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Abstract. Coalition formation is a key topic in multiagent systems. One would

prefer a coalition structure that maximizes the sum of the values of the coalitions, but

often the number of coalition structures is too large to allow for exhaustive search

for the optimal one. We present experimental results for three anytime algorithms

that search the space of coalition structures. We show that, in the average case, all

three algorithms do much better than the recently established theoretical worst case

results in Sandholm et al. (1999a ). We also show that no one algorithm is dominant.

Each algorithm’s performance is in¯uenced by the particular instance distribution,

with each algorithm outperforming the others for diŒerent instances. We present a

possible explanation for the behaviour of the algorithms and support our hypothesis

with data collected from a controlled experimental run.
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1. Introduction

Multiagent systems with self-interested agents are becoming increasingly important.

One reason for this is the technology push of a growing standardized communi-

cation infrastructureÐInternet, WW W, EDI, KQM L, FIPA, Concordia, Voyager,

Odyssey, Telescript, Java, etc.Ðover which separately designed agents belonging to

diŒerent organizations can interact in an open environment in real-time and safely

carry out transactions. The second reason is strong application pull for computer

support for negotiation at the operative decision making level. For example, we are

witnessing the advent of small transaction commerce on the Internet for purchasing

goods, information and communication bandwidth. In many multiagent settings,

self-interested agents representing real world parties can operate more eŒectively

by forming coalitions and coordinating their activities and pooling resources within

each coalition. This may allow tasks to be completed that otherwise would not have

been possible. For example, there is an industrial trend toward virtual enterprises:

dynamic alliances of small, agile enterprises which together can take advantage

of economies of scale when availab le (e.g., respond to more diverse orders than

individual agents can ), but do not suŒer from diseconomies of scale.

Multiagent technology facilitates the automated formation of such dynamic co-

alitions. This automation can save labour time of human negotiators, but in addition,

other savings are possible because computational agents can be more eŒective

at ®nding bene®cial short-term coalitions than humans are in strategically and

combinatorially complex settings.
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1.1. The three activities of coalition formation

In many domains, self-interested real world partiesÐe.g. companies or individual

peopleÐcan save costs by coordinating their activities with other parties. For ex-

ample, when the planning activities are automated, it can be useful to automate the

coordination activities as well. This can be done via a negotiating software agent

representing each party. A key issue in such automated negotiation is the formation

of coalitions. Coalition formation includes three activities:

1. Coalition structure generation is the formation of coalitions by the agents such

that agents within each coalition coordinate their activities, but agents do not

coordinate between coalitions. This means partitioning the set of agents into

exhaustive and disjoint coalitions. This partition is called a coalition structure

(CS).

2. Solving the optimization problem of each coalition. This means pooling the

tasks and resources of the agents in the coalition, and solving this joint problem.

A coalition’s objective is to maxim ize monetary value: money received from

outside the system for accomplishing tasks minus the cost of using resources.

(In some problems, not all tasks have to be handled. This can be incorporated

by associating costs with omitted tasks.)

3. Dividing the value of the generated solution among agents.

These activities interact. For exam ple, the coalition that an agent wants to join

depends on the portion of the value that the agent would be allocated in each

potential coalition.

This paper discusses coalition structure generation in settings where there are

too many coalition structures to enumerate and evaluate due to, for example,

costly or bounded computation and limited time. Instead, agents have to select

a subset of coalition structures on which to focus their search. Sandholm et al.

(1999a ) studied which subset the agents should focus on so that they are guaranteed

to reach a coalition structure that has quality within a bound from the optimal

coalition structure. In that paper they presented three algorithms for searching for

the optimal coalition structure and determined worst case (or bad case) results for

bounds. In this paper we conduct an empirical study of the three search algorithms

in order to see how they behave on average.

The rest of the paper is organized as follows. Section 2 discusses coalition structure

generation in characteristic function games. The next two sections describe the

algorithms that were studied and the setup of the experiments. Section 5 discusses

the results from the experiments and Section 6 proposes possible explanations for

the results. The paper concludes with a description of related research and directions

for future research.

2. Coalition structure generation in characteristic function gam es

Let A be the set of agents, and a = jA j. As is common practice (Sandholm and

Lesser 1997, Shehory and Kraus 1996, Ketchpel 1994, Zlotkin and Rosenschein 1994,

Kahan and Rapoport 1984, RaiŒa 1982, Wu 1977, Stearns 1968, Shapley 1953 ) we

study coalition formation in characteristic function games (CFGs). In such games,

the value of each coalition S is given by a characteristic function vS . (These coalition

values vS may represent the quality of the optimal solution for each coalition’s

optimization problem, or they may represent the best bounded-rational value that
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a coalition can get given limited or costly computational resources for solving its

problem (Sandholm and Lesser 1997 ).)

Not all settings are CFGs. In CFGs, each coalition S has some value vS , i.e.

each coalition’s value is independent of non-members’ actions. However, in general

the value of a coalition may depend on non-members’ actions due to positive and

negative externalities (interactions of the agents’ solutions). Negative externalities

between a coalition and non-members are often caused by shared resources. Once

non-members are using a portion of the resource, not enough of that resource is

available to agents in the coalition to carry out the planned solution at the minimum

cost. Negative externalities can also be caused by con¯icting goals. In satisfying their

own goals, non-members may actually move the world further from the coalition’s

goal state(s) (Rosenschein and Zlotkin 1994 ). Positive externalities are often caused

by partially overlapping goals. In satisfying their goals, non-members may actually

move the world closer to the coalition’s goal state(s). From there the coalition can

reach its goals at less expense than it could have without the actions of non-members.

