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Abstract. Mechanism design is the art of designing the rules of the
game (aka. mechanism) so that a desirable outcome (according to a given
objective) is reached despite the fact that each agent acts in his own self-
interest. Examples include the design of auctions, voting protocols, and
divorce settlement procedures. Mechanisms have traditionally been de-
signed manually for classes of problems. In 2002, Conitzer and Sandholm
introduced the automated mechanism design approach, where the mech-
anism is computationally created for the specific problem instance at
hand. This approach has several advantages: 1) it can yield better mech-
anisms than the ones known to date, 2) it applies beyond the problem
classes studied manually to date, 3) it can circumvent seminal economic
impossibility results, and 4) it shifts the burden of design from man to
machine. In this write-up I overview the approach, focusing on prob-
lem representations, computational complexity, and initial applications.
T also lay out an agenda for future research in this area.

1 Introduction

In multiagent settings, agents generally have conflicting preferences, yet it is cru-
cial to be able to aggregate the preferences, that is, to choose a socially desirable
outcome, for example a president, resource allocation, or task allocation. This
problem prevails among any self-interested agents: humans, companies, etc.—
and software agents representing such parties.

Preference aggregation mechanisms include voting protocols, auctions, di-
vorce settlement procedures, and collaborative rating systems, to name just a
few. Unfortunately, most naive preference aggregation mechanisms suffer from
manipulability. An agent may have an incentive to misreport its preferences in
order to mislead the mechanism into selecting an outcome that is more desir-
able to the agent than the outcome that would be selected if the agent revealed
its preferences truthfully. Manipulation is an undesirable phenomenon because
preference aggregation mechanisms are tailored to aggregate preferences in a
socially desirable way, and if the agents reveal their preferences insincerely, a
socially undesirable outcome may be chosen. Manipulability is a pervasive prob-
lem across preference aggregation mechanisms. A seminal negative result, the
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Gibbard-Satterthwaite theorem, shows that under any nondictatorial preference
aggregation scheme, if there are at least 3 possible outcomes, there are pref-
erences under which an agent is better off reporting untruthfully [25,47]. (A
preference aggregation scheme is called dictatorial if one of the agents dictates
the outcome no matter how the others vote.)

Mechanism design is the art of designing the mechanism (i.e., rules of the
game) so that the agents are motivated to report their preferences truthfully and
a desirable (according to a given objective) outcome is chosen. The objective can
be, for example, social welfare (i.e., sum of the agents’ utilities), seller’s revenue,
fairness, or some combination of these.

1.1 Manual mechanism design

Mechanism design has traditionally been a manual endeavor. The designer uses
experience and intuition to hypothesize that a certain rule set is desirable in some
ways, and then tries to prove that this is the case. Alternatively, the designer for-
mulates the mechanism design problem mathematically and characterizes desir-
able mechanisms analytically in that framework. These approaches have yielded
a small number of canonical mechanisms over the last 40 years, each of which
is designed for a class of settings and a specific objective. The upside of these
mechanisms is that they do not rely on (even probabilistic) information about
the agents’ preferences (e.g., the Vickrey-Clarke-Groves (VCG) mechanism [48,
9,27]), or they can be easily applied to any probability distribution over the
preferences (e.g., the dAGVA mechanism [24, 2], the Myerson auction [39], and
the Maskin-Riley multi-unit auction [38]). However, these general mechanisms
also have significant downsides:

— The most famous and most broadly applicable general mechanisms, VCG
and dAGVA, only maximize social welfare. If the designer is self-interested,
as is the case in many electronic commerce settings, these mechanisms do
not maximize the designer’s objective.

— The general mechanisms that do focus on a self-interested designer are only
applicable in very restricted settings. For example, Myerson’s expected rev-
enue maximizing auction is for selling a single item, and Maskin and Riley’s
expected revenue maximizing auction is for selling multiple identical units
of an item.

— Even in the restricted settings in which these mechanisms apply, the mech-
anisms only allow for payment maximization. In practice, the designer may
also be interested in the outcome per se. For example, an auctioneer may
care which bidder receives the item.

— It is often assumed that side payments can be used to tailor the agents’ incen-
tives, but this is not always practical. For example, in barter-based electronic
marketplaces—such as Recipco, firstbarter.com, BarterOne, and Intagio—
side payments are not allowed. Furthermore, among software agents, it might
be more desirable to construct mechanisms that do not rely on the ability to
make payments, because many software agents do not have the infrastructure
to make payments.



