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Abstract

Market mechanisms play a central role in Al as a
coordination tool in multiagent systems and as an
application area for algorithm design. Mechanisms
where buyers are directly cleared with sellers, and
thus do not require an external liquidity provider,
are highly desirable for electronic marketplaces for
several reasons. In this paper we study the inher-
ent complexity of, and design algorithms for, clear-
ing auctions and reverse auctions with multiple in-
distinguishable units for sale. We consider set-
tings where bidders express their preferences via
price-quantitycurves and settings where the bids
are price-quantitypairs. We show that markets
with piecewise linear supply/demand curves and
non-discriminatory pricingcan always be cleared
in polynomial time. Surprisingly, ifdiscrimina-
tory pricing is used to clear the market, the prob-
lem becomesVP-Complete (even for step func-
tion curves). If the price-quantity curves are all
linear, then, in most variants, the problem admits
a poly-time solution even for discriminatory pric-
ing. When bidders express their preferences with
price-guantity pairs, the problemigP-Complete,

but solvable in pseudo-polynomial time. With free
disposal, the problem admits a poly-time approxi-
mation scheme, but no such approximation scheme
is possible without free disposal. We also present
pseudo-polynomial algorithms foxor bids and
OR-0f-XORSs bids, and analyze the approximability.
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in the ubiquitous setting where there are multiple indistin-
guishable units of an item for sale.

In the largest securities markets where there are multiple
units of each item (e.g., stock) for sale, there usually are lig-
uidity providers (narket makersen the NASDAQ and a&pe-
cialist on the NYSE) that carry inventory, and guarantee that
trades are possible at essentially any quantity. Therefore, di-
rect matching between buyers and sellers is not absolutely
necessary. However, we argue that if technically possible, it
would be highly desirable to construct market clearing algo-
rithms that directly match buyers and sellers, and do not rely
on an external liquidity provider, for several reasons. First,
most ecommerce marketplaces do not have external liquidity
providers. Second, liquidity providers incur operating cost,
and need to be compensated. This compensation tends to
be paid (implicitly) by the market participants. Third, if the
items that are being traded are not securities, the SEC does
not impose or monitor rules on liquidity-provisioning parties.
Finally, even in markets where the liquidity providers are reg-
ulated, they frequently violate the regulations (the most fa-
mous recent cases are from the NASDAQ).

We study the possibility of algorithms for accomplishing
this in the context of price-quantity curves first, and price-
quantity pairs second. We analyze markets with and without
free disposal of units. We also uncover the complexity impli-
cations of non-discriminatory vs. discriminatory pricing.

2 Auctions with Demand Curve Bids

We consider the auction setting where each bidder submits
a demand curvéndicating the quantityy(p) he will accept
at eachunit price p. If his bid is cleared at price, he re-
ceivesg(p) units, for a total price op- ¢(p). Recently, several
computational markets have been built that use piecewise lin-

Market mechanisms play a central role in Al for several rea-ear[Sandholm, 2000or step functior{Lupien and Rickard,
sons. First, they provide a tool for resource and task allo1997; Sandholm, 20¢@emand curves.
cation in multiagent systems where the agents may be self- We focus mainly on piecewise linear curves because they
interested. Second, Al techniques can be used to clear matan approximate any curve arbitrarily closely, and because
kets. For example, there has been a recent surge of reseatttieir complexity (in the sense of measuring the length of the
in the Al community on search algorithriSandholm, 1999; input) can be characterized systematically. In order to keep
Fujishimaet al., 1999; Sandholm and Suri, 20dnd special-  our discussion simple, we use a single paramieterdenote
case polynomial algorithm{§ennenholtz, 2000for clearing  the complexity of the piecewise linear curves. Thatkiss
combinatorial auctions. Third, recent electronic commercehelargestnumber of pieces in any bidder's demand curve.
server prototypes such as eMedial8andholm, 2000and We begin with an elementary lemma, which will be used
AuctionBot[Wurmanet al., 1999 from academic Al groups repeatedly in the following discussion. For now, in order to
have led to the uncovering of a need for fast clearing algokeep the discussion simple, let us assume that the seller has
rithms for a vast space of market designs. an infinite supply of units to sell. When the number of units
In this paper we analyze the inherent complexity of, andavailable is finite, the solution follows as an easy corollary of
design algorithms for, clearing auctions and reverse auctionsemmata 2.1 and 2.2, as is discussed after those lemmata.

