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Abstract
Market mechanisms play a central role in AI as a
coordination tool in multiagent systems and as an
application area for algorithm design. Mechanisms
where buyers are directly cleared with sellers, and
thus do not require an external liquidity provider,
are highly desirable for electronic marketplaces for
several reasons. In this paper we study the inher-
ent complexity of, and design algorithms for, clear-
ing auctions and reverse auctions with multiple in-
distinguishable units for sale. We consider set-
tings where bidders express their preferences via
price-quantitycurves, and settings where the bids
are price-quantitypairs. We show that markets
with piecewise linear supply/demand curves and
non-discriminatory pricingcan always be cleared
in polynomial time. Surprisingly, ifdiscrimina-
tory pricing is used to clear the market, the prob-
lem becomesNP-Complete (even for step func-
tion curves). If the price-quantity curves are all
linear, then, in most variants, the problem admits
a poly-time solution even for discriminatory pric-
ing. When bidders express their preferences with
price-quantity pairs, the problem isNP-Complete,
but solvable in pseudo-polynomial time. With free
disposal, the problem admits a poly-time approxi-
mation scheme, but no such approximation scheme
is possible without free disposal. We also present
pseudo-polynomial algorithms forXOR bids and
or-of-xors bids, and analyze the approximability.

1 Introduction
Market mechanisms play a central role in AI for several rea-
sons. First, they provide a tool for resource and task allo-
cation in multiagent systems where the agents may be self-
interested. Second, AI techniques can be used to clear mar-
kets. For example, there has been a recent surge of research
in the AI community on search algorithms[Sandholm, 1999;
Fujishimaet al., 1999; Sandholm and Suri, 2000] and special-
case polynomial algorithms[Tennenholtz, 2000] for clearing
combinatorial auctions. Third, recent electronic commerce
server prototypes such as eMediator[Sandholm, 2000] and
AuctionBot[Wurmanet al., 1998] from academic AI groups
have led to the uncovering of a need for fast clearing algo-
rithms for a vast space of market designs.

In this paper we analyze the inherent complexity of, and
design algorithms for, clearing auctions and reverse auctions
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in the ubiquitous setting where there are multiple indistin-
guishable units of an item for sale.

In the largest securities markets where there are multiple
units of each item (e.g., stock) for sale, there usually are liq-
uidity providers (market makerson the NASDAQ and aspe-
cialist on the NYSE) that carry inventory, and guarantee that
trades are possible at essentially any quantity. Therefore, di-
rect matching between buyers and sellers is not absolutely
necessary. However, we argue that if technically possible, it
would be highly desirable to construct market clearing algo-
rithms that directly match buyers and sellers, and do not rely
on an external liquidity provider, for several reasons. First,
most ecommerce marketplaces do not have external liquidity
providers. Second, liquidity providers incur operating cost,
and need to be compensated. This compensation tends to
be paid (implicitly) by the market participants. Third, if the
items that are being traded are not securities, the SEC does
not impose or monitor rules on liquidity-provisioning parties.
Finally, even in markets where the liquidity providers are reg-
ulated, they frequently violate the regulations (the most fa-
mous recent cases are from the NASDAQ).

We study the possibility of algorithms for accomplishing
this in the context of price-quantity curves first, and price-
quantity pairs second. We analyze markets with and without
free disposal of units. We also uncover the complexity impli-
cations of non-discriminatory vs. discriminatory pricing.

2 Auctions with Demand Curve Bids
We consider the auction setting where each bidder submits
a demand curveindicating the quantityq(p) he will accept
at eachunit price p. If his bid is cleared at pricep, he re-
ceivesq(p) units, for a total price ofp �q(p). Recently, several
computational markets have been built that use piecewise lin-
ear[Sandholm, 2000] or step function[Lupien and Rickard,
1997; Sandholm, 2000] demand curves.

We focus mainly on piecewise linear curves because they
can approximate any curve arbitrarily closely, and because
their complexity (in the sense of measuring the length of the
input) can be characterized systematically. In order to keep
our discussion simple, we use a single parameterk to denote
the complexity of the piecewise linear curves. That is,k is
the largestnumber of pieces in any bidder’s demand curve.

We begin with an elementary lemma, which will be used
repeatedly in the following discussion. For now, in order to
keep the discussion simple, let us assume that the seller has
an infinite supply of units to sell. When the number of units
available is finite, the solution follows as an easy corollary of
Lemmata 2.1 and 2.2, as is discussed after those lemmata.
Lemma 2.1 Consider a linear demand curveq = ap + b
subject top; q � 0.



� If a � 0, then an infinite revenue is achievable.

� If a < 0, then the revenue is maximized at pricep� =

�
b
2a

. The corresponding quantity sold at this price is

q� =
b
2
, and the revenue is� b2

4a
.