General settings with possible externalities can be modelled as normal form games

(NFGs). CFGs are a strict subset of NFGs. However, many real-world multiagent

problems happen to be CFGs (Sandholm and Lesser 1997 ).

We assume that each coalition’s value is non-negative:

vS &0 (1 )

This is not an unreasonable assumption since if some coalitions’ values are negative

but bounded from below, one can normalize the coalition values by subtracting

minSÌAvS from all coalition values vS . This rescales the coalition values so that

Equation 1 holds for all coalitions. The rescaled game is strategically equivalent to

the original game (Kahan and Rapoport 1984 ).

A coalition structure, CS, is a partition of agents, A, into disjoint, exhaustive

coalitions. In a coalition structure each agent belongs to exactly one coalition,

and some agents may be alone in their coalitions. We will call the set of all

coalition structures M . For example, in a game with three agents, there are 7

possible coalitions: f1g , f2g , f3g , f1,2g , f2,3g , f1,3g , f1,2,3g and 5 possible coalition

structures: ff1g , f2g , f3gg , ff1g , f2,3gg , ff2g , f1,3gg , ff3g , f1,2gg , ff1,2,3gg . The value

of a coalition structure is the sum of the values of the coalitions in it:

V (C S ) =

S2CS

vS (2 )

Usually the goal is to maximize the social welfare of the agents by ®nding a coalition

structure

CS
*

= argmax
CS2M

V (CS ) (3 )

2.1. Complexity

The problem of ®nding the optimal coalition structure is computationally complex.

First, the input of the problem is exponential in the number of agents. The input to

a coalition structure generation algorithm consists of the values of the coalitions, vS .

One value is associated with each coalition and there are 2a 1 coalitions. Secondly,

the number of coalition structures grows rapidly as the number of agents increase.

The number of coalition structures is O(aa ) and x (aa/ 2 ) as shown in Sandholm et

al. (1999a ). Exhaustive enumeration is not a viable method for searching for the
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optimal coalition structure unless the number of agents is small (less than 15 or so

in practice). If the input to the optimization problem includes only the coalitions

with strictly positive value, no algorithm can ®nd the optimal coalition structure

in polynomial time in the size of the input because the problem is N P -complete

(Sandholm et al. 1999a ).

2.2. Lack of prior attention

Coalition structure generation has not received much attention previously. Research

has focused (Zlotkin and Rosenschein 1994, Lundgren et al. 1992, Van der Linden

and Verbeek 1985, Kahan and Rapoport 1984, RaiŒa 1982 ) on superadditive games,

i.e. gam es where vSÄT &vS + vT for all disjoint coalitions S, T Í A. In such games,

coalition structure generation is trivial because the agents are better oŒ forming the

grand coalition where all agents operate together. In other words, in such games,

fAg is a social welfare maxim izing coalition structure.

Superadditivity means that any pair of coalitions is better oŒ by merging into one.

Classically it is argued that almost all games are superadditive because, at worst,

the agents in a composite coalition can use solutions that they would use if they

were in separate coalitions.

However, many gam es are not superadditive because there is some cost to the

coalition formation process itself. For example, there might be coordination over-

head like communication costs, or possible anti-trust penalties. Similarly, solving

the optimization problem of a composite coalition may be more complex than

solving the optimization problems of component coalitions. Therefore, under costly

computation, component coalitions may be better oŒ by not forming the composite

coalition (Sandholm and Lesser 1997 ). Also, if time is limited, the agents may not

have time to carry out the communications and computations required to coordi-

nate eŒ ectively within a composite coalition, so component coalitions may be more

advantageous.

Some non-superadditive games are subadditive, i.e. vSÄT < vS + vT for all disjoint

coalitions S, T Í A. In subadditive games, the agents are best oŒ by operating alone,

i.e. ff1g , f2g , . . . , fagg is a social welfare maxim izing coalition structure.

Some games are neither superadditive nor subadditive because the characteristic

function ful® lls the condition of superadditivity for some coalitions and the condition

of subadditivity for others. In other words, some coalitions are best oŒ merging

while others are not. In such cases, the social welfare maximizing coalition structure

varies. The grand coalition may be the optimal coalition structure even in games

which are not superadditive. Similarly, every agent operating alone may be optimal

even in gam es which are not subadditive.

This paper focuses on gam es that might be neither superadditive nor subadditive,

and if they are, this is not known in advance. In such settings, coalition structure

generation is computationally complex.

2.3. Approximate coalition structure generation

The coalition structure search process can be viewed as search in a coalition structure

graph , see ®gure 1.

Now, how should such a graph be searched if there is not enough time to search

it entirely? We would like to search through a subset N Í M of coalition structures,
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pick the best coalition structure we have seen:

C S
*

N = argmax
CS2 N

V (CS ) (4 )

and be guaranteed that this coalition structure is within a bound from optimal, i.e.

that

k = minfjg where j &
V (C S *)

V (CS *

N
)

(5 )

is ®nite, and as small as possible. We de®ne nmin to be the smallest size of N that

allows us to establish a ®nite bound k.