*This work was funded by, and conducted at, CombineNet, Inc..emma 2.1 Consider a linear demand curve = ap + b
311 S. Craig St., Pittsburgh, PA 15213. subject top, g > 0.



e If a > 0, then an infinite revenue is achievable. In line 4 we used the fact that = —21 andqg* = g Since
e If a < 0, then the revenue is maximized at price = the demand curve sIomg's negat?ve,thls shows tpatachange

—:L. The corresponding quantity sold at this price is of ¢ from the unconstrained optimal prige = —5; reduces

the revenue bya|e2. Thus, if the price curve is bound to the

range[p:, p=], andp* & [p1,p=], the maximum revenue is
PROOF. If the slope is non-negative, the revenue is maxi-achieved at eithes, or p,, whichever iscloserto p*. 0
mized by setting* = oo. The second case is more interest-  In the preceding discussion, we assumed that the seller has
ing. The revenue at price equalsp(ap + b) = ap® + bp. an unlimited supply of units. When this supply is bounded by
Setting the first derivative with respect toto zero, we get some quantity), the optimal solution can be derived easily,

* _ b o b2
q" = 3, and the revenue is .

2ap = —b, which yieldsp* = _%_ The second derivative is  as follows. Of course, a feasible solution exists if and only if
negative (since < 0), so the revenue is maximized attpis @ > min{gi, ¢g>}. When the slope is positive, the seller sells
The values ofy andp - ¢ follow easily. | min{gs, @} units. When the slope is negative afjd> b/2,

The demand curve could also have boundaries, meaningvenue is maximized at = b/2. But if @ < b/2, then the
that the bidder expresses his preference by specifying the lirevenue is maximized gt = Q.

ear demand curvg = ap + b but with explicit bounds on A pigcewise lineademand curve consists of one or more
the price. If the curve is restricted to the price rafi@ep>],  pounded linear curves. We do not require the demand curve to
wherep, < p,, we call it abounded linear demand curve  he continuous (i.e., the quantity can ‘jump” between pieces).
Lemma 2.2 Consider a bounded linear demand curye= Given a single piecewise linear demand curve bid, we can
ap + b, restricted to the price rang@; , po]. use Lemma 2.2 on each linear piece separately to determine
e Ifa > 0, then the revenue is maximized at price= ps. the revenug-maximi_zing aIIoc_:ation. To lay t_he groundwork
for our auction-clearing algorithm, we next discuss the prob-

e If.a <0, then the revenue is maximized eithepat=_ |em ofaggregatinghe demand over multiple piecewise linear
—35, providedp; < —5- < po, Oratthat endpointof  cypyves.

. . L
the range[p%,pQ] Wh'_Ch Is closer to- ;. _ Demand Curve Aggregation: Consider a set of piecewise

PROOF. Let us first consider the case of non-negative slopelinear curvesi, fo, .. ., f.. Theiraggregate curvés a piece-
a > 0. Whena > 0, we havey' > ¢" whenevep' > p”, and  wise linear functionf : R* — R* such thatf(p) is the total
sop'q" > p"q". Thus, the maximum revenue is achieved atdemand at unit pricg. Thatis,f(p) = fi(p) + f2(p) +. ..+
the highest permissible price, whichyis. fa(p), where f;(p) is the demand by curve at unit price

When the demand curve has negative slope, Lemma 24, For instance, if the demand curves are linear functions
tells us that the optimal solution without price boundaries is; = a;p + b;, i = 1,2,...,n, then their aggregate curve is
p* = —b/2a. If this optimal price is within the range:, -], easily shown to be the linear functign= (3, a;)p + 3", b.
then it obviously maximizes the revenue, and we are don

So, let us now assume thatt & [p:, o). eBreakpoints of Aggregate Curve: The aggregate curvé

changes only when one of the component curve changes; that
is, the breakpoints of are the union of the breakpoints of the
component curves. Thus, given a setnopiecewise linear
curves each of which has at mdstpieces, their aggregate
curve f has at mostk breakpoints.

Quantity

Givenn piecewise linear curves, we can compute their ag-

""""""" Ta Bounded gregate curve in timé&(nk log(nk)), as follows, wheré: is
Lo Demand Curve . s 4
| \ maximum number of pieces in any curve. Lgtzs,..., 2z,
L R whereL < nk, denote the breakpoints of all the component
Unit prpl P2 curves, in sorted order. We scan these breakpoints in right to
Price left order (decreasing order of price), and determine the linear

Figure 1: Revenue maximization for a linear demand curv
with boundaries.

We consider the effect on revenue of changing the price b
an amount from the unconstrained optimupt = —b/2a.