PROOF. If the slope is non-negative, the revenue is maxi-
mized by settingp� = 1. The second case is more interest-
ing. The revenue at pricep equalsp(ap + b) = ap2 + bp.
Setting the first derivative with respect top to zero, we get
2ap = �b, which yieldsp� = �

b
2a

. The second derivative is
negative (sincea < 0), so the revenue is maximized at thisp.
The values ofq andp � q follow easily. 2

The demand curve could also have boundaries, meaning
that the bidder expresses his preference by specifying the lin-
ear demand curveq = ap + b but with explicit bounds on
the price. If the curve is restricted to the price range[p1; p2],
wherep1 < p2, we call it abounded linear demand curve.

Lemma 2.2 Consider a bounded linear demand curve,q =

ap+ b, restricted to the price range[p1; p2].

� If a � 0, then the revenue is maximized at pricep� = p2.

� If a < 0, then the revenue is maximized either atp� =

�
b
2a

providedp1 � �
b
2a

� p2, or at that endpoint of
the range[p1; p2] which is closer to� b

2a
.

PROOF. Let us first consider the case of non-negative slope,
a � 0. Whena � 0, we haveq0 > q00 wheneverp0 > p00, and
sop0q0 > p00q00. Thus, the maximum revenue is achieved at
the highest permissible price, which isp2.

When the demand curve has negative slope, Lemma 2.1
tells us that the optimal solution without price boundaries is
p� = �b=2a. If this optimal price is within the range[p1; p2],
then it obviously maximizes the revenue, and we are done.
So, let us now assume thatp� 62 [p1; p2].
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Figure 1: Revenue maximization for a linear demand curve
with boundaries.

We consider the effect on revenue of changing the price by
an amount" from the unconstrained optimump� = �b=2a.
(See Figure 1.) Let(p0; q0), whereq0 = q(p), be an arbitrary
point on the linear curveq = ap+b. Sincea is the slope of the
demand curve, we note thatq0�q�

p0�p�
= a: Let " = p0�p� be the

change in the price, and letÆ = q0 � q� be the corresponding
change in the quantity. Then, it follows thatÆ = a". The
revenue at point(p0; q0) is

p
0
q
0

= (p
�
+ ") � (q

�
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�
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In line 4 we used the fact thatp� = �
b
2a

andq� =
b
2
. Since

the demand curve slopea is negative, this shows that a change
of " from the unconstrained optimal pricep� = �

b
2a

reduces
the revenue byjaj"2. Thus, if the price curve is bound to the
range[p1; p2], andp� 62 [p1; p2], the maximum revenue is
achieved at eitherp1 or p2, whichever iscloserto p�. 2

In the preceding discussion, we assumed that the seller has
an unlimited supply of units. When this supply is bounded by
some quantityQ, the optimal solution can be derived easily,
as follows. Of course, a feasible solution exists if and only if
Q � minfq1; q2g. When the slope is positive, the seller sells
minfq2; Qg units. When the slope is negative andQ � b=2,
revenue is maximized atq� = b=2. But if Q < b=2, then the
revenue is maximized atq� = Q.

A piecewise lineardemand curve consists of one or more
bounded linear curves. We do not require the demand curve to
be continuous (i.e., the quantity can “jump” between pieces).
Given a single piecewise linear demand curve bid, we can
use Lemma 2.2 on each linear piece separately to determine
the revenue-maximizing allocation. To lay the groundwork
for our auction-clearing algorithm, we next discuss the prob-
lem ofaggregatingthe demand over multiple piecewise linear
curves.

Demand Curve Aggregation: Consider a set of piecewise
linear curvesf1; f2; : : : ; fn. Theiraggregate curveis a piece-
wise linear functionf : R+

! R+ such thatf(p) is the total
demand at unit pricep. That is,f(p) = f1(p)+f2(p)+ : : :+
fn(p); wherefi(p) is the demand by curvei at unit price
p. For instance, if the demand curves are linear functions
q = aip + bi, i = 1; 2; : : : ; n, then their aggregate curve is
easily shown to be the linear functionq = (

P
i ai)p+

P
i bi.

Breakpoints of Aggregate Curve: The aggregate curvef
changes only when one of the component curve changes; that
is, the breakpoints off are the union of the breakpoints of the
component curves. Thus, given a set ofn piecewise linear
curves each of which has at mostk pieces, their aggregate
curvef has at mostnk breakpoints.

Givenn piecewise linear curves, we can compute their ag-
gregate curve in timeO(nk log(nk)), as follows, wherek is
maximum number of pieces in any curve. Letz1; z2; : : : ; zL,
whereL � nk, denote the breakpoints of all the component
curves, in sorted order. We scan these breakpoints in right to
left order (decreasing order of price), and determine the linear
aggregate curve between two consecutive breakpoints.