Sandholm et al. (1999a ) showed that the minimal number of nodes that must be

searched before a bound, k, can be established is nmin = 2a 1 . This is established

by searching the lowest two levels in the coalition structure graph. After searching

these two levels, all possible coalition values have been seen and this is the fastest

way to see all of them. At that point, the bound, in the worst case, is k = a which

occurs when single agents have value 1, and all other coalitions have value 0, i.e.

vS = 1 if jS j = 1, and vS = 0 otherwise.

3. Search algorithm s

In this paper we investigate three search algorithms for the coalition structure search

problem. The three algorithms are:

F Merging Algorithm (M ERG E ) does a breadth-®rst search from the top of the

graph. In the worst case, this algorithm cannot establish any bound before

it has searched the entire graph. This is because, to establish a bound, the

algorithm needs to see every coalition, and the grand coalition only occurs

in the bottom node. Visiting the grand coalition as a special case would not

{1,2,3,4}

{1}{2}{3}{4}

{1},{2,3,4} {1,2},{3,4} {2},{1,3,4} {1,3},{2,4} {3},{1,2,4} {1,4},{2,3} {4},{1,2,3}

{1},{2},{3,4} {3},{4},{1,2} {1},{3},{2,4} {2},{4},{1,3} {1},{4},{2,3} {2},{3},{1,4}

(4)

(3)

(2)

(1)

Figure 1. Coalition structure graph for a 4 agent gam e. The nodes represent coalition

structures. The arcs represent mergers of two coalitions when followed downward,

and splits of a coalition into two when followed upward.



28 K . S. Larson & T. W. Sandholm

necessarily help since at least part of level 2 needs to be searched as well:

coalitions of size a 1 only occur there.

F Splitting Algorithm (SPLIT) does a breadth-®rst search from the bottom of

the graph. After searching 2a 1 nodes, the bottom two levels of the graph, a

bound k = a is established. This is the optimal way of establishing a worst case

bound. After that, the splitting algorithm reduces the bound slowly. This can

be shown by constructing bad cases for the splitting algorithm. To construct a

bad case, set vS = 1 if jS j = 1, and vS = 0 otherwise. Now, CS * = ff1g , . . . , fagg ,

V (C S *) = a, and V (CS *

N ) = l 1, where l is the level that the algorithm has

completed (because the number of unit coalitions in a C S found on level l

never exceeds l 1). So,
V (CS* )

V (C S*

N ) = a
l 1

. (The only exception comes when the

algorithm completes the last (top) level, i.e. l = a. Then
V (CS *)

V (CS *

N ) = 1.) In other

words the divisor increases by one every time a level is searched.

F Coalition±Structure±Search±1 (CSS1) searches the bottom two levels of the

coalition structure graph and then begins a breadth-®rst search from the top

of the graph which continues until time runs out. It returns the best coalition

structure among those seen so far. After searching the bottom two levels, the

bound is (in the worst case ) k = a. After seeing just one additional node

(n = 2a 1 + 1), i.e. the top node, the bound drops in half (k = a
2

). Then, to

drop k to about
a

3
, two more levels need to be searched. Roughly speaking, the

divisor in the bound increases by one every time two more levels are searched,

but seeing only one more level helps very little. The exact drop in the bound is

formulated in Sandholm et al. (1999a ). After searching the bottom two levels

of the graph, CSS1 decreases the bound at a faster rate than SPLIT. The

levels that CSS1 searches after the bottom two levels have fewer nodes than

the levels that SPLIT searches.

The three were selected for study for two reasons. First, in an earlier paper (Sand-

holm et al. 1999a ) we had derived worst case theoretical results for the algorithms.

We believed that the bounds obtained theoretically were substantially higher than

what we would ®nd in the average case. We were also curious as to whether certain

behaviour seen in the worst case analysis would appear experimentally. This be-

haviour included the importance of completing search through an entire level in the

coalition structure graph in order to decrease the bound. Second, intuitively these

three search algorithms seemed the most reasonable ones for the problem. They were

anytime algorithms (algorithms with the property that their output quality improves

over time), that could be used in settings where only the coalition structure values

could be observed, or in settings where there was more information availab le, such

as the values of individual coalitions.

4. Setup of the experiments

The set-up of the simulations is as follows. For problem instances of six to ten

agents, a coalition structure graph was generated and values were assigned to each

coalition (and thus to each coalition structure). The values were chosen using four

alternative instance distributions:

1. Each coalition’s value was picked independently from a uniform distribution

between 0 and 1.
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2. Each coalition’s value was picked independently from a uniform distribution

between 0 and the size of the coalition, jS j.

3. The coalition values were superadditive, i.e. vSÄT &vS + vT . The method of

choosing the values is irrelevant. We selected one method of assigning values,

but any other method that lead to the above inequality holding would result

in the same behaviour for each algorithm.

4. The coalition values were subadditive, i.e. vSÄT < vS + vT . The method of

choosing the values is irrelevant.