E‘aggregate curve between two consecutive breakpoints.
Initially, we compute the linear aggregate function in the
¥ange(zL, 00), in O(n) time. Next, as we move to the next
: I P A breakpoint, at most one linear piece changes—one piece may
(Seo Flgure L) Lety ) wheter . (p), b 30 AWAY  gnand aother may begin. (i muliple curves becin o enc
q dcurve. we note thée? — ¢ Lete — o' —p* be the at the same point, we can enforce an artificial order among
emand A hgtys = a.Lete =p'—p ©  those, and consider them one at a time.) We can update the
change in the price, and 18t= ¢' — ¢* be the corresponding |inear aggregate by deleting the coefficients of the leaving
change in the quantity. Then, it follows th&t= as. The  ¢rve and adding those of the entering curve, and so each

' guantity
revenue at pointy', ¢') is update take$)(1) time. Thus, the complete aggregate curve
p'd = (" +e)-(¢"+9) can be determined in tim@(nk), after an initial sorting cost
e 4Ot +eb of O(nklog(nk)).

While the construction just described should be sufficiently
fast for most practical applications, we can build the aggre-
gate curve even faster if only part of the curve is needed.

= p'q +eq" +aep” + ag’
= p'¢" +eb/2) + as(=b/2a) + ac®
= p'q" +ae’



2. If the piece is entirely below the line, we take the
solution given by Lemma 2.2. In other words, we
compute the unconstrained optimprnfor this lin-
ear curve. Ifp* is within the price bounds of the
piece, we take that solution; otherwise, we choose
the endpoint of the linear piece whose price is
closer top*.

3. If the piece intersects the ling = @, we com-
pute the unconstrained optimugi. If @ > ¢*,
we take the unconstrained solution; otherwise, we
sell @ units.

Each of the three cases takes constant time to evaluate.
Thus the complexity is dominated by the time to build
the aggregate curve, which@(nk log(nk)). O

Lemma 2.3 Given n. piecewise linear demand curves, we
can construct the: rightmost pieces of their aggregate curve
in time O(m logn + n), wherem = O(nk), and each curve
has at mosk pieces.

PROOFE We maintain a priority queue that stores the “next”
breakpoint (end, begin, or change) of each component curve.
We process events in the order presented by the priority
gueue: when we delete a breakpoint from the queue, we
insert the next linear piece (if any) of the same curve. We
initially compute the rightmost piece of the aggregate curve
in O(n) time. After that the aggregate curve is updated at
each event point i@ (1) time. Inserting or deleting an event
from the priority queue take@(logn) time, and so the total
cost to construat: rightmost pieces of the aggregate curve is
O(mlogn +n). B 22 Auctions with Discriminatory Pricing
In a discriminatory price auction, the seller determines for
each buyerj a distinct unit pricep; with the objective of
maximizing his revenugjj pjq; subject to the supply con-
straintzj g; < Q. The quantityg; sold to buyeryj is de-
termined from;’s demand curve at pricg;. For a fixed set
of demand curve bids, the seller’s revenue in a discrimina-
number of items received by biddéis computed using his tory auction Is generally higher (and never lower) than in a
demand curve, evaluted at ) o dlcrminlonyaclon Al he e fere songer o
As Lemma 2.2 shows, if the seller wants to maximize his, owever do offer a weak form ax antefaimess: they are

revenue, he might not sell all the units. We therefore consideg . .
the auction bo?h with and withodtee disposal With free ~ 210NYmous in the sense that had two players swapped their
ggjs, their allocations would also have been swapped.

disposal, the seller may choose to keep some units (becau
he can dispose of them for free), but without free disposal, héntractability under Piecewise Linear Demand Curves

must sell all the units. In sharp contrast to a non-discriminatory auction, we show
that clearing a discriminatory auction with piecewise linear
demand curves idV’P-Complete. In fact, this complexity
ump occurs even for the simplest piecewise linear demand
curve, astep function

¢ Step Function Demand Curve: A step function demand
curve is defined by a tupl@;, ¢;), indicating a buyer’s will-
ingness to buy; units at or below the unit price;; the buyer
is not willing to buy any units at price strictly greater than

2.1 Auctions with Non-Discriminatory Pricing

Say that the seller wants to auction @ffindistinguishable
units of an item. Each of the bidders submits a piecewise
linear demand curve bid. In mon-discriminatoryauction,
the seller determines an optimal pripé to maximize his
revenue, and every buyer pays the same unit pricg(The

Theorem 2.4 Consider a single-item, multi-unit auction with
n bidders, each with a piecewise linear demand curve. Unde
non-discriminatory pricing, the auction can be cleared so a
to maximize the seller’s revenue in tifénk log(nk)) with
or without free disposal, where is the maximum number o
pieces in any bidder’'s demand curve.