— The most common mechanisms (e.g., VCG, dAGVA, Myerson auction, and
the Maskin-Riley auction) assume that the agents have quasilinear prefer-
ences. This means that the utility function of each agent ¢ € {1,..., N} can
be written as w;(0,m1,...,7mn) = v;(0) — 7;, where o is the outcome and 7;
is the amount that agent ¢ has to pay. So, very restrictively, it is assumed
that 1) the agent’s valuation, v;, of outcomes is independent of money, 2)
the agent does not care about other agents’ payments, and 3) the agent is
risk neutral.

In addition to mechanisms, mechanism design research has yielded impossi-
bility results that state that no mechanism works across a class of settings (for
varying definitions of “works” and varying classes). For example, the Gibbard-
Satterthwaite theorem, discussed above, states that for the class of general pref-
erences, no mechanism works in the sense that 1) the mechanism’s outcome can
be any one of at least three candidates, 2) the mechanism is nondictatorial, and
3) every agent’s dominant strategy is to reveal his preferences truthfully.

1.2 Automated mechanism design

In sharp contrast to manual mechanism design, Conitzer and Sandholm in 2002
introduced a systematic approach—called automated mechanism design—where
the mechanism is automatically created for the setting and objective at hand [16].1
This has at least four important advantages:

— It can be used in settings beyond the classes of problems that have been
successfully studied in (manual) mechanism design to date.

— It can allow one to circumvent the impossibility results: when the mechanism
is designed for the setting (instance) at hand, it does not matter that it
would not work on preferences beyond those in that setting (e.g., for a class
of settings). Even when the optimal mechanism—created automatically—
does not circumvent the impossibility, it always minimizes the pain entailed
by impossibility.

— It can yield better mechanisms (in terms of better outcomes and/or stronger
nonmanipulability guarantees?) than the canonical mechanisms because the
mechanism capitalizes on the particulars of the setting (the probabilistic
(or other) information that the mechanism designer has about the agents’
preferences).

Given the vast amount of information that parties have about each other
today, it is astonishing that the canonical mechanisms (such as first-price
reverse auctions), which ignore that information, have prevailed thus far. I
foresee an imminent revolution, where future mechanisms will be created

! Note that automated mechanism design is completely different from algorithmic
mechanism design [41]. In the latter, the mechanism is designed manually with the
goal that erecuting the mechanism is computationally tractable. On the other hand,
in automated mechanism design, the mechanism itself is designed automatically.

2 For example, satisfaction of ez post IC and/or IR constraints rather than their ez
interim variants. These are discussed in Section 2.



automatically. For example, imagine a Fortune 1000 company automatically

creating its procurement mechanism based on its statistical knowledge about

its suppliers (and potentially also the public prices of the suppliers’ inputs,

ete.). Initial work like this is already being conducted at CombineNet, Inc.
— It shifts the burden of mechanism design from humans to a machine.

2 The computational problem

As a first step toward fulfilling the vision of automated mechanism design, we
modeled mechanism design as a computational optimization problem [16,20].
This section reviews that model.

First, the automated mechanism design setting is defined as follows.

Definition 1. In an automated mechanism design setting, we are given
A finite set of outcomes O;

A finite set of N agents;

For each agent 1,

— a finite set of types 6y,

— a probability distribution v; over ©; (in the case of correlated types, there is
a single joint distribution vy over ©1 X ... x Oy ),

— a utility function u; : ©; x O — R;3

An objective function whose expectation the designer wishes to maximize.

There are many possible objective functions the designer might have, for
example, social welfare (where the designer seeks to maximize the sum of the
agents’ utilities), or the minimum utility of any agent (where the designer seeks
to maximize the worst utility had by any agent). In both of these cases, the
designer is benevolent, because the designer, in some sense, is pursuing the agents’
collective happiness. On the other hand, a self-interested designer cares only
about the outcome chosen (that is, the designer does not care how the outcome
relates to the agents’ preferences, but rather has a fixed preference over the
outcomes), and about the net payments made by the agents, which flow to
the designer. Specifically, a self-interested designer has an objective function

N
g(o) + > m;, where g : O — R indicates the designer’s own preference over the
i=1
outcomes, and 7; is the payment made by agent ¢. In the case where g = 0
everywhere, the designer is said to be payment mazimizing. In the case where
payments are not possible, g constitutes the objective function by itself.
We now define the kinds of mechanisms under study.

3 Though this follows standard game theory notation [37], the fact that the agent
has both a utility function and a type is perhaps confusing. It simply means that
the agent has a utility function from a finite set of utility functions. If agent is
of type 1, then it has the first utility function, an agent of type 2 has the second
utility function, and so on. The agent’s type is not known to the aggregator. The
utility function is common knowledge, but because the agent’s type is a parameter
in the agent’s utility function, the aggregator cannot know what the agent’s utility
is without knowing the agent’s type.