The search algorithms were only able to see the values of the coalition structures,

not the values of the individual coalitions. In the experiments each graph was

searched exhaustively in order to ®nd the optimal coalition structure which was

used as a baseline against which the search algorithms were compared. The search

was then restarted using one of the algorithms: M ERG E , SPLIT , or CSS1. After

each node was searched, the bound, k, was calculated. This procedure was repeated

one thousand times for each distribution and algorithm, with new values being

assigned to the coalitions for each run. Once the one thousand runs were completed,

the mean for the bound at each node was computed, along with 95% con®dence

intervals. Since the con®dence intervals were so small, they are not included in any

of the ®gures in this paper. The three algorithms were all executed on the same

problem instances.

5. Results

In this section we discuss the results and the algorithms’ behaviour observed during

the simulations.

5.1. Number of agents

The number of agents did not qualitatively aŒect the overall behaviour of the

algorithms. All algorithms behaved consistently. The experimental bound depended

on the section of the graph that had been searched, not on the absolute number

of nodes. It was more signi®cant that search along a level had been completed

as opposed to searching a speci®c number of nodes. This means that the three

algorithms scaled up well.

5.2. Average results as compared to Worst Case Analysis

All three algorithms produced results that were substantially better than the worst

case theoretical results. M ERG E had very low bounds, within k % a/ 5, after

searching the same number of nodes as found in the bottom two levels of the

coalition structure graph. This was surprising since, theoretically, M ERG E could

not guarantee that any node it returned was within a ®nite bound from optimal

if the entire coalition structure graph had not been searched since the nodes that

M ERG E searches last contain coalitions that are only found once in the entire

graph. For both SPLIT and CSS1, after searching the bottom two levels the bound

was well under k = a. In fact, for all a, the average bound, k, taken over all 1000

problem instances was less than or equal to a
3

after the bottom two levels had been

searched.

Even though the bound obtained by M ERG E was better than SPLIT and CSS1

after searching a small subset of nodes, it did not mean that M ERG E always
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dominated the other two algorithms. Each algorithm outperformed the other two

for some problem instance distribution and some amount of search. All three

algorithms rapidly decreased the bound early on, with diminishing returns as the

search progressed. This is a very desirable feature in an anytime algorithm.

5.3. Algorithm performance under diŒerent problem instance distributions

5.3.1. MERGE. When the coalition values were taken from the interval [0, 1],
M ERG E did not cause any large reductions in the bound since the bound ®rst cal-

culated was already close to 1.00. However, the bound decreased the most during the

beginning of the search and the reduction slowed as further search was performed,

see ®gure 2.

In the case where the coalition values were weighted by the number of members

in the coalition, nonconvexities were observed as the bound dropped, see ®gure 2.

The nonconvexities corresponded to completion of search through a level in the

coalition structure graph.

In subadditive domains, M ERG E found the optimal coalition structure immedi-

ately, but in superadditive domains the algorithm had to search the entire graph

before locating the optimal coalition structure.

5.3.2. SPLIT. When the coalition values were drawn uniformly from [0, 1], the

SPLIT algorithm reduced the bound early in the search, but the reduction slowed

as more nodes were seen, see ®gure 3. After completing search of a level in the

coalition structure graph, the bound dropped sharply, creating nonconvexities in the

graph. These nonconvexities occurred exactly when a level had been exhaustively

searched and the ®rst node of a new level was observed.

0 200 ~ 00 600 800

Nodes

0

1

2

3

~

5

6

k

7 agents

MERGE

[0,|S|]

[0,1]

Figure 2. 7 agent setting where the M ERG E algorithm was used to ®nd the optimal

coalition structure. The bounds from the two diŒerent coalition value distributions

are shown. The vertical lines show where the algorithm has completed searching

a level in the graph.
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When coalition values were drawn uniformly from the interval [0, jS j], SPLIT

almost immediately reduced the bound to 1.00. No nonconvexities were observed

during the bound reduction.

In a superadditive domain, SPLIT found the optimal coalition structure immedi-

ately. In a subadditive domain it had to search the entire graph before it located the

optimal coalition structure.

5.3.3. CSS1. When the coalition values were drawn uniformly from [0, 1], CSS1

decreased the bound rapidly after seeing the ®rst few nodes, but the decrease slowed

as more nodes on the bottom two levels were searched. Once the two bottom levels

were completed there was a sharp drop in the bound as the top node in the coalition

structure graph was observed. As search continued the bound rapidly approached

k = 1.00, see ®gure 4. On the other hand, under the uniform distribution on

[0, jS j] there were no nonconvexities observed in the graph, see ®gure 4. The bound

decreased rapidly with only a few nodes searched. After searching the second level

from the bottom, the results were already very close to optimal. For example, the

bound for seven agents was k = 1.0151. The reduction of the bound slowed as more

nodes were searched until, eventually, the optimal coalition structure was found.

In a superadditive domain, CSS1 found the optimal coalition structure immedi-

ately, while in a subadditive domain it had to search 2a nodes (i.e. the bottom two

levels and the top node) before the optimal solution was found.