Initially, we compute the linear aggregate function in the
range(zL;1), in O(n) time. Next, as we move to the next
breakpoint, at most one linear piece changes—one piece may
end and another may begin. (If multiple curves begin or end
at the same point, we can enforce an artificial order among
those, and consider them one at a time.) We can update the
linear aggregate by deleting the coefficients of the leaving
curve and adding those of the entering curve, and so each
update takesO(1) time. Thus, the complete aggregate curve
can be determined in timeO(nk), after an initial sorting cost
of O(nk log(nk)).

While the construction just described should be sufficiently
fast for most practical applications, we can build the aggre-
gate curve even faster if only part of the curve is needed.



Lemma 2.3 Given n piecewise linear demand curves, we
can construct them rightmost pieces of their aggregate curve
in timeO(m logn+ n), wherem = O(nk), and each curve
has at mostk pieces.

PROOF. We maintain a priority queue that stores the “next”
breakpoint (end, begin, or change) of each component curve.
We process events in the order presented by the priority
queue: when we delete a breakpoint from the queue, we
insert the next linear piece (if any) of the same curve. We
initially compute the rightmost piece of the aggregate curve
in O(n) time. After that the aggregate curve is updated at
each event point inO(1) time. Inserting or deleting an event
from the priority queue takesO(log n) time, and so the total
cost to constructm rightmost pieces of the aggregate curve is
O(m logn+ n). 2

2.1 Auctions with Non-Discriminatory Pricing

Say that the seller wants to auction offQ indistinguishable
units of an item. Each of then bidders submits a piecewise
linear demand curve bid. In anon-discriminatoryauction,
the seller determines an optimal pricep� to maximize his
revenue, and every buyer pays the same unit pricep�. (The
number of items received by bidderi is computed using his
demand curve, evaluated at pricep�.)

As Lemma 2.2 shows, if the seller wants to maximize his
revenue, he might not sell all the units. We therefore consider
the auction both with and withoutfree disposal. With free
disposal, the seller may choose to keep some units (because
he can dispose of them for free), but without free disposal, he
must sell all the units.

Theorem 2.4 Consider a single-item, multi-unit auction with
n bidders, each with a piecewise linear demand curve. Under
non-discriminatory pricing, the auction can be cleared so as
to maximize the seller’s revenue in timeO(nk log(nk)) with
or without free disposal, wherek is the maximum number of
pieces in any bidder’s demand curve.

PROOF.

� [Without Free Disposal.] We construct the aggregate de-
mand curve, incrementally from the right, as described
in Lemma 2.3. For each linear piece of the aggregate
curve, we check to see if it intersects the supply line
q = Q. If there is an intersection, then the intersection
point is a feasible solution. Since the goal is to max-
imize seller’s revenue, we want the rightmost (highest
price) intersection. Thus, we can stop the algorithm as
soon as we find an intersection. From this price we can
determine the quantities sold to each bidder, using their
demand curves. (The problem is clearly infeasible when
there is no intersection between the line and the aggre-
gate curve.)

� [With Free Disposal.] In this case, we compute the entire
aggregate curve, since we cannot stop at the rightmost
feasible solution. For each linear piece of the aggregate
curve, we compute the maximum feasible revenue and
keep track of the optimum found so far.

1. If the piece lies entirely above the lineq = Q, no
feasible solution exists for this piece.

2. If the piece is entirely below the line, we take the
solution given by Lemma 2.2. In other words, we
compute the unconstrained optimump� for this lin-
ear curve. Ifp� is within the price bounds of the
piece, we take that solution; otherwise, we choose
the endpoint of the linear piece whose price is
closer top�.

3. If the piece intersects the lineq = Q, we com-
pute the unconstrained optimumq�. If Q > q�,
we take the unconstrained solution; otherwise, we
sellQ units.

Each of the three cases takes constant time to evaluate.
Thus the complexity is dominated by the time to build
the aggregate curve, which isO(nk log(nk)). 2

2.2 Auctions with Discriminatory Pricing
In a discriminatoryprice auction, the seller determines for
each buyerj a distinct unit pricepj with the objective of
maximizing his revenue

P
j pjqj subject to the supply con-

straint
P

j qj � Q. The quantityqj sold to buyerj is de-
termined fromj’s demand curve at pricepj . For a fixed set
of demand curve bids, the seller’s revenue in a discrimina-
tory auction is generally higher (and never lower) than in a
non-discriminatory auction, but the latter offers a stronger no-
tion of fairness among bidders. Discriminatory price auctions
however do offer a weak form ofex antefairness: they are
anonymous in the sense that had two players swapped their
bids, their allocations would also have been swapped.