PROOFR

e [Without Free DisposdlWe construct the aggregate de- Theorem 2.5 Consider a single-item, multi-unit auction with
mand curve, incrementally from the right, as described, bidders, each making a step function demand curve bid.
in Lemma 2.3. For each linear piece of the aggregaterhen the problem of determining a revenue-maximizing allo-
curve, we check to see if it intersects the supply linecation using discriminatory pricing, i8/P-Complete. This
q = Q. If there is an intersection, then the intersectionholds with or without free disposal.
point is a feasible solution. Since the goal is to max-po oo
imize seller’s revenue, we want the rightmost (highest i
price) intersection. Thus, we can stop the algorithm as ¢ [With Free Disposa).

soon as we find an intersection. From this price we can
determine the quantities sold to each bidder, using their
demand curves. (The problem is clearly infeasible when
there is no intersection between the line and the aggre-
gate curve.)

¢ [With Free Disposa).In this case, we compute the entire
aggregate curve, since we cannot stop at the rightmost
feasible solution. For each linear piece of the aggregate
curve, we compute the maximum feasible revenue and
keep track of the optimum found so far.

1. If the piece lies entirely above the lige= @, no
feasible solution exists for this piece.

We reduce th&napsack problem to our auction prob-
lem. Let{(s1,v1),(s2,v2),...,(Sn,v,), K} be anin-
stance of the knapsack probleni<is the knapsack ca-
pacity, s; andv;, respectively, are the size and value of
itemi. The goal is to choose a subset of items of max-
imum value with total size at modt. We create an
instance of the single-item multi-unit auction using step
function demand curves, as follows. Biddeplaces a
step function bid(v;/s;, s;), meaning he is willing to
buy s; units at lot pricey; (or maximum unit price; /s;),
and no units for a higher price. The total number of units
available isK. Since we are using discriminatory pric-
ing, the goal is to choose a subset of bids maximizing



the total revenue subject to the total quantity constrainthe optimal solution.

Due to lack of space, we omit the

K. Now, it is easy to see that any solution to the auctionproofs of these claims. Instead, we briefly discuss the time

problem is a solution to the knapsack, and vice versa.

[Without Free Disposd.

We reduce thesubset sumproblem[Garey and John-
son, 1979 to the auction problem. In the subset
sum problem, we are given a set of integéfs =
{z1,29,...,z,}, aninteged(, and the goal is to choose
a subset ofX whose elements sum to exacfly. We
createn bids, where the bidderplaces a step function
demand curve bid$1, z;)—that is, the buyer is will-
ing to pay one dollar per unit for; units, but does not

complexity of the algorithm. Step (4) repeatedly chooses a
bid with the next smallest unconstrained optimal prige

In order to facilitate this choice, we initially sort the bids
in increasing order op;’s. The key step is to determine
whetherzjes q; < (. However, it is easy to see that

Yjesq; = 2 jes 6+ (2 jesai)pi- Thus, we can calculate
Ejes q; in O(1) time, by simply keeping track of the sums
> jes @j and) .. s g;. These sums only change when a bid

is removed fromS, and can be maintained (1) time per
update taS. In summary, once the bids have been sorted, the

accept any other quantity. (Actually, the price is imma-total cost of running the algorithm ©(n). We summarize
terial in this transformation, so we use a default valuethis result in the following theorem.

of $1.) The total number of units available i8. It is

easy to see that the auction without free disposal has a1€orem 2.6 Consider a single-item, multi-unit auction with
feasible solution if and only if the original subset sum 7 bidders, each making a downward sloping linear demand

problem has a solution. O

curve bid. Under discriminatory pricing, the auction can be
cleared so as to maximize revenuéitv log n) time, with or

Thus, we conclude that even with step function demangithout free disposal
curve bids, or more generally piecewise linear curve bids, the

discriminatory auction becomes intractable.

Polynomial Algorithm for Linear Demand Curves
There is an important case of the discriminatory price auctio

for which we can clear the market in polynomial time. This is

the case where all bids ad®ewnward sloping linear demand
curvesthatis, in the demand curye= ap+b, we haver < 0

andb > 0. In other words, the buyer's demand decrease%etermined ir0
linearly as the price increases. We begin by describing th
algorithm for auctions with free disposal. Let us suppose thay

the auctioneer hag units of the item for sale. Then, the
algorithm has the following steps.