Definition 2. A deterministic mechanism without payments consists of an out-
come selection function o : ©1 X O3 X ... x O — O. A randomized mecha-
nism without payments consists of a distribution selection function p : @1 X
O X ... x On — P(0), where P(O) is the set of probability distributions over
O. A deterministic mechanism with payments consists of an outcome selection
function o : @1 X O3 X ... x On — O and for each agent i, a payment se-
lection function m; : ©1 X O3 X ... X Oy — R, where w;(01,...,0N) gives
the payment made by agent i when the reported types are 01,...,0N. A ran-
domized mechanism with payments consists of a distribution selection function
p:O1 XOyx...x Oy — P(O), and for each agent i, a payment selection
function m; : ©1 x Oy x ... x Oy — RA

There are two types of constraint on the designer in building the mechanism:
individual rationality constraints and incentive compatibility constraints. The
following subsections will define them, respectively.

2.1 Individual rationality (IR) constraints

The first type of constraint is the following. The utility of each agent has to
be at least as great as the agent’s fallback utility, that is, the utility that the
agent would receive if it did not participate in the mechanism. Otherwise that
agent would not participate in the mechanism—and no agent’s participation can
ever hurt the mechanism designer’s objective because at worst, the mechanism
can ignore an agent by pretending the agent is not there. (Furthermore, if no
such constraint applied, the designer could simply make the agents pay an in-
finite amount.) This type of constraint is called an IR (individual rationality)
constraint (aka. participation constraint). There are three different possible IR
constraints: ex ante, ex interim, and ex post, depending on what the agent knows
about its own type and the others’ types when deciding whether to participate
in the mechanism. Ez ante IR means that the agent would participate if it knew
nothing at all (not even its own type). We will not study this concept in this
paper. Ex interim IR means that the agent would always participate if it knew
only its own type, but not those of the others. Ez post IR means that the agent
would always participate even if it knew everybody’s type. We will define the
latter two notions of IR formally. First, we need to formalize the concept of the
fallback outcome. We assume that each agent’s fallback utility is zero for each
one of its types. This is without loss of generality because we can add a con-
stant term to an agent’s utility function (for a given type), without affecting the
decision-making behavior of that expected utility maximizing agent [37].

Definition 3. In any automated mechanism design setting with an IR con-
straint, there is a fallback outcome oy € O where, for any agent i and any type
0; € 6;, we have u;(0;,00) = 0. (Additionally, in the case of a self-interested
designer, g(og) =0.)

4 We do not randomize over payments because as long as the agents and the designer
are risk neutral with respect to payments, that is, their utility is linear in payments,
there is no reason to randomize over payments.



We can now to define the notions of individual rationality.
Definition 4. Individual rationality (IR) is defined as follows.

— A deterministic mechanism is ex interim IR if for any agent i, and any type
0; € Oy, we have E, 0, ,0,.:,.08)0,[wi(0i0(01,...0n)) — mi(01,..,0N)]
> 0.
A randomized mechanism is ex interim IR if for any agent i, and any type
0; € Oy, we have Eg, 0., 0,.1,...0x)10, Foloy,...0, [Wi(0i, 0) —mi (61, ..,0n)] > 0.
— A deterministic mechanism is ex post IR if for any agent i, and any type vec-
tor (01,...,0n) € O1%...xOp, we have u;(0;,0(01,...,0n5))—mi(01,...,0n) >
0.
A randomized mechanism is ex post IR if for any agent i, and any type vector
(917 . 79]\7) € O1X...xON, we have Eo‘gl,_v’gn [uz(Oz, O) —7Ti(91, ..791\])} > 0.

The terms involving payments are left out if payments are not possible.

2.2 Incentive compatibility (IC) constraints

The second type of constraint states that the agents should never have an incen-
tive to misreport their type. For this type of constraint, the two most common
variants (or solution concepts) are implementation in dominant strategies, and
implementation in Bayesian Nash equilibrium.

Definition 5. Given an automated mechanism design setting, a mechanism is
said to implement its outcome and payment functions in dominant strategies if
truthtelling is always optimal even when the types reported by the other agents are
already known. Formally, for any agent i, any type vector (61,...,60;,...,0N) €
O1 X...X60O; x...x Oy, and any alternative type report 6, € ©;, in the case of
deterministic mechanisms we have
Ui(ei,O(ah...,9}',...,01\[)) —Wi(Hl,...,Qi,...,HN) 2
ui(Gi,o(Gl,. .. ,91', .. .,GN)) - 771'(01, .. .,Gi,. .. ,9]\[).

In the case of randomized mechanisms we have
Eoforrot 0, [0(65,0) — (61, 0ry., Ox)] =

Eo\Gl,..,éi,..,Hn [Uz<9“0) — 7'l'i(917 e ,éi, ey QN)]
The terms involving payments are left out if payments are not possible.