Intractability under Piecewise Linear Demand Curves
In sharp contrast to a non-discriminatory auction, we show
that clearing a discriminatory auction with piecewise linear
demand curves isNP-Complete. In fact, this complexity
jump occurs even for the simplest piecewise linear demand
curve, astep function.
Step Function Demand Curve: A step function demand
curve is defined by a tuple(pi; qi), indicating a buyer’s will-
ingness to buyqi units at or below the unit pricepi; the buyer
is not willing to buy any units at price strictly greater thanpi.

Theorem 2.5 Consider a single-item, multi-unit auction with
n bidders, each making a step function demand curve bid.
Then the problem of determining a revenue-maximizing allo-
cation using discriminatory pricing, isNP-Complete. This
holds with or without free disposal.

PROOF.

� [With Free Disposal.]
We reduce theknapsack problem to our auction prob-
lem. Letf(s1; v1); (s2; v2); : : : ; (sn; vn); Kg be an in-
stance of the knapsack problem—K is the knapsack ca-
pacity,si andvi, respectively, are the size and value of
item i. The goal is to choose a subset of items of max-
imum value with total size at mostK. We create an
instance of the single-item multi-unit auction using step
function demand curves, as follows. Bidderi places a
step function bid(vi=si; si), meaning he is willing to
buysi units at lot pricevi (or maximum unit pricevi=si),
and no units for a higher price. The total number of units
available isK. Since we are using discriminatory pric-
ing, the goal is to choose a subset of bids maximizing



the total revenue subject to the total quantity constraint
K. Now, it is easy to see that any solution to the auction
problem is a solution to the knapsack, and vice versa.

� [Without Free Disposal.]
We reduce thesubset sumproblem[Garey and John-
son, 1979] to the auction problem. In the subset
sum problem, we are given a set of integersX =

fx1; x2; : : : ; xng, an integerK, and the goal is to choose
a subset ofX whose elements sum to exactlyK. We
createn bids, where the bidderi places a step function
demand curve bid($1; xi)—that is, the buyer is will-
ing to pay one dollar per unit forxi units, but does not
accept any other quantity. (Actually, the price is imma-
terial in this transformation, so we use a default value
of $1.) The total number of units available isK. It is
easy to see that the auction without free disposal has a
feasible solution if and only if the original subset sum
problem has a solution.

2

Thus, we conclude that even with step function demand
curve bids, or more generally piecewise linear curve bids, the
discriminatory auction becomes intractable.

Polynomial Algorithm for Linear Demand Curves
There is an important case of the discriminatory price auction
for which we can clear the market in polynomial time. This is
the case where all bids aredownward sloping linear demand
curves, that is, in the demand curveq = ap+b, we havea < 0

and b � 0. In other words, the buyer’s demand decreases
linearly as the price increases. We begin by describing the
algorithm for auctions with free disposal. Let us suppose that
the auctioneer hasQ units of the item for sale. Then, the
algorithm has the following steps.

1. LetS = f1; 2; : : : ; ng denote the index set of bids.

2. Compute the unconstrained optimal solution for each bid

independently:(pj ; qj) =

�
�bj
2aj

;
bj
2

�
.

3. If
P

j2S qj � Q, then these unconstrained price-
quantity pairs are the optimal solution.

4. Otherwise, letÆ = minj2S fpjg, and let̀ be the index
of the bid that achieves this minimum.

5. Setp0j = pj + p`, andq0j = ajp
0
j + bj , for j 2 S. That

is, increase each bid’s unit price byÆ, and determine the
new quantity. (Note thatq0j < qj becauseaj is negative.)

6. If
P

j2S q
0
j � Q, then setq�j = qj � ajC, where

C = (
P

j2S bj � 2Q)=(2
P

j2S aj), and stop. This is
the optimal quantity sold to buyerj, at the corresponding
pricep�j = pj�C. (Note that bothaj andC are negative,
and soq�j < qj andp�j > pj .)

7. Otherwise, setS = S � f`g, and go to step 4.

The correctness of the algorithm depends on three facts:
(a) if the unconstrained solution is quantity-infeasible, then
one must increase the unit priceuniformly for all bids, un-
til either the solution becomes feasible or the price becomes
infeasible for some bid,(b) when the price becomes infea-
sible for some bid, that bid receives zero units in the opti-
mal solution, and(c) in the price-interval where the set of
feasible bids remains constant, the formula of line (6) gives

the optimal solution. Due to lack of space, we omit the
proofs of these claims. Instead, we briefly discuss the time
complexity of the algorithm. Step (4) repeatedly chooses a
bid with the next smallest unconstrained optimal pricepj .
In order to facilitate this choice, we initially sort the bids
in increasing order ofpj ’s. The key step is to determine
whether

P
j2S q

0
j � Q. However, it is easy to see thatP

j2S q
0
j =

P
j2S qj+(

P
j2S aj)pl. Thus, we can calculateP

j2S q
0
j in O(1) time, by simply keeping track of the sumsP

j2S aj and
P

j2S qj . These sums only change when a bid
is removed fromS, and can be maintained inO(1) time per
update toS. In summary, once the bids have been sorted, the
total cost of running the algorithm isO(n). We summarize
this result in the following theorem.