1. LetS = {1,2,...,n} denote the index set of bids.

2. Compute the unconstrained optimal solution for each bi
independently(p;,q;) = (;—:J, %J)
If Ejes g < @, then these unconstrained price-
guantity pairs are the optimal solution.

Otherwise, leb = minjes {p;}, and let’ be the index
of the bid that achieves this minimum.

Setp; = pj +pe, andg; = a;p} +b;, forj € S. That
is, increase each bid’s unit price Byand determine the
new quantity. (Note tha}} < g; because; is negative.)

If Zjes q} < @, then sety} g; — a;C, where

C=(jesbi — 2Q)/(2);c50a5), and stop. This is
the optimal quantity sold to buygr at the corresponding
pricep; = p;—C'. (Note that botlu; andC' are negative,
and sag; < ¢; andp; > p;.)

Otherwise, se$ = S — {¢}, and go to step 4.

7.

Remark. For completeness, we now discuss the complex-
ity of clearing absurd types of linear demand curves. If all
the demand curves are upward sloping (the higher the unit
Thrice, the more the bidder will buy), then the optimal solution
is easily obtained (with or without free disposal) by selling
all @ units to the bidder whose demand line intersects the
constant lineg = @ at thehighestunit price. This can be
(n) time by calculating the intersection point
for every demand line. Next we consider the case where all
emand curves are constant-£ 0), i.e., the bidders do not
care about price. With free disposal, the seller’s revenue can
be maximized inD(n) time by choosing any bidder (whose
quantity is positive, i.eh > 0), and charging an infinite price.
ANithout free disposal, finding a feasible solution (finding a
combination of the constant curves whose quantities sum up
to exactly@) is N'P-Complete because that is equivalent to
the subset sunproblem. If a feasible solution is found, the
seller can charge an infinite price.

3 Reverse Auctions with Supply Curve Bids

In this section, we consider reverse (or, buyer-based) auctions
using an analog of demand curve bidding. These types of auc-
tions are frequently used for Requests for Proposals (RFPSs)
and Requests for Quotes (RFQs). The buyer posts the items
(goods, services, etc.) she wants to purchase, and sellers com-
pete for the business by bidding to sell the items. We assume
that a buyer wishes to acqui€g indistinguishable units of a
certain item, and each seller submitsugply curve bid

We start by establishing simple propertiedinéar supply
curves. As in auctions, we consider two settings: free dis-
posal and no free disposal. Under free disposal, the buyer

The correctness of the algorithm depends on three facté$ Willing to accept more than the desiredunits if it leads
(a) if the unconstrained solution is quantity-infeasible, thent© lower cost (at worst he can dispose of the extra units for

one must increase the unit pricaiformly for all bids, un-

'When free disposal is not allowed, the only change to the algo-

til either the solution becomes feasible or the price becomegihm is this: if the initial unconstrained optimal solution is quantity-

infeasible for some bid(b) when the price becomes infea-
sible for some bid, that bid receives zero units in the opti
mal solution, andc) in the price-interval where the set of
feasible bids remains constant, the formula of line (6) give

feasible, meaningzjes g;i < @, instead of stopping, wele-
“creasethe price uniformly over all bids, until either the total demand
reacheg), or some bid becomes infeasible (its price reaches zero).
dVhen a bid becomes infeasible, we remove it fr8rand continue.



free). Without free disposal, the buyer wants exagilynits
(or none if the solution is infeasible).

Lemma 3.1 Consider a linear supply curve = ap + b sub-
jecttop,q > 0. Suppose that the buyer wishes to acqure
units of the item.

e If a < 0, then there is a feasible solution if and only if
Q < b. If @ < b, the cost to the buyer i8 with free
disposal, and)(Q — b)/a without free disposal.

e If « > 0, then the cost of acquiring the items is
max{0, Q(Q —b)/a}.

PrROOF When the supply curve has non-positive slope, th
maximum number of items that can be purchaseéd Ehus,
the trade is feasible if and only < b. If free disposal
is allowed, the buyer buyg units at price0; without free
disposal, the buyer pay§) — b)/a per unit.

If the supply curve has positive slope, the price per unit i
increasing with the number of units.df> @, then the buyer

a < 0inthis case.) Thus, the cost of acquiring at legsinits
in the rang€q, ¢5] is minimized at one of the endpoints of
the range. So, we take the smaller of the two values.