Thus, in dominant strategies implementation, truthtelling is optimal regard-
less of what the other agents report. If it is optimal only given that the other
agents are truthful, and given that one does not know the other agents’ types,
we have implementation in Bayesian Nash equilibrium.

Definition 6. Given an automated mechanism design setting, a mechanism is
said to implement its outcome and payment functions in Bayesian Nash equi-
librium if truthtelling is always optimal to an agent when that agent does not
yet know anything about the other agents’ types, and the other agents are telling
the truth. Formally, for any agent i, any type 0; € O;, and any alternative type
report 0; O;, in the case of deterministic mechanisms we have



E6,,..0,1,6011,...00)0: [wi(0i, 0001, .. -,6}‘, s ON)) =m0, 0i, . 0N)] >

E6,,..00 1,601,000 (Wi (01,0001, ..., 0i, ..., 0n)) —7i(01,. .., 05, .., ON)].
In the case of randomized mechanisms we have

E6,,..0,1,6011,...00)0: FBoloy,..0.,...0, [1i(05,0) — 7 (01, ..., 05, ..., 0N)] >

E(al,»-ﬂqﬁ—l,91‘+1,-~79N)|9iEo|01,,_,éi,,,,en [ui(9i7 0) - 7775(91; ey eia ceey QN)]
The terms involving payments are left out if payments are not possible.

2.3 The optimization problem

We can now define the computational problem of automated mechanism design.

Definition 7. (AUTOMATED-MECHANISM-DESIGN (AMD)) We are given
an automated mechanism design setting, an IR notion (ex interim, ex post, or
none), and a solution concept (dominant strategies or Bayesian Nash equilib-
rium). Also, we are told whether payments are possible, and whether randomiza-
tion is possible. Finally, we are given a target value G. We are asked whether
there exists a mechanism of the specified type that satisfies both the IR notion and
the solution concept, and gives an expected value of at least G for the objective.’

3 Complexity results

This section discusses the complexity of AMD. An interesting special case is the
setting where there is only one agent. In this case, the agent always knows every-
thing there is to know about the other agents’ types—because there are no other
agents. Since ex post and ez interim IR only differ on what an agent is assumed
to know about other agents’ types, the two IR concepts coincide here. Also, be-
cause implementation in dominant strategies and implementation in Bayesian
Nash equilibrium only differ on what an agent is assumed to know about other
agents’ types, the two solution concepts coincide here. This observation is a use-
ful tool in proving hardness results: we proved computational hardness in the
single-agent setting, which immediately implies hardness for both IR concepts,
for both solution concepts, and for any constant number of agents.

Now we are ready to review the hardness results. It turns out that in settings
without side payments, such as voting, designing an optimal (e.g., expected so-
cial welfare maximizing) deterministic mechanism is A/ P-complete. This holds
whether the designer is benevolent [16,14] or self-interested [20]. If side pay-
ments are allowed, designing a deterministic mechanism is easy if the designer’s
objective is social welfare (the VCG mechanism suffices), but A/ P-complete more
generally (for example, if the objective is to maximize the expected revenue col-
lected from the bidders [20]—as is the objective in some auctions). All of these
hardness results apply even with a uniform prior over types.

Interestingly, if one allows randomized mechanisms, the mechanism design
problem becomes solvable in polynomial time using linear programming (LP)

5 For studying computational complexity, we phrase AMD as a decision problem, but
the corresponding optimization problem is clear.



(for any constant number of agents) [16,20].° A decision variable in the LP is
the probability that a given outcome is chosen given that a certain type revelation
vector (each agent reveals a type) occurs. For any constant number of agents,
the number of decision variables is polynomial in the number of types and in
the number of outcomes. Furthermore, the number of constraints (IC and IR) is
polynomial. The LP can then be solved in polynomial time.”

4 A tiny example: Divorce settlement

We built a basic automated mechanism design system to test the approach in
practice. This section illustrates a small example (from [19]). For each setting
below, our system found the optimal mechanism. The system used CPLEX,
a general-purpose optimization package, to solve the underlying mixed inte-
ger /linear program.