Theorem 2.6 Consider a single-item, multi-unit auction with
n bidders, each making a downward sloping linear demand
curve bid. Under discriminatory pricing, the auction can be
cleared so as to maximize revenue inO(n logn) time, with or
without free disposal.1

Remark. For completeness, we now discuss the complex-
ity of clearing absurd types of linear demand curves. If all
the demand curves are upward sloping (the higher the unit
price, the more the bidder will buy), then the optimal solution
is easily obtained (with or without free disposal) by selling
all Q units to the bidder whose demand line intersects the
constant lineq = Q at thehighestunit price. This can be
determined inO(n) time by calculating the intersection point
for every demand line. Next we consider the case where all
demand curves are constant (a = 0), i.e., the bidders do not
care about price. With free disposal, the seller’s revenue can
be maximized inO(n) time by choosing any bidder (whose
quantity is positive, i.e.,b > 0), and charging an infinite price.
Without free disposal, finding a feasible solution (finding a
combination of the constant curves whose quantities sum up
to exactlyQ) is NP-Complete because that is equivalent to
the subset sumproblem. If a feasible solution is found, the
seller can charge an infinite price.

3 Reverse Auctions with Supply Curve Bids
In this section, we consider reverse (or, buyer-based) auctions
using an analog of demand curve bidding. These types of auc-
tions are frequently used for Requests for Proposals (RFPs)
and Requests for Quotes (RFQs). The buyer posts the items
(goods, services, etc.) she wants to purchase, and sellers com-
pete for the business by bidding to sell the items. We assume
that a buyer wishes to acquireQ indistinguishable units of a
certain item, and each seller submits asupply curve bid.

We start by establishing simple properties oflinear supply
curves. As in auctions, we consider two settings: free dis-
posal and no free disposal. Under free disposal, the buyer
is willing to accept more than the desiredQ units if it leads
to lower cost (at worst he can dispose of the extra units for

1When free disposal is not allowed, the only change to the algo-
rithm is this: if the initial unconstrained optimal solution is quantity-
feasible, meaning

P
j2S

qj � Q, instead of stopping, wede-
creasethe price uniformly over all bids, until either the total demand
reachesQ, or some bid becomes infeasible (its price reaches zero).
When a bid becomes infeasible, we remove it fromS and continue.



free). Without free disposal, the buyer wants exactlyQ units
(or none if the solution is infeasible).

Lemma 3.1 Consider a linear supply curveq = ap+ b sub-
ject top; q � 0. Suppose that the buyer wishes to acquireQ
units of the item.

� If a � 0, then there is a feasible solution if and only if
Q � b. If Q � b, the cost to the buyer is0 with free
disposal, andQ(Q� b)=a without free disposal.

� If a > 0, then the cost of acquiring the items is
maxf0; Q(Q� b)=ag:

PROOF. When the supply curve has non-positive slope, the
maximum number of items that can be purchased isb. Thus,
the trade is feasible if and only ifQ � b. If free disposal
is allowed, the buyer buysb units at price0; without free
disposal, the buyer pays(Q� b)=a per unit.

If the supply curve has positive slope, the price per unit is
increasing with the number of units. Ifb > Q, then the buyer
can buyQ units at zero cost. Otherwise, the buyer purchases
exactlyQ units at the unit cost of(Q� b)=a. 2

Lemma 3.2 Consider a bounded linear supply curve,q =

ap+ b, restricted to the price range[p1; p2], wherep1 < p2.
Suppose the buyer wishes to acquireQ units of the item.

� Without free disposal, a feasible solution exists iffq1 �
Q � q2, and if feasible, the solution has costQ(Q �

b)=a.

� With free disposal anda � 0, a feasible solution exists
iff Q � q1. Setq02 = maxfq2; Qg. If feasible, the so-
lution has costminfp1q1; p

0
2q
0
2g, wherep02 is the price

corresponding toq02.

� With free disposal anda > 0, a feasible solution ex-
ists iff Q � q2, and in that case the solution has cost
maxfp1q1; Q(Q� b)=ag.