Finally, in the third case, the largest quantity supplied by
the curve isgs, so the feasibility condition checks whether
< 2. If @ < g9, then we can seff = max{Q, ¢}, and

our cost i ¢, wherep| is the price corresponding tg. O

3.1 Reverse Auctions with Non-Discriminatory
Pricing

Consider a reverse auction where a buyer wghtsits of an

item. Each of then sellers submits a piecewise linear sup-

epIy curve. In anon-discriminatoryreverse auction, the buyer

determines an optimum prigg to minimize his cost, and
sellers supply their share of units at prige (The number
of items purchased from sellélis computed using his sup-

ly curve, evaluated at prige'.) The proof of the following
heorem is similar to the proof of Theorem 2.4.

exactly@ units at the unit cost of@) — b)/a. O

Lemma 3.2 Consider a bounded linear supply curve,=
ap + b, restricted to the price rangp,, p»], wherep; < p».
Suppose the buyer wishes to acqupreinits of the item.

e Without free disposal, a feasible solution existg;iff>
@ > g2, and if feasible, the solution has cag{@ —
b)/a.

o With free disposal and < 0, a feasible solution exists
iff @ < ¢q1. Setgh = max{q., Q}. If feasible, the so-
lution has costmin{piq1, phq}}, wherep), is the price
corresponding tay.

e With free disposal and > 0, a feasible solution ex-
ists iff @ < ¢, and in that case the solution has cost

max{piq1, Q(Q —b)/a}.

PrROOFE See Figure 2 for illustration. The first case follows
easily, since the boundaries of the supply curve dictate th
the quantity supplied is in the ran§ig, ¢=]. If @ lies in this
range, the cost equaly(@ — b)/a.

Quantity
Quantity

=Y
=Y

o

o

Supply Curve

q2

pl p2

(ii) Positive Slope

Unit
Price
(i) Negative Slope

Figure 2: Bounded linear supply curves.
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tions withn bidders, each making/apiece supply curve bid.
Under non-discriminatory pricing, the auction can be solved
S0 as to minimize cost in ting@(nk log(nk)) with or without
free disposal.

3.2 Reverse Auctions with Discriminatory Pricing

In adiscriminatoryreverse auction, the buyer determines for
each sellerj a distinct pricep; with the objective of mini-
mizing the total cosEj p;jq; subject to the supply constraint
Zj g; > Q. (Without free disposal, the quantity constraint is
an equality.) The problem of clearing such an auction with
piecewise linear supply curves again turns out to\b®-
Complete.

Theorem 3.4 A single-item, multi-unit reverse auction with
discriminatory pricing and piecewise linear (specifically step
function) supply curve bids j§P-Complete to clear so as to
minimize cost (with or without free disposal).

Froor The proofwithout free disposas the same as in The-
orem 2.5. The details of tHeee disposatase are different, so
we discuss that here. We reduce kmapsackproblem to the
reverse auction, but since knapsack is a value-maximization
problem, while the reverse auction is a cost-minimization
problem, we need a minor transformation in between.

Let {(s1,v1), (s2,v2),...,(Sn,vn), K} be aninstance of
the knapsack problem—the knapsack has capdaityand
item ¢ has sizes; and valuev;. Let us create an instance
of the single-item multi-unit reverse auction, as follows.

Bidder: places a step function bi@;, s;), meaning he is
willing to supplys; units at lot pricev; (or at any price higher
thanwv;), and no units for a price less than LetT =}, s;
be the total number of units in all the bids. We set up the
auction so that the buyer wishes to purchase at [BastK
units, at minimum possible price. L&t be the set of bids

In the second case, since the slope is negative, the maxhat are winning bids in the reverse auction. Then, we claim
mum quantity supplied ig;, and so for feasibility, we must that the remaining bids (thosetin S’) form a solution to the
have@ < ¢;. Since the buyer admits free disposal, we canknapsack problem. First, since the bidsSfrhave a total of at
purchase any quantity betweéhandgq;, in order to mini-  leastT — K units, the remaining units are at mdst and so
mize the cost. We defing, = max{gz, Q} so that the feasi- the solution is knapsack feasible. Second, since the bifls in
ble range of quantity i&7;, ¢5]. We now invoke the algebra of provideT — K units at least possible price, the total price of
Lemma 2.2 to observe that quantityq(p) decreases the far- the remaining bids is largest possible subject to the knapsack
ther the price deviates fropt = —%. (Recall that we have constraint. Thus, the auction problem\&P-Complete. O