Consider a couple getting a divorce. They jointly own a painting and the
arbitrator has to decide what happens to the painting. There are 4 options to
decide between: (1) the husband gets the painting, (2) the wife gets the painting,
(3) the painting remains in joint ownership and is hung in a museum, and (4)
the painting is burned. The husband and wife each have two possible types: one
that implies not caring for the painting too much (low), and one that implies
being strongly attached to the painting (high). (low) is had with probability .8,
(high) with .2, by each party. To maximize social welfare, the arbitrator would
like to give the painting to whoever cares for it more, but even someone who
does not care much for it would prefer having it over not having it, making the
arbitrator’s job in ascertaining the preferences nontrivial. Specifically, the utility
function is (for either party):

u(low,get the painting)=2

u(low,other gets the painting)=0

u(low, joint ownership)=1

u(low,burn the painting)=-10 (both consider burning it bad from an art history perspective)

u(high,get the painting)=100
u(high,other gets the painting)=0
u(high, joint ownership)=50
u(high,burn the painting)=-10

First, let us assume that side payments are not possible, randomization is
not possible, and that implementation in dominant strategies is required. Our
system generated the following optimal mechanism for this setting:

husband_low husband_high
wife_low husband gets painting husband gets painting
wife_high husband gets painting husband gets painting

5 This holds for any mechanism design objective that is linear in the outcome proba-
bilities.

" Randomized automated mechanism design can be solved in polynomial time even if
the types are correlated, that is, the agents’ types are drawn from a joint distribution,
not from separate distributions.



So, we cannot do better than always giving the painting to the husband
(or always giving it to the wife). (The solver does not look for the “fairest”
mechanism because fairness is not part of the objective we specified.) Now let
us change the problem slightly, by requiring only implementation in Bayesian
Nash equilibrium. For this instance, our system generated the following optimal
mechanism:

husband_low husband_high

wife_low joint ownership husband gets painting
wife_high wife gets painting painting is burned

Thus, when we relax the incentive compatibility constraint to Bayesian Nash
equilibrium, we can do better by sometimes burning the painting! The burning
of the painting (with which nobody is happy per se) is sufficiently helpful in
tailoring the incentives that it becomes a key part of the mechanism.

It turns out that we can do better by also allowing for randomization in the
mechanism. The optimal randomized mechanism generated by the system is the
following:

husband_low husband_high
wife_low .57: husband, .43: wife 1: husband
wife_high 1: wife .45: burn; .55: husband

The randomization helps because the threat of burning the painting with
some probability when both report high is enough to obtain the incentive effect
that allows us to give the painting to the right party for other type vectors. The
mechanism now chooses to randomize over the party that receives the painting
rather than awarding joint ownership in the setting where both report low.

We also studied this divorce scenario when the benevolent mechanism de-
signer can use side payments, and when the mechanism designer is self-interested
(wants to maximize the amounts paid to him by the divorcees) [19].

5 Initial applications

The automated mechanism design approach is new, and so far we have only
done preliminary experiments. In addition to solving the small divorce scenarios
discussed above, our system has yielded the following highlights [19]:

— It reinvented the celebrated Myerson auction [39], which maximizes the
seller’s expected revenue in a 1-object auction.

— It created expected revenue maximizing combinatorial auctions. This has
been a long-standing recognized open research problem in (manual) mecha-
nism design [4,49]. The general form for such an auction is still unknown, but
automated mechanism design created prior-specific optimal mechanisms. (In
the manual mechanism design literature, even the problem with only two ob-
jects for sale is open; only a case with very special form of complementarity
and no substitutability has been solved [1].)

— It created optimal mechanisms for a public good problem (deciding whether
or not to build a bridge). The VCG mechanism could be used in this set-
ting as long as each agent’s utility function is quasilinear. However, in the



VCG, nonnegative payments are collected from the voters (intuitively, the
payments are collected in order to avoid the free rider problem), and those
payments have to be burned. According to a seminal impossibility result,
this problem plagues any mechanism that applies to general quasilinear util-
ity functions, yields a social welfare maximizing decision, and makes truthful
reporting of utility functions a dominant strategy [26]. The automated mech-
anism design approach allowed us to incorporate money burning as a loss
in the social welfare objective, and maximize that revised objective. We had
automated mechanism design create an optimal mechanism for the bridge
building scenario under each variant of the incentive compatibility (IC) con-
straint discussed above (with the ez post IR constraint). In neither variant
was money ever burned. Under the ex interim IC constraint, the bridge was
always built if and only if that was best for the agents. (Under the ez post IC
constraint this was not always the case.) For the ez interim IC constraint,
the general-purpose dAG VA mechanism could be used to yield the social wel-
fare maximizing choice without burning money [24,2]. However, a seminal
economic impossibility result shows that no mechanism for general quasilin-
ear utility functions yields the social welfare maximizing choice, maintains
budget balance, and satisfies the IR constraint (even the ex interim vari-
ant) [40]. As the experiment above showed, automated mechanism design
can circumvent this impossibility! It constructed a mechanism that satisfies
all these desiderata, and actually the ez post (i.e., stronger) variant of the
IR constraint.