PROOF. See Figure 2 for illustration. The first case follows
easily, since the boundaries of the supply curve dictate that
the quantity supplied is in the range[q1; q2]. If Q lies in this
range, the cost equalsQ(Q� b)=a.
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Figure 2: Bounded linear supply curves.

In the second case, since the slope is negative, the maxi-
mum quantity supplied isq1, and so for feasibility, we must
haveQ � q1. Since the buyer admits free disposal, we can
purchase any quantity betweenQ andq1, in order to mini-
mize the cost. We defineq02 = maxfq2; Qg so that the feasi-
ble range of quantity is[q1; q02]. We now invoke the algebra of
Lemma 2.2 to observe that quantityp � q(p) decreases the far-
ther the price deviates fromp� = �

b
2a

. (Recall that we have

a � 0 in this case.) Thus, the cost of acquiring at leastQ units
in the range[q1; q02] is minimized at one of the endpoints of
the range. So, we take the smaller of the two values.

Finally, in the third case, the largest quantity supplied by
the curve isq2, so the feasibility condition checks whether
Q � q2. If Q � q2, then we can setq01 = maxfQ; q1g, and
our cost isp01q

0
1, wherep01 is the price corresponding toq01. 2

3.1 Reverse Auctions with Non-Discriminatory
Pricing

Consider a reverse auction where a buyer wantsQ units of an
item. Each of then sellers submits a piecewise linear sup-
ply curve. In anon-discriminatoryreverse auction, the buyer
determines an optimum pricep� to minimize his cost, and
sellers supply their share of units at pricep�. (The number
of items purchased from selleri is computed using his sup-
ply curve, evaluated at pricep�.) The proof of the following
theorem is similar to the proof of Theorem 2.4.

Theorem 3.3 Consider a single-item, multi-unit reverse auc-
tions withn bidders, each making ak-piece supply curve bid.
Under non-discriminatory pricing, the auction can be solved
so as to minimize cost in timeO(nk log(nk)) with or without
free disposal.

3.2 Reverse Auctions with Discriminatory Pricing
In a discriminatoryreverse auction, the buyer determines for
each sellerj a distinct pricepj with the objective of mini-
mizing the total cost

P
j pjqj subject to the supply constraintP

j qj � Q. (Without free disposal, the quantity constraint is
an equality.) The problem of clearing such an auction with
piecewise linear supply curves again turns out to beNP-
Complete.

Theorem 3.4 A single-item, multi-unit reverse auction with
discriminatory pricing and piecewise linear (specifically step
function) supply curve bids isNP-Complete to clear so as to
minimize cost (with or without free disposal).

PROOF. The proofwithout free disposalis the same as in The-
orem 2.5. The details of thefree disposalcase are different, so
we discuss that here. We reduce theknapsackproblem to the
reverse auction, but since knapsack is a value-maximization
problem, while the reverse auction is a cost-minimization
problem, we need a minor transformation in between.

Let f(s1; v1); (s2; v2); : : : ; (sn; vn); Kg be an instance of
the knapsack problem—the knapsack has capacityK, and
item i has sizesi and valuevi. Let us create an instance
of the single-item multi-unit reverse auction, as follows.

Bidder i places a step function bid(vi; si), meaning he is
willing to supplysi units at lot pricevi (or at any price higher
thanvi), and no units for a price less thanvi. Let T =

P
i si

be the total number of units in all the bids. We set up the
auction so that the buyer wishes to purchase at leastT � K
units, at minimum possible price. LetS0 be the set of bids
that are winning bids in the reverse auction. Then, we claim
that the remaining bids (thosenot in S0) form a solution to the
knapsack problem. First, since the bids inS0 have a total of at
leastT �K units, the remaining units are at mostK, and so
the solution is knapsack feasible. Second, since the bids inS0

provideT �K units at least possible price, the total price of
the remaining bids is largest possible subject to the knapsack
constraint. Thus, the auction problem isNP-Complete. 2



In fact, the reverse auction without free disposal isNP-
Completeeven with linear downward sloping supply curves,
unlike the seller auction with linear demand curves which is
polytime solvable (except in the absurd case of constant de-
mand lines and no free disposal), cf. Theorem 2.6.

Theorem 3.5 A single-item, multi-unit reverse auction with
discriminatory pricing and no free disposal isNP-Complete
to clear so as to minimize cost with downward sloping linear
supply curve bids.