5.4. Selective superiority of algorithms

The three algorithms performed diŒerently in diŒerent settings. In subadditive

domains M ERG E was the best algorithm since it found the optimal coalition

structure immediately while SPLIT had to search the entire graph. CSS1, while not

®nding the optimal coalition structure immediately, did ®nd it after searching 2a

0 200 ~ 00 600 800

Nodes

0

1

2

3

~

5

6

k

7 agents

SPLIT

[0,|S|]

[0,1]

Figure 3. 7 agent setting where the SPLIT algorithm was used to ®nd the optimal

coalition structure. The bounds from the two diŒerent coalition value distributions

are shown.
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nodes which is linear in the size of the input, see ®gure 5. For superadditive domains,

the outcome changed. Both SPLIT and CSS1 found the optimal coalition structure

immediately while M ERG E had to search the entire search space before ®nding it,

see ®gure 6.

In the setting where the coalition values were selected uniformly from the interval

[0, 1], M ERG E outperformed CSS1 and SPLIT , see ®gure 7. However, when the

0 200 ~ 00 600 800

Nodes

0

1

2

3

~

5

6
k

7 agents

CSS1

[0,|S|]

[0,1]

Figure 4. 7 agent setting where CSS1 was used to ®nd the optimal coalition

structure. The bounds from the two diŒerent coalition value distributions are

shown.
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Subadditive

CSS1

Merge

Split

Figure 5. 9 agent setting where coalition values were subadditive. The ®rst node

that M ERG E searches is the optimal coalition structure.
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coalition values were weighted by the size of the coalition, SPLIT was the best

algorithm with CSS1 behaving in a similar fashion. M ERG E did not do nearly as

well as the other two, see ®gure 8. Table 1 summarizes the results.

6. Explaining the observed results

The question of interest to us is why do the coalition structure search algorithms

behave diŒerently in the various settings. A possible answer lies in the distributions

0 5000 10000 15000 20000 25000

Nodes
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1

2

3

~

5

6

k
9 agents

Superadditive

CSS1

Merge

Split

Figure 6. 9 agent setting where coalition values were superadditive. SPLIT led to

the same graph as CSS1.
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SPLIT

Figure 7. 8 agent setting with coalition values chosen uniformly from [0,1].
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from where the coalition values (and hence coalition structure values) are drawn.

Recall that the value of a coalition structure is

V (CS ) = vS

where S 2 C S. The expected value of the coalition structure, CS , is

E [V (CS )] = E [vS ]

and the variance is

Var[V (CS )] = Var[vS ]

since we pick the coalition values, vS , independently. All values, vS , were drawn

uniformly from an interval [0, b] where b = 1 or b = jS j, except for the superadditive

and subadditive cases. Therefore

E [vS ] =
b

2

0 1000 2000 3000 ~ 000

Nodes

0

1

2

3

~

5

6

k

8 agents

Uniform [0,|S|]

CSS1

MERGE

SPLIT

Figure 8. 8 agent setting with coalition values chosen uniformly from [0, jS j].

Table 1. A comparison of the three diŒerent algorithms in

diŒ erent settings. The algorithms are ranked: 1 indicates

that the algorithm was the best in the setting while a

3 means that it performed the worst compared with the

others.

CSS1 MERGE SPLIT

Superadditive 1 2 1

Subadditive 2 1 3

[0, 1] 2 1 3

0, jS j] 2 3 1
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and

Var[vS ] =
(b 0)2

12

=
b2

12
.

6.1. Uniform from Interval [0, 1]
When the coalition values are drawn uniformly from the interval [0, 1], the expected

value of a coalition structure depends on which level of the coalition structure graph

it is found. For example, the expected value of the node on the bottom level (the

grand coalition) is 1/ 2, while the expected value of the node at the top of the graph

is a/ 2. In general, if a node is found at level l in the coalition structure graph, then

its expected value is l/ 2. As one searches lower levels of the graph the expected

value of the nodes decreases. The variance of a node in the graph also depends

on the level on which the node is found. The bottom node in the graph has the

least variance (1/ 12), while the top node has highest variance (a/ 12 ). In general, a

node at level l will have variance l/ 12. As one searches lower levels of the graph,

the variance per node decreases. Within a level, however, both expected value and

variance are constant.

In ®gure 7 SPLIT performed poorly compared to the other two algorithms. This is

because it conducts a breadth ®rst search, starting at the bottom of the graph. It does

not search the nodes with highest expected value until the end. One also observes

that the plot for SPLIT contains long plateaus where the bound barely decreases,

followed by a sharp drop (nonconvexity) in the bound. These nonconvexities occur

whenever SPLIT begins to search a new level. The expected value of the nodes

searched on the new level is higher than that on the previous level (i.e. the new

node has expected value l / 2 while the previous node had expected value (l 1)/ 2)

which causes the sharp drop in the bound. There is relatively little improvement in

the bound when searching within a level since the expected value is the same for all

nodes.

CSS1 also caused the bound to sharply drop once the top node in the coalition

structure graph had been observed. This happens since it had previously been

searching on level 2 where the expected value of a node is 1, and then began

searching level a where the expected value is a/ 2. After searching the top node the

bound was close to k = 1.00 and further reductions were negligible (see ®gure 7 ).

M ERG E outperformed the other algorithms in this setting. It searched the nodes

with the highest expected value ®rst and so was likely to ®nd either the optimal

coalition structure or coalition structures with values close to optimal quickly. After

searching only a few nodes, the bound was so close to k = 1.00 that any further

decrease was hard to observe (see ®gure 7 ).

