saidman and UNOS
distributions, respectively, under the Uniform match se-
lection policy. Intuitively, one might expect the loss of a
matching policy run in the 2- and 3-cycle case to be less
than the same policy run in the 2-cycle case alone, as the
set of possible matches weakly increases in the former case.
We see this behavior when comparing the Saidman results
of Figure 6 to the earlier 2-cycle-only Saidman results of
Figure 4, witnessing a drop in global loss of around 4% for
any parameter setting. We see a similar decrease in loss
when comparing the new UNOS results of Figure 7 to those



in the 2-cycle case shown in Figure 5.
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Figure 6: Average loss under various values of γ and
α for the Saidman distribution with both 2- and 3-
cycles, under the Uniform matching policy.
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Figure 7: Average loss under various values of γ
and α for the UNOS distribution with both 2- and
3-cycles, under the Uniform matching policy.

We now consider the Uniform3 matching policy, which
would likely be closer to how a fielded exchange would act.
Figures 8 and 9 show results for the Saidman and UNOS
families of compatibility graphs, respectively. The loss of
the individual Patient market does not change in either dis-
tribution, which is likely a byproduct of the thicker markets
induced by its match cadence. Curiously, the loss of the in-
dividual Greedy market drops dramatically—to around the
Patient loss in the UNOS case, and below Patient in the
Saidman case. This large drop in Greedy loss is likely due
in part to Greedy now “poaching” larger 3-cycles from the
leftover market from which the Patient policy draws. The
other qualitative results of earlier sections are repeated, with

rival markets hurting global loss relative to either individual
market for nearly all settings of γ and α.
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Figure 8: Average loss under various values of γ and
α for the Saidman distribution with both 2- and 3-
cycles, under the Uniform3 matching policy.
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Figure 9: Average loss under various values of γ
and α for the UNOS distribution with both 2- and
3-cycles, under the Uniform3 matching policy.

6. CONCLUSION & FUTURE RESEARCH
Our main goal is to study the impact of competition be-

tween exchanges in a dynamic matching setting. In this
paper, we extended the recent dynamic matching model of
Akbarpour et al. [2] to two rival matching markets with
overlapping pools. Specifically, we formalized a two-market
model where agents enter one market or both markets; they
can then potentially be matched to other agents who have
joined the same market or both markets. The markets,
called Greedy and Patient, adhere to different matching poli-
cies. We provided an analytic lower bound on the loss of the



two-market model and showed that it is higher than running
a single Patient market. We also provided a quantitative
method for determining the loss of the two-market model.
We supported these theoretical results with extensive simu-
lation. We also looked at competing kidney exchanges, and
provided (to our knowledge) the first experimental quan-
tification of the loss in global welfare in a setting with two
clearinghouses using realistic kidney exchange data drawn
from a generator due to Saidman et al. [31] and another
based on the United Network for Organ Sharing (UNOS)
program.

We see competing dynamic matching markets as fertile
ground for future research, with a trove of both theoretical
and practical questions to answer. First, the model of Ak-
barpour et al. [2] discounts the utility of a match by the time
the matching agent has already waited in the pool; this is
well motivated in a variety of settings, including kidney ex-
change. Our results in this paper assume a discount factor
of zero, so it would be valuable to consider the impact on
discounted loss for non-zero cases. Second, in our model the
choice of market to enter is exogenously determined for each
agent. In reality, agents with different levels of knowledge,
wealth, etc. may make strategic decisions on which markets
to enter. Thus, one could approach this dynamic matching
problem from a game-theoretic point of view. Similarly, tak-
ing network effects (where more popular exchanges have an
easier time attracting agents, lower operating costs, higher
probabilities of two agents forming an acceptable transac-
tion, and other advantages) into account would make these
models more applicable to many real-world settings. Finally,
we only looked at two overlapping markets; generalizing this
to any number of overlapping markets would also be of in-
terest.

In terms of barter exchange and, specifically, kidney ex-
change, the question of how clearinghouses interact is a
timely one. In the United States and, eventually, elsewhere,
multi-center and single-center exchange clearinghouses are
already competing, each drawing from some (often overlap-
ping) subset of the full set of patient-donor pairs available.
Indeed, the dynamic barter exchange problem in a single
market is still not fully understood (barring very promis-
ing recent work due to Anderson et al. [3]). We saw in
Section 5.2.2 that including 3-cycles in the matching pro-
cess results in lower loss, even when two markets overlap,
compared to including only 2-cycles (a result that has been
shown repeatedly in the static [30] and dynamic [3] single
clearinghouse setting), so extending the theoretical under-
pinnings of our framework to a more general setting would
be of great value. Finally, it is curious that the Uniform3
policy had such a large effect on the loss of the individual
Patient and Greedy exchanges compared to the Uniform
policy; further exploration of different matching policies (in-
cluding those that use a strong prior to consider possible fu-
ture states of the pool when matching now) would be helpful
in making policy recommendations to fielded exchanges.
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APPENDIX
A. ADDITIONAL EXPERIMENTS

In this section, we provide additional results supporting
the dynamic kidney exchange experiments of Section 5.2.
Figure 10 corresponds to the 2-cycle-only experiments of
Figures 4 and 5 in the body of the paper; instead of vary-
ing the market overlap parameter γ on the x-axis, they vary
the probability α of entering either the Greedyc or Patientc

market, while holding γ constant for a variety of values. Sim-
ilarly, Figure 11 corresponds to the 2- and 3-cycle Uniform
matching policy experiments of Figures 6 and 7. Finally,
Figure 12 corresponds to the Uniform3 matching policy re-
sults shown in Figures 8 and 9.
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Figure 10: 2-cycles-only experiments, paired with
Figure 4 (left) and Figure 5 (right).
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Figure 11: 2- and 3-cycle Uniform experiments,
paired with Figure 6 (left) and Figure 7 (right).
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Figure 12: 2- and 3-cycle Uniform3 experiments,
paired with Figure 8 (left) and Figure 9 (right).