PROOF. Consider an instance of the subset sum problem: set
of non-negative integersX = fx1; x2; : : : ; xng, and an inte-
gerK. Corresponding toxi, we create a linear supply curve
q = �p + xi. The subset sum problem has a solution if and
only if the reverse auction without free disposal has a solution
for quantityQ and cost 0. 2

Remark. In the preceding theorem, the price zero is only for
convenience. We can easily truncate the supply curves, for
example atp = 1, to enforce a minimum unit price of one. In
that case, the subset sum has solution if and only if the buyer
can acquire exactlyK units at total priceK.
Remark. With free disposal and downward sloping or con-
stant supply lines (that start atp = 0), the optimal solution is
obtained inO(n) time by accepting all supply lines atp = 0.
If the aggregate quantity is at leastQ, then the solution is
feasible and optimal. Otherwise, no solution is feasible.
Remark. With constant supply lines and no free disposal,
finding a feasible solution to the reverse auction isNP-
Complete because that corresponds to thesubset sumprob-
lem. If a feasible solution exists, and the lines start atp = 0,
then the optimal solution has zero cost (accept atp = 0 each
one of the lines that are part of the feasible solution).
Remark. In reverse auctions, downward sloping supply cor-
responds to quantity discounts. A more common case would
beupward sloping supply, i.e., the higher the price, the more
the supplier is willing to sell. We analyze upward sloping sup-
ply lines in another paper[Sandholm and Suri, 2001], show-
ing clearing complexity ofO(n logn)—the same complexity
asauctionswith downwardsloping demand lines.

4 Price-Quantity Pair Bids
In this section we consider auctions where the auctioneer has
multiple indistinguishable units of one item to sell, and bid-
ders express their preferences viaprice-quantity pairs.

Definition 1 In a price-quantity pairbid (p; q), the bidder
states a pricep 2 Z+ that he is willing to pay forq 2 Z+

units.2 The bid is atomic, meaning it must be accepted as a
whole or rejected—it cannot be accepted fractionally.

Theorem 4.1 (Known) If the seller hasQ units, and each
buyer submits one price-quantity bid, then the problem of
maximizing revenue is equivalent to theNP-Complete knap-
sack problem. It is solvable in pseudo-polynomial time
O(n2V ) [Garey and Johnson, 1979], wheren is the number
of bids andV is the maximum price of any bid. It is approx-
imable within a(1 � ") factor of the optimum in polynomial
timeO(n log

1
"
+

1
"4
) [Lawler, 1976].

2In this section we consider the case wherep is the price for
the entire lotq. If a unit price is stated instead, it can be trivially
converted to a lot price by multiplying byq.

If there is free disposal, the auctioneer can always sell
fewer thanQ units because, at worst, he can dispose of the
extra units for free. On the other hand, for many real goods
there is no free disposal.

Theorem 4.2 If the seller has to sell exactlyQ units (or none
if the instance is infeasible), and each buyer submits one
price-quantity bid, then even finding a feasible solution is
NP-Complete. The problem of maximizing revenue can be
solved optimally in pseudo-polynomial time.

PROOF. Finding a feasible solution isNP-Complete because
the special case wherepi = qi for all i is equivalent to the
subset sumproblem, which isNP-Complete. The problem
can be solved in pseudo-polynomial time using a straightfor-
ward dynamic program. We omit it due to limited space.2

In many settings, a bidder could accept alternative quanti-
ties at different prices. This can be enabled by allowing each
bidder to submit multiple price-quantity bids which are com-
bined withxor.

Theorem 4.3 If a seller can sell at mostQ units, and each
buyer submits a set of alternative price-quantity bids (i.e.,
xor bids), then the problem isNP-Complete. It can be
solved in pseudo-polynomial timeO(n2V L), wheren is the
number of bidders,L is the maximum number of alternative
bids by any buyer, andV is the maximum price of any bid.
The problem can also be approximated within a(1� ") fac-
tor of the optimum inO(nL log

1
"
+

1
"4
) time.

PROOF. NP-Completeness follows from Theorem 4.1 since
each bidder might only submit one price-quantity pair.

We now devise a pseudo-polynomial algorithm. We la-
bel the bidders (arbitrarily),1 throughn. Observe thatnV
is an upper bound on the revenue. LetA(i; v) denote the
smallest number of units that can be sold to bidders in the set
f1; 2; : : : ; ig with total revenue exactlyv.

1. [Initialize: ] Let the alternative price-quantity bids of buyer 1
be(q1; p1) xor (q2; p2) xor : : : (qj ; pj). Set

� A(1; pt) = qt, for t = 1; 2; : : : ; j.
� A(1; v) = 1, for all other values ofv.

2. for i = 2 to n
for v = 1 to nV
A(i; v) =1

if buyeri has bid(q1; p1) xor (q2; p2) xor : : : (qj ; pj),
then

for t = 1 to j
if pt � v then

A(i; v) = min

(
A(i; v);
A(i� 1; v);
qt +A(i� 1; v � pt)

)
else A(i; v) = A(i� 1; v).