— It created optimal mechanisms for public goods problems with multiple
goods. This is the public goods analog of combinatorial auctions.

6 Structured preferences

If the agents’ utility functions are additively decomposable into independent
issues, the input to automated mechanism design can be represented (potentially
exponentially) more concisely. (An example of this is a multi-item auction where
for each bidder, the value of the bundle of items that she wins is simply the sum
of the values that she assigns to the individual items in the bundle.)

In that representation it is N'P-complete (even under strong restrictions) to
design a mechanism that maximizes one of the following objectives: 1) expected
social welfare when payments are not possible, 2) a general objective function
even when payments are possible, and 3) expected revenue collected from the
agents [21]. However, again, a randomized mechanism can be designed in polyno-
mial time. So, the complexity as a function of the input length is the same in the
concise representation as it is in the flat representation. In other words, due to
its potentially exponentially shorter input length, the structured representation
allows potentially exponentially faster automated mechanism design.

7 Conclusions and perspective

Mechanism design is the art of designing the rules of the game (aka. mecha-
nism) so that a desirable outcome (according to a given objective) is reached



despite the fact that each agent acts in his own self-interest. Mechanisms have
traditionally been designed manually for classes of problems. In 2002, Conitzer
and Sandholm introduced the automated mechanism design approach, where the
mechanism is computationally created for the specific problem instance at hand.
As illustrated in this write-up, this approach has several advantages: 1) it can
yield better mechanisms than the ones known to date, 2) it applies beyond the
problem classes studied manually to date, 3) it can circumvent seminal economic
impossibility results, and 4) it shifts the burden of design from man to machine.

In most variants of the problem, designing a deterministic mechanism is
N P-complete (even with just one agent), while a randomized mechanism can
be designed in polynomial time using linear programming (for any constant
number of agents). Put in perspective, the designer faces uncertainty about the
agents’ private information, which leads to the need for mechanism design and
introduces the associated computational complexity. Interestingly, the designer
can remove this complexity by making the agents face additional uncertainty
(randomization in the mechanism). This comes at no loss, and in some cases at
a gain, in the designer’s objective because deterministic mechanisms are a subset
of randomized ones (the outcome probabilities are 0/1 for each type vector).

Applications overviewed included different types of divorce settlement set-
tings, optimal auctions, optimal combinatorial auctions (a recognized open re-
search problem in manual mechanism design), optimal public goods problems,
and optimal combinatorial public goods problems. If the agents’ utility functions
can be additively decomposed into independent issues, the input to the mech-
anism design problem can become exponentially shorter, and it turns out that
this allows for exponentially faster solving of the design problem.

One potential objection to automatically designed mechanisms is that they
can be complex (the mapping from type revelation vectors to outcomes can be
long to list), and unintuitive (because they are designed anew for each setting,
the agents will likely not have had any previous experience with the mechanism).
I would argue that neither of these objections is fundamental: it suffices for each
agent to know his best way of behaving in the mechanism (which, by the IR and
IC constraints, is participating and revealing his type truthfully).

8 Current and future research directions

Automated mechanism design is a brand new area of research, and holds signifi-
cant promise for enormous theoretical and practical impact. In this section I lay
out an agenda for current and future research in this area.

8.1 Real-world applications

In the short term, the automated mechanism work with greatest practical impact
will undoubtedly be the application of the methodology to real-world problems.
While we introduced automated mechanism design only recently (in 2002), it is
already being adopted in applications. In addition to our own explorations of
applications [19] reviewed above, our approach and methodology is being used
by others, for example to design auctions [28] and nonmanipulable collaborative



rating systems [30]. Promising application areas for the future include other
auction settings, voting settings, and a variety of mediation settings.

8.2 Partial priors and input representation

One potential criticism is that in automated mechanism design, the prior dis-
tribution of types is used. This runs directly against the Wilson doctrine of
mechanism design that states that the mechanism should be prior-independent
because in many settings the designer does not know the prior. I would argue
that in many settings the designer does know a lot about the prior, and it would
be silly to ignore it. Consider, for example, a Fortune 1000 company procuring
materials from its established supplier base. The company certainly has sig-
nificant statistical information about the suppliers’ capacities and production
costs. Secondly, in many settings, good mechanisms must use the prior. This is
necessary, for example, in revenue-maximizing auctions. Therefore also many of
the manually designed mechanisms (e.g., the dAGVA mechanism, the Myerson
auction, and the Maskin-Riley auction) do use the prior.

A related potential objection arises from the fact that in some settings the
type space can be so large that the input to mechanism design is prohibitive.
For example, in a combinatorial auction, the number of bundles is exponential
in items, and even if every bundle can have a small number of alternative values
(for a given agent), the agent’s type space is doubly exponential in items.