6.2. Uniform from Interval [0, jS j]
When the coalition values were weighted by the size of the coalition (i.e. vS was

drawn from [0, jS j] ) the expected value of every node in the coalition structure graph

was a/ 2. The variance diŒered between nodes, even nodes that were found on the

same level of the graph. For example, in the 7 agent case, the coalition structure

ff1g , f2g , f3g , f4g , f5,6,7gg had variance 1
12

+ 1
12

+ 1
12

+ 1
12

+ 9
12

= 13
12

, while the

coalition structure ff1g , f2g , f3,4g , f5,6,7gg had variance
1

12
+

1

12
+

4

12
+

9

12
=

15

12
.



36 K . S. Larson & T. W. Sandholm

These two coalition structures are found on level 4 of the coalition structure graph

for 7 agents. However, as the level increases, the variance of a given node from the

level decreases. The node with highest variance on level l had variance that was

lower than the node with highest variance on level l 1. In fact, in some cases

the node with highest variance on level l had variance that was lower (or equal) to

the node with lowest variance in level l 1. Out of any single coalition structure

searched, the bottom node in the coalition structure graph was most likely to have

value close to (or equal to) that of the optimal coalition structure since the variance

was large compared to all other nodes in the graph.

The algorithms SPLIT and CSS1 did well in this setting. Both algorithms searched

the bottom two levels of the graph ®rst. While the mean is the same for each node,

the variance, or dispersion, of the values is the highest in the bottom two levels.

Therefore, this is where, out of any single coalition structure searched, it is most

likely to ®nd the optimal coalition structure, or at least coalition structures that have

values close to optimal. SPLIT did better than CSS1 since it continued searching

the bottom sections of the graph while CSS1 moved to the top of the graph.

M ERG E did not perform as well as the other algorithms. It searched the top part

of the graph ®rst and only reached the area where higher valued coalition structures

were most likely found at the end of its search. There were small decreases in the

bound as M ERG E began to search each new level. These can be explained by the

diŒerence in variance between levels. Coalition structures with greater value were

more likely to be found on each new level.

6.3. Controlling for the mean and variance

While our mean and variance based explanations of the algorithms’ behaviour are

intuitively appealing, they do not completely capture the situation. They are exactly

correct only when searching one node. When the search sees multiple nodes, a

more detailed analysis would take into account the fact that the coalition structure

values are not independent because the coalition structures share coalitions. It

is conceivable that the simple model does not actually account for the observed

behaviour. Therefore, we performed a controlled run. We assigned values to the

coalitions so that the mean and variance was the same for each node. This was done

by setting the value of coalition S to be the sum of jS j values picked independently

from a uniform distribution between 0 and 1. Thus, the value of each coalition

structure was the sum of a values

V (CS ) =

a

x i

where each x i was picked independently from a uniform distribution on [0,1]. This

meant that

E [V (C S )] =
a

2
and Var[V (CS )] =

a

12

for each coalition structure.

We then ran all three algorithms and plotted the results, see ®gure 9. All three

algorithms produced almost identical results with no one algorithm outperforming

the others. This suggests that the mean and variance indeed explain the observed

behaviour: other factors are insigni®cant.
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7. Related research

Coalition formation has been widely studied in game theory (Bernheim et al. 1987,

Kahan and Rapoport 1984, Aumann 1959 ). They mainly address the question of

how to divide V (CS *) among agents so as to achieve stability of the payoŒ con®g-

uration. However, most of that work has not taken into account the computational

limitations involved. This section reviews some of the work that has been done on

the computational aspects.

Early work in the ®eld includes Friend’s program (Kahan and Rapoport 1984,

Friend 1973 ) that simulates a 3-agent coalition formation situation where agents

can make oŒers, acceptances, and rejections to each other regarding coalitions and

payoŒ s. In the model, at most one oŒer regarding each agent can be active at a

time. A new oŒer makes old oŒers regarding that agent void. Players myopically

consider only current proposals: they are assumed to do no forward thinking or to

have no memory. The negotiations terminate when two agents have reached a dyad

and the third one has given up. Speci®cally, the termination criterion is based on a

local threat±counterthreat examination: an agent does not necessarily accept a new

better oŒer if that introduces a risk of being totally excluded in the next step. The

model is not normative: there is no guarantee that a self-interested agent would be

best oŒ by using the speci®ed local strategy.

Deb et al. (1996 ) bound the maximal number of payoŒ con®gurations (i.e. coalition

structure±payoŒ division pairs) that must be searched to guarantee stability of the

payoŒ con®guration. Unlike our work, they neither address a bound on solution

quality nor provide methods for coalition structure generation.

Transfer schemes represent a dynamic approach to the payoŒ division activity

of coalition formation in CFGs (Kahan and Rapoport 1984, Stearns 1968 ). The

agents stay within a given coalition structure and iteratively exchange payments

in a prespeci®ed manner. Again, there is no guarantee that a self-interested agent

would be best oŒ by using the speci®ed local strategy: by using some other strategy,
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an agent may be able to drive the negotiation to a ®nal solution that is better

for the agent. Transfer schemes address the payoŒ distribution activity but not the

optimization activity or coalition structure generation.