This algorithm computes a solution inO(n2V L) time.
This pseudo-polynomial algorithm can be converted to an"-
approximation algorithm with running timeO(nL log

1
"
+

1
"4
)

using the scheme of Lawler[Lawler, 1976]. 2

While xor bids are fully expressive in the sense that they
allow a bidder to express any valuation (mapping from the
number of units to a price), in many cases, a more compact
(and never less compact) representation of the same valuation
can be obtained using theor-of-xors bidding language3. An

3
xor bids andor-of-xors bids were originally introduced

for combinatorial auctions where there are multiple distinguish-



Market type Linear curves Piecewise
linear curves

Upward constant downward
sloping sloping

Nondiscriminatory O(n) O(n) O(n logn) O(nk log(nk)) �

auction
Discriminatory O(n) fd: O(n) O(n logn) �

NP-Complete�

auction nfd: NP-Complete
Nondiscriminatory O(n logn) O(n) O(n) O(nk log(nk)) �

reverse auction
Discriminatory O(n logn) � fd: O(n) fd: O(n) NP-Complete�

reverse auction [Sandholm and Suri, 2001] nfd: NP-Complete nfd:NP-Complete

Table 1: Summary of our results on clearing supply/demand curves (fd = free disposal, nfd = no free disposal). The nontrivial
results are marked with a “*”.

or-of-xors bid is a bid where multiplexor price-quantity
bids are offered and any number of these can be accepted
(subject to honoring the overall quantityQ):

[(q1; p1) xor (q2; p2) xor : : : (qi; pi)] or

[(qi+1; pi+1) xor (qi+2; pi+2) xor : : : (qj ; pj)] or : : :

[(qk; pk) xor (qk+1; pk+1) xor : : : (ql; pl)]:

Theorem 4.4 If the auctioneer can sell at mostQ units, and
each bidder submits anor-of-xors bid, then the problem
can be solved and approximated with the time complexities
stated in Theorem 4.3, wheren now is the number ofxor-
disjuncts submitted overall, andL is the maximum number of
bids within anyxor-disjunct.

PROOF. We can treat differentxor bids from the same bidder
as coming from different bidders. Since each bidder can be
awarded any number ofor bids, this transformation is sound.
We can thus assume that each bidder has submitted only one
xor bid, and solve the problem using the algorithm described
in the proof of Theorem 4.3. 2

Now, considerXOR bids andor-of-xors bids in settings
where the auctioneer has to sell exactlyQ units. It follows
from Theorem 4.2 that finding a feasible solution (and there-
fore also approximation) isNP-Complete (unlike in the free
disposal setting). The problem can be solved in pseudo-
polynomial time using a dynamic program akin to the ones
above where the auctioneer can keep any of the units (we omit
these due to limited space).

5 Conclusions
Market mechanisms play a central role in AI as a coordina-
tion tool in multiagent systems, and as an application area
for algorithm design. Market mechanisms where buyers are
directly cleared with sellers, and thus do not require an ex-
ternal liquidity provider, are highly desirable for electronic
marketplaces for several reasons. In this paper we studied the
inherent complexity of, and designed algorithms for, clearing
auctions and reverse auctions with multiple indistinguishable
units for sale.

Table 1 summarizes our results on market clearability un-
der demand/supply curves. Note that in non-discriminatory
settings, even when each bidder’s curve is linear, the aggre-
gate curve might not be linear but piecewise linear (because
the bidder’s curves have to be ignored below zero quantity).

able items for sale, and bids can be submitted on combinations of
items[Sandholm, 1999; 2000]

In addition to the results summarized in the table, we be-
lieve that one of the most surprising result of our paper is
the following property of discriminatory auctions: at the un-
constrained optimum, each bidder generally gets a different
price, but interestingly, to accommodate the constraint of lim-
ited supply, each bidder’s price is incrementedequallyfrom
the unconstrained optimum.

When bidders express their preferences with price-quantity
pairs, the market clearing problem is essentially equivalent to
the knapsack problem, and thereforeNP-Complete but solv-
able in pseudo-polynomial time. With free disposal, the prob-
lem admits a polynomial-time approximation scheme, but no
such approximation scheme is possible without free disposal.
We also describe pseudo-polynomial algorithms forXOR bids
andor-of-xors bids, and their polynomial approximability
when free disposal is allowed.

Our NP-completeness results carry over toexchanges
(where the objective is to maximize surplus, i.e., sum of ac-
cepted bids minus sum of accepted asks) directly since auc-
tions and reverse auctions are special cases of exchanges.

Our algorithms help pave the way toward automated elec-
tronic markets without external liquidity providers, but at the
same time, ourNP-Completeness results curtail the space of
automated market designs that are computationally tractable.
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