To make automated mechanism design practical in these settings, it would be
desirable to develop ways to use only partial information about the prior (and the
type space), and yet design mechanisms that are provably (or experimentally)
close to optimal. Furthermore, could the mechanism design software selectively
and incrementally elicit partial information about the input on an as-needed
basis from the human designer who uses the software—and yet design a (close
to) optimal mechanism?

Related research questions include the following. How should the type space
be discretized if the actual type space is continuous? Can the discretization be
avoided entirely in some settings? Can the input be represented more effectively
in some settings? (Section 6 showed that if the agents’ utility functions are
additively decomposable, the answer to the last question is affirmative.)

8.3 Special-purpose algorithms and characterization results
While optimal randomized mechanisms are quick to design automatically, opti-
mal deterministic ones tend to be A/P-complete to design. CPLEX tends to be
able to create optimal deterministic mechanisms with tens of types and tens of
outcomes in less than a minute [19]. Future research should improve this scala-
bility through algorithms specially crafted for automated mechanism design.
One interesting approach along that line is to use game-theoretic character-
ization results (that state features that all mechanisms with certain desirable
properties for a class of settings have, e.g., [35,51]) to prune down the search.
One example along these lines is a general search algorithm for designing deter-
ministic mechanisms for one agent [18]. It tends to outperform CPLEX. Another
example is the recent design of a 1-object optimal auction mechanism when the



objective is a combination of the bidders’ welfare and the seller’s expected util-
ity [36]. The main piece of that work is an analytical characterization, but at the
end, a binary search algorithm is used to set the key parameter—which depends
on the prior and for which an analytical solution does not exist. Yet another
example is a recent paper on automated determination of an optimal sequence
of take-it-or-leave-it-offers (e.g., by a seller to a set of buyers, one buyer at a
time) [46]. It has a simple characterization result that makes modeling of the
optimization problem viable, thus enabling computational solving. The latter
two examples also serve as examples of techniques that are for a special kind of
automated mechanism design setting rather than for the general case.

8.4 Handling collusion

The mechanism design setting discussed in this write-up so far considers devi-
ations by individual agents. Even if a mechanism is robust against such devia-
tions, a coalition of agents may be better off by reporting their types insincerely.
Several solution concepts have been proposed that require robustness against
coalitional deviations [3, 7]. Future research should study automated mechanism
design under those solution concepts as well.

8.5 Inducing general mechanisms and mechanism design principles

Another future use of automated mechanism design is to solve for mechanisms
for a variety of settings (real or artificially generated), and to see whether new
canonical mechanisms (that work across a class of settings) and/or mechanism
design principles can be inferred.

8.6 Nonstandard mechanism types

Perhaps most fundamentally, automated mechanism design could be used while
at the same time relaxing some of the core assumptions of mechanism design. In
this section I will discuss some important avenues along this line.

Multi-stage mechanisms Often in practice only a portion of the type infor-
mation is needed to determine the outcome. What information is needed from an
agent generally depends on what types the other agents have. There has been sig-
nificant recent work on selective incremental preference elicitation from bidders
in combinatorial auctions [10, 12, 11,29, 52, 8] ® and from voters in elections [17].
It turns out that in some settings, exponentially less information is commu-
nicated in a multi-stage mechanism than in the most communication-efficient
single-step mechanism [22].

So, in practice, multi-stage mechanisms may be desirable in order to reduce
communication, enhance privacy, and to reduce the agents’ effort in settings
where they need to expend effort to determine their own types (for example, in
many auctions, a bidder does not know the value of the goods before constructing
a plan of what he would do with the goods if he won). Future work includes
automatically designing multi-stage mechanisms.

& Ascending (combinatorial) auctions (e.g., [42, 50]) are a special cases of the elicitation
model.



Mechanisms with insincere equilibrium play The mechanism design frame-
work presented in this write-up creates mechanisms in which truthful type re-
porting is each agent’s best strategy. This is justified by a central design principle
in mechanism design, the revelation principle [37]. It states that anything that
can be accomplished with a mechanism where some agents’ best strategies in-
volve insincere reporting, can be accomplished with a mechanism where each
agent’s best strategy is to reveal his type truthfully.®

However, the revelation principle falls apart in practice when computational
complexity is an issue. A recent paper [22] shows that there are settings where 1)
the optimal truthful mechanism is N P-complete to execute (for the center, e.g.,
auctioneer, who is running the mechanism), 2) by moving to insincere mecha-
nisms, one can shift the burden of having to solve the N P-complete problem
from the center to one of the agents, 3) the insincere mechanism is equally good
as the optimal truthful mechanism in the presence of unlimited computation,
and most interestingly, 4) whereas being unable to carry out the complex com-
putation would have hurt the center in achieving his objective in the truthful
setting, if the agent is unable to carry out the complex computation, the value
of the designer’s objective strictly improves. This shows that there are at least
theoretical settings where it is beneficial to use insincere mechanisms. So, is there
an advantage in practical settings? What would such mechanisms look like? Are
there principles for constructing them? Could they be automatically designed?