For example, a transfer scheme for the core solution concept has been developed

(Wu 1977 ). This scheme alternates between two operators. In the ®rst, an agent’s

payoŒ is incremented by its coalition’s excess (value of the coalition minus the sum

of the members’ current payoŒs) divided by the number of agents in the coalition.

In the second, every agent’s payoŒ is decremented equally, just enough to keep the

total payoŒ vector feasible. The method can be implemented in a largest-excess-®rst

manner, or in a round-robin manner among agents. Both schemes converge to a

payoŒ vector in the core, if the core is non-empty, i.e. if such a stable payoŒ vector

exist.

Transfer schemes reduce the cognitive demands placed on the agents. For example,

in the case of the core, the agents do not need to search for a payoŒ vector that

satis®es the numerous constraints in the de®nition of the core. Instead they can

simply follow the transfer scheme until a payoŒ division in the core has been

reached.

Zlotkin and Rosenschein (1994 ) analyse payoŒ division in `Subadditive Task

Oriented Domains’ (STODs), which are a strict subset of CFGs. In their work, the

coalition structure generation is trivial since the agents always form the grand

coalition. Speci®cally, one agent handles the tasks of all agents. In STODs this

is optimal because STODs never exhibit diseconomies of scale. Their method

guarantees each agent an expected value that equals its Shapley value (Shapley

1953 ). The Shapley value is a speci®c payoŒ division among agents that motivates

individual agents to stay in the coalition structure. The group of all agents is also

motivated to stay in the coalition structure. Unlike the core, the Shapley value does

not in general motivate every subgroup of agents to stay. In a subset of STODs,

`Concave Task Oriented Domains’, the Shapley value also motivates every subgroup

to stay, i.e. that payoŒ con®guration is in the core (Zlotkin and Rosenschein 1994 ).

A naive method that guarantees each agent an expected payoŒ equal to the

Shapley value has exponential complexity in the number of agents, but Zlotkin

and Rosenschein present a novel way of achieving this with linear complexity

in the number of agents. Each agent gets paid its marginal contribution to the

coalition. Because this depends on the order in which the agents join the coalition,

the joining order is randomized. The randomization is carried out in a distributed

nonmanipulable way so as to avoid the need for a trusted third party to carry out

the randomization.

Zlotkin and Rosenschein’s payoŒ division method could be used in conjunction

with the coalition structure generation algorithms of this paper. The Shapley value

is well-de®ned for every coalition structure, not only the grand coalition. Therefore,

our methods could be used to choose the coalition structure, and the agents could

get paid their marginal contribution to the coalition structure. Again, the joining

order could be randomized. This would give each agent an expected payoŒ equal to

its Shapley value.

Ketchpel (1994 ) presents a coalition formation method which addresses coalition

structure generation as well as payoŒ distribution. These are handled simultaneously.

His algorithm uses cubic time in the number of agents, but each individual step

may be very complex due to an ine�cient pairwise auction protocol. His coalition

formation method guarantees neither a bound from optimum nor stability of the
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coalition structure (which is normally achieved via appropriate payoŒ division).

There is no mechanism for motivating self-interested agents to follow his algorithm.

Shehory and Kraus (1996 ) analyse coalition formation among self-interested

agents with perfect information in CFGs. Their protocol guarantees that if agents

follow it (nothing necessarily motivates them to do so), a certain stability criterion,

kernel-stability, is met. Their other protocol reduces the complexity somewhat by

requiring only a weaker form of stability, polynomial kernel-stability. Their algorithm

switches from one coalition structure to another and guarantees improvements at

each step: it is an anytime algorithm. However, it does not guarantee a bound from

optimum.

Shehory and Kraus (1995 ) also present an algorithm for coalition structure

generation among agents that are not self±interested, but cooperative, i.e. social

welfare maximizing. Among such agents the payoŒ distribution is a non-issue and

is thus not addressed. The distributed algorithm forms disjoint coalitionsÐwhich by

their de®nition can only handle one task eachÐand allocates tasks to the coalitions.

Recently Shehory and Kraus have extended this work to overlapping coalitions and

coalitions that can jointly handle more than one task (Shehory and Kraus 1998 ).

The complexity of the problem is reduced by limiting the number of agents per

coalition. The greedy algorithm guarantees that the solution is within a loose ratio

bound from the best solution that is possible given the limit on the number of

agents. However, this benchmark can, itself, be arbitrarily far from optimum.

The result that no algorithm can establish a bound while searching less than 2a 1

nodes does not apply to their setting because they are not solving CFGs. First, their

vS values have special structure. Second, they have dependencies between vS values.

Third, in their work, a given coalition may have several values that correspond to

diŒerent tasks. While the third diŒerence may cause more complexity than is present

in CFGs, the ®rst diŒerence may allow a worst case bound to be established with

less search than in general CFGs. In CFGs where the vS values are known to satisfy

additional constraints, it may be possible to exploit such structure and establish a

worst case bound with less search than in general CFGs.

Coalitional bargaining addresses both coalition formation and payoŒ distribution.

Coalitional bargaining is seen as a generalization of the Rubinstein alternating oŒer

bargaining model (Rubinstein 1982 ). A typical model has agents sequentially making

proposals to the group. A proposal consists of a possible coalition to be formed and

a payoŒ vector determining how the value of the coalition would be divided among

members. Unanimous agreement among the members of the proposed coalition lead

to it being formed, otherwise no coalition is formed and another proposal is made.