In fact, the reverse auction without free disposaM®- If there is free disposal the auctioneer can always sell
Completeeven with linear downward sloping supply curyves fewer than@ units because, at worst, he can dispose of the
unlike the seller auction with linear demand curves which isextra units for free. On the other hand, for many real goods
polytime solvable (except in the absurd case of constant dehere is no free disposal.

mand lines and no free disposal), cf. Theorem 2.6. Theorem 4.2 If the seller has to sell exactty units (or none

Theorem 3.5 A single-item, multi-unit reverse auction with if the instance is infeasible), and each buyer submits one
discriminatory pricing and no free disposaldéP-Complete  price-quantity bid, then even finding a feasible solution is
to clear so as to minimize cost with downward sloping linearA"P-Complete. The problem of maximizing revenue can be

supply curve bids. solved optimally in pseudo-polynomial time.
PROOF. Consider an instance of the subset sum problem: sée®rooFr. Finding a feasible solution j§P-Complete because
of non-negative integer® = {z;,z.,...,2,}, and aninte- the special case whefg = ¢; for all i is equivalent to the

ger K. Corresponding ta;, we create a linear supply curve subset sunproblem, which isN“P-Complete. The problem

g = —p + z;. The subset sum problem has a solution if andcan be solved in pseudo-polynomial time using a straightfor-
only if the reverse auction without free disposal has a solutiorward dynamic program. We omit it due to limited spacé]

for quantity and cost 0. O In many settings, a bidder could accept alternative quanti-
Remark. In the preceding theorem, the price zero is only forties at different prices. This can be enabled by allowing each
convenience. We can easily truncate the supply curves, fd¥idder to submit multiple price-quantity bids which are com-
example ap = 1, to enforce a minimum unit price of one. In bined withxor.

that case, the subset sum has solution if and only if the buyerheorem 4.3 If a seller can sell at mos units, and each
can acquire exactl” units at total pricex. buyer submits a set of alternative price-quantity bids (i.e.,
Remark. With free disposal and downward sloping or con- XOR bids), then the problem i3/P-Complete. It can be
stant supply lines (that start at= 0), the optimal solutionis  Solved in pseudo-polynomial tin@(n*V L), wheren is the
obtained inO(n) time by accepting all supply lines at= 0. number of bidders[ is the maximum number of alternative

If the aggregate quantity is at leagt then the solution is bids by any buyer, andl” is the maximum price of any bid.
feasible and optimal. Otherwise, no solution is feasible. ~ The problem can also be approximated withifla- €) fac-
Remark. With constant supply lines and no free disposal,tor of the optimum irO(nLlog : + =) time.

finding a feasible solution to the reverse auction\i$P- ProoOFR N 'P-Completeness follows from Theorem 4.1 since
Complete because that corresponds todhleset sunprob-  each bidder might only submit one price-quantity pair.

lem. If a feasible solution exists, and the lines stayt at 0, We now devise a pseudo-polynomial algorithm. We la-
then the optimal solution has zero cost (acceptat0 each  bel the bidders (arbitrarily)l throughn. Observe thahV’
one of the lines that are part of the feasible solution). is an upper bound on the revenue. L4&fi,v) denote the

Remark. In reverse auctions, downward sloping supply cor-Smallest number of units that can be sold to bidders in the set

responds to quantity discounts. A more common case would!; 2; - - -, i} with total revenue exactly.
be upward sloping supplyi.e., the higher the price, the more 1. [Initialize: ] Let the alternative price-quantity bids of buyer 1

the supplier is willing to sell. We analyze upward sloping sup- be(q1,p1) XOR (g2,p2) XOR ... (gj,p;). Set
ply lines in another papdBSandholm and Suri, 2001show- o A(l,pi) = qi, fort=1,2,...,j.
ing clearing complexity of)(n log n)—the same complexity e A(1,v) = oo, for all other values ob.

asauctionswith downwardsloping demand lines. 2 fori=2ton

forv=1tonV

4 Price-Quantity Pair Bids A(i,v) = 0o

In this section we consider auctions where the auctioneer has if buyer: has bid(q1, p1) XOR (g2, p2) XOR ... (¢j,p;),
multiple indistinguishable units of one item to sell, and bid-  then for t =110

ders express their preferences pi&ce-quantity pairs if p < v then

Definition 1 In a price-quantity pairbid (p, ¢), the bidder A(i,v),

states a pricep € Z7T that he is willing to pay foy € Z+ A(i,v) =min{ A(i —1,v),

units? The bid is atomic, meaning it must be accepted as a . g+ A= 10— p)

whole or rejected—it cannot be accepted fractionally. else A(i,v) = A(i — 1,v).