Mechanisms that take into account the agents’ bounded rationality
Sometimes economic mechanism design falls short: it can hit one of the impossi-
bility results. One way to try to circumvent impossibility results is to relax the
incentive compatibility constraint (and hopefully the other desirable properties
are obtainable). Then, the agents may have incentive to manipulate. A novel
way around this is to design mechanisms where finding a beneficial insincere
type revelation is provably hard computationally. There has been work char-
acterizing the complexity of manipulating known voting protocols [6, 5,15, 13],
and recent work on designing small changes to voting protocols so that manip-
ulation becomes hard [15,23]. Future research includes automatically designing
mechanisms that are provably hard to manipulate.

Another significant issue is that an agent may not know his preferences up
front, but can refine them by computing or information gathering. For example,
when a trucking company bids for a trucking task, this involves solving (at least)

9 The proof is remarkably simple: given any mechanism, we can construct a truth-
promoting mechanism whose performance is identical, as follows. We build an inter-
face layer between the agents and the original mechanism. The agents report their
types to the interface layer; subsequently, the interface layer inputs into the original
mechanism the types that the agents would have strategically reported to the origi-
nal mechanism, if their types were as declared to the interface layer. The resulting
outcome is the outcome of the new mechanism. Since the interface layer acts “strate-
gically on each agent’s behalf”, there is never an incentive to report falsely to the
interface layer. The types reported by the interface layer are the strategic types that
would have been reported without the interface layer, so the results are exactly as
they would have been with the original mechanism.



two A P-complete planning problems: the vehicle routing problem with the new
task and the problem without it [43,44]. The difference in the costs of those
two local plans is the cost of taking on the new task. Should a bidder evaluate
the object he is bidding on if there is a cost to doing so? It turns out that the
celebrated Vickrey auction loses its dominant-strategy property if the bidder has
the option to evaluate the object or not: Whether or not the bidder should pay
the evaluation cost depends on the other bidders’ valuations [45].

The issues run even deeper. If a bidder has the opportunity to approximate
its valuation to different degrees, how much computing time should the bidder
spend on refining its valuation? If there are multiple items for sale, how much
computing time should the bidder allocate on different bundles of items? A bid-
der may even allocate some computing time to evaluate other bidders’ valuations
(e.g., how much it would cost for a competing trucking company to take on a
given set of tasks) so as to be able to bid more strategically; this is called strategic
computing [33, 32, 31, 34].

To answer these questions, we developed a deliberation control method called
a performance profile tree for projecting how an anytime algorithm (a black box
from the perspective of the deliberation controller) will change the valuation if
additional computing is allocated toward refining (or improving) it [33, 32,31,
34]. Unlike earlier deliberation control methods for anytime algorithms, the per-
formance profile tree is a fully normative model of bounded rationality: it takes
into account all the information that an agent can use to make its deliberation
control decisions. (This is necessary in the game-theoretic context; otherwise a
self-interested agent could take into account some information that the model
does not, which could lead to strategic instability and much worse results.)

Using this deliberation control method, the computing actions can be made
part of the (auction) game. At every point, each agent can decide on which bundle
to allocate its next step of computing as a function of the agent’s computing
results so far (and in open-cry auction format also the others’ bids observed so
far). At every point, the agent can also decide to submit bids. One can then solve
this model for the Bayesian Nash equilibrium, where each agent’s (deliberation
and bidding) strategy is a best-response to the others’ strategies. This is called
a deliberation equilibrium. With this model, it has been determined under what
conditions strategic computing does (not) occur [33, 32, 31, 34].

Our performance profile tree based deliberation control method together with
the idea of deliberation equilibrium provide a normative model of bounded ratio-
nality in multiagent systems, which is needed to determine how computationally
constrained self-interested agents would behave in a given mechanism. This al-
lows one to evaluate mechanisms for computationally constrained agents, and
hopefully paves the way to designing such mechanisms (automatically). This
methodology could also be used to design mechanisms that are computation-
ally hard to manipulate, where hardness is measured not in terms of worst-case
complexity, but informed by game-theoretic deliberation control. This methodol-
ogy could even yield new mechanism design principles. As discussed, the central
design principle in mechanism design, the revelation principle, ceases to mean-
ingfully hold under computational or communication constraints.
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