Some of the work in this area is reviewed here. To the best of our knowledge most

of the work in this area has not taken into account computational limitations.

Chatterjee et al. (1993 ) investigate e�ciency properties of stationary equilibria

of strictly superadditive games where the ®rst agent to reject a proposal becomes

the next proposer. They show that ine�ciencies can arise in the form of delay

and non-formation of the grand coalition. The protocol, or ordering of agents,

signi®cantly aŒects the e�ciency of the equilibrium since it grants diŒerent agents

diŒerent amounts of power.

Okada (1996 ) studies a similar setting, but is interested how e�ciency of agree-

ment is aŒected by the bargaining procedure, in particular by the rule governing

the selection of proposers. Unlike Chatterjee et al. (1993 ), the proposer is chosen

randomly with equal probability from among the group of remaining agents. In this
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setting, no delay of agreement occurs in equilibrium for superadditive games and,

if players are patient enough, the grand coalition is formed with an equal payoŒ

allocation if and only if it has the largest value per capita among all coalitions.

Evans (1997 ) investigates a setting where agents compete for the right to make a

proposal by investing resources. The agent that invests the most in a round wins the

right to make the proposal for that round. In this game, pure stationary subgame

perfect equilibrium payoŒs coincide with the core, if the core exists. When a time

discount is included, no stationary pure strategy equilibria exist.

Sandholm and Lesser (1997 ) study coalition formation with a focus on the opti-

mization activity: how do computational limitations aŒect which coalition structure

should form, and whether that structure is stable? That work used a normative

model of bounded rationality based on the agents’ algorithms’ performance pro®les

and the unit cost of computation. All coalition structures were enumerated because

the number of agents was relatively small, but it was not assumed that they could

be evaluated exactly because the optimization problems could not be solved exactly

due to intractability. The algorithms of this paper can be combined with their work

if the performance pro®les are deterministic. In such cases, the vS values represent

the value of each coalition, given that that coalition would strike the optimal trade-

oŒ between quality of the optimization solution and the cost of that computation.

Any one of our three algorithms can be used to search for a coalition structure,

and only afterwards would the coalitions in the chosen coalition structure actually

attack their optimization problems. If the performance pro®les include uncertainty,

this separation of coalition structure generation and optimization does not work

e.g. because an agent may want to redecide its membership if its original coalition

receives a worse optimization solution than expected.

8. Conclusions and future research

Coalition formation is a key topic in multiagent systems. One would prefer a

coalition structure that maximizes the sum of the values of the coalitions, but often

the number of coalition structures is too large to allow exhaustive search for the

optimal one.

This paper presented results from an empirical study where three coalition struc-

ture search algorithms, CSS1, M ERG E, and SPLIT , were tested. We showed that

there was no `best’ algorithm among the three. In superadditive domains SPLIT and

CSS1 performed best while in subadditive domains M ERG E was the best. When

coalition values were drawn uniformly from the interval [0, 1], M ERG E outper-

formed the others because it searched the nodes that had the highest expected value

®rst. On the other hand, when the coalition values were weighted by the size of the

coalition (i.e. drawn from the interval [0, jS j] ) SPLIT was the best and M ERG E

performed poorly. This was because SPLIT searched nodes with highest variance

®rst.

CSS1, while never being the best algorithm in any of the domains studied, has

the advantage that after searching 2a 1 nodes, the best coalition structure seen

has value that is within a worst case bound k = a from optimal. CSS1 also took

advantage of both distributions by searching early areas of the coalition structure

graph where the optimal coalition structure was likely to be found. This led to fairly

consistent performance among the value distributions studied: CSS1 was always

close to the best algorithm.
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The long term goal for future research is to construct normative methods that

reduce the complexity for all three activities of coalition formation simultaneously:

coalition structure generation, optimization and payoŒ division. Since the activities

are interdependent, a complete theory of coalition formation much address all three.

Future research includes studying the possibility of directing the search process as

we observe values of coalition structures (online-search control policies), or of being

able to design algorithms that return the best possible solution given a speci®ed

amount of time (design-to-time algorithms) for coalition structure generation. We

are also interested in studying cases where the coalition values are known, instead of

only knowing the coalition structure values. In these situations, coalition structure

generation becomes very similar to winner determination in combinatorial auctions

(Sandholm 1999, Rothkopf et al. 1998 ). We are interested in seeing how our results

apply to this new domain, and whether we can use results from combinatorial

auctions for coalition structure generation. We are also analysing the interplay of

dynamic coalition formation and belief revision among bounded rational agents

(Tohme and Sandholm 1999 ). When coalition values have uncertainty, agents may

want to redecide their coalitions. The design of applicable backtracking methods for

self-interested agents is nontrivial. In the future we plan to extend Sandholm and

Lesser’s nonmanipulable leveled commitment contracts (Sandholm and Zhou 1999,

Sandholm et al. 1999b , Sandholm 1996, Sandholm and Lesser 1996 ) to coalition

formation deals as one possible way of implementing backtracking in this setting.

We are also interested in the eŒect of computation on the process of coalitional

bargaining.
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