Theorem 4.1 (Known) If the seller hasQ units, and each _ This algorithm computes a solution i0(n*V L) time.
buyer submits one price-quantity bid, then the problem ofl'his pseudo-polynomial algorithm can be converted ta-an
maximizing revenue is equivalent to théP-Complete knap-  approximation algorithm with running tim@(n L log £ + &)

sack problem. It is solvable in pseudo-polynomial timeusing the scheme of Lawlgtawler, 197§. o
O(n%V) [Garey and Johnson, 19¥9vheren is the number While xoRr bids are fully expressive in the sense that they
of bids andV is the maximum price of any bid. It is approx- allow a bidder to express any valuation (mapping from the
imable within a(1 — ¢) factor of the optimum in polynomial number of units to a price), in many cases, a more compact
timeO(n log % + 5%1) [Lawler, 1978. (and never less compact) representation of the same valuation

; - . . . . n in in -of- idding lan An
2In this section we consider the case wherés the price for can be obtained using ti-of-xors bidding language

the entire lotg. If a unit price is stated instead, it can be trivially 3Xor bids andor-of-xors bids were originally introduced
converted to a lot price by multiplying by for combinatorial auctions where there are multiple distinguish-



Market type Linear curves Piecewise
linear curves
Upward constant downward
sloping sloping
Nondiscriminatory O(n) O(n) O(nlogn) O(nklog(nk)) *
auction
Discriminatory O(n) fd: O(n) O(nlogn) ™ NP-Complete ™
auction nfd: N"P-Complete
Nondiscriminatory O(nlogn) O(n) O(n) O(nklog(nk)) ®
reverse auction
Discriminatory O(nlogn) ™ fd: O(n) fd: O(n) NP-Complete ™
reverse auction [Sandholm and Suri, 2091| nfd: NP-Complete | nfd: N"P-Complete

Table 1: Summary of our results on clearing supply/demand curves (fd = free disposal, nfd = no free disposal). The nontrivial
results are marked with a “*”.

OR-0f-xORs bid is a bid where multipl&or price-quantity In addition to the results summarized in the table, we be-
bids are offered and any number of these can be acceptdidve that one of the most surprising result of our paper is
(subject to honoring the overall quanti}): the following property of discriminatory auctions: at the un-
constrained optimum, each bidder generally gets a different
[(q1,p1) XOR (g2,p2) XOR ... (gi, pi)] OR price, but interestingly, to accommodate the constraint of lim-
[(¢i+1,Pi+1) XOR (Git2, Pit2) XOR ...(g;j,pj)] OR. .. ited supply, each bidder’s price is incremengsgiallyfrom

the unconstrained optimum.

When bidders express their preferences with price-quantity
Theorem 4.4 If the auctioneer can sell at mo&t units, and  pairs, the market clearing problem is essentially equivalent to
each bidder submits anr-of-xors bid, then the problem the knapsack problem, and therefdré>-Complete but solv-
can be solved and approximated with the time complexitiegble in pseudo-polynomialtime. With free disposal, the prob-

[(qk> Pr) XOR (Qk41,Pr+1) XOR ... (q1, )]

stated in Theorem 4.3, wherenow is the number ator-  lem admits a polynomial-time approximation scheme, but no
disjuncts submitted overall, andis the maximum number of such approximation scheme is possible without free disposal.
bids within anyxor-disjunct. We also describe pseudo-polynomial algorithmsdor bids

andoRr-of-XoRs bids, and their polynomial approximability
when free disposal is allowed.
€ Our N'P-completeness results carry over éachanges

PROOF We can treat differentor bids from the same bidder
as coming from different bidders. Since each bidder can b
awarded any number ofr bids, this transformationis sound. yhere the objective is to maximize surplus, i.e., sum of ac-

We can thus assume that each bidder has submitted only oRgpteq bids minus sum of accepted asks) directly since auc-
XOR bid, and solve the problem using the algorithm describedjons and reverse auctions are special cases of exchanges.

in the proof of Theorem 4.3. o , Our algorithms help pave the way toward automated elec-
Now, considexor bids andor-of-xors bids in settings  tronjc markets without external liquidity providers, but at the
where the auctioneer has to sell exacflyunits. It follows  same time, oun'P-Completeness results curtail the space of

from Theorem 4.2 that finding a feasible solution (and thereytomated market designs that are computationally tractable.
fore also approximation) i8/P-Complete (unlike in the free

dlslposal.slet_tmg). _The problem can be soll\(/'ed mhpseudoReferences
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