
An Algorithm for Automatically Designing Deterministic Mechanisms without
Payments∗

Vincent Conitzer andTuomas Sandholm
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

{conitzer, sandholm}@cs.cmu.edu

Abstract

Mechanism design is the art of designing the rules of the
game so that a desirable outcome is reached even though
the agents in the game behave selfishly. This is a difficult
problem because the designer is uncertain about the agents’
preferences and the agents may lie about their preferences.
Traditionally, the focus in mechanism design has been on
designing mechanisms that are appropriate for a range of
settings. While this approach has produced a number of fa-
mous mechanisms, much of the space of possible settings
is still left uncovered. In contrast, inautomated mechanism
design (AMD), a mechanism iscomputedon the fly for the
setting at hand—a universally applicable approach.

In this paper we present (to our knowledge) the firstalgo-
rithm designed specifically for AMD. It is designed for the
special case where there is only one type-reporting agent,
the mechanism must be deterministic, and payments are not
possible. The algorithm relies on an association of a par-
ticular (easy to compute) mechanism to each subset of out-
comes, and a proof that one such mechanism is an opti-
mal one—which allows us to reduce the search space to one
of size2|O|. We propose an admissible heuristic to use in
searching over this space, and show how it can be updated
efficiently from node to node. We show how to apply branch
and bound DFS as well as IDA* to this search space, and
show that this approach outperforms CPLEX 8.0, a general-
purpose solver, solidly on unstructured instances, both with
and without an IR constraint. However, on our third type of
instance, a bartering problem, CPLEX almost achieves the
performance of our algorithm by exploiting the structure in-
herent in the domain.

∗ This material is based upon work supported by NSF under CAREER
Award IRI-9703122, Grant IIS-9800994, ITR IIS-0081246, and ITR
IIS-0121678.

1. Introduction

In many multiagent settings, anoutcomemust be cho-
sen on the basis of the preferences reported by a group of
one or more agents. Such outcomes could be potential presi-
dents, joint plans, allocations of goods or resources, etc. The
preference aggregator generally does not know the agents’
preferencesa priori. Rather, the agents report their prefer-
ences to the coordinator. Unfortunately, an agent may have
an incentive to misreport her preferences in order to mis-
lead the mechanism into selecting an outcome that is more
desirable to the agent than the outcome that would be se-
lected if the agent revealed its preferences truthfully.

Mechanism design is the art of designing the rules of the
game so that a desirable outcome is reached even though
the agents in the game behave selfishly. Traditionally, the
focus in mechanism design has been on designing mecha-
nisms that are appropriate for a range of settings. While this
approach has produced a number of famous mechanisms
(for example, the VCG mechanism [15, 3, 9], the dAGVA
mechanism [7, 1], and the Myerson optimal auction [11]),
much of the space of possible settings is still left uncov-
ered. In many (arguably most) cases where a mechanism
is needed, the classical mechanisms are not satisfactory be-
cause they make assumptions on what the agents can do (for
example, side payments are required for the mechanism to
work); they pursue the wrong objective (for example, so-
cial welfare is pursued instead of maximal revenue); or they
do not make use of all available information (such as prob-
ability distributions over the agents’ preferences, ortypes),
at the cost of the objective pursued.

In contrast, in an approach we callautomated mechanism
design (AMD)[4, 5, 6], a mechanism iscomputedon the fly
for the setting at hand—a universally applicable approach.
In our previous work on automated mechanism design, we
studied the worst-case theoretical complexity of some ver-
sions of the abstract problem. In this paper we present (to
our knowledge) the firstalgorithmdesigned specifically for

AMD. It is not designed for the general case of AMD, but
rather only for the special case where there is only one type-
reporting agent, the mechanism must be deterministic, and
payments are not possible. While this is a restricted setting,
it is nevertheless one of significant importance, both theo-
retically and practically, for the following reasons:
• Good (polynomial time) algorithms for designing ran-

domized mechanisms are available (using linear program-
ming), but not for deterministic mechanisms: designing de-
terministic mechanisms is typically NP-complete.
• Much of classical mechanism design has focused on

settings where payments are possible, so many mechanisms
are available for such settings; this is not the case for set-
tings where payments are not possible.
• In the single type-reporting agent setting, all incentive-

compatibility and individual-rationality notions coincide.
Thus, any results obtained in this setting apply to all combi-
nations of these notions, rather than just to a particular com-
bination, making these results particularly fundamental for
AMD.
• All NP-hardness results for deterministic AMD known

to date hold even in the single-agent setting, indicating that
at least part, and perhaps all, of any hardness result in AMD
derives from the fact that the single-agent setting is a spe-
cial case of the problem. In other words, good algorithms
for solving the single-agent case are likely to help us signif-
icantly in more general cases.
• Many important mechanism design problems fit this

setting exactly. One such problem that we will study is cre-
ating a one-on-one bartering mechanism.1

Of course, we anticipate that future research will create
special-purpose algorithms for cases of AMD not covered
by this algorithm. Special-purpose optimization algorithms
have been tremendously successful in other multiagent set-
tings in the intersection of AI and economics. Most notably,
combinatorial auctions[13, 14, 8, 12] have been a topic of
plentiful and valuable research in this area. We believe there
is a similar potential for such research on automated mech-
anism design.

2. Automated mechanism design

We first discuss automated mechanism design in the gen-
eral case informally; then we provide a formal definition for
the case where there is only one type-reporting agent and
the mechanism must be deterministic, without payments—
the setting where our algorithm applies.

1 Mechanism design with only one reporting agent has also been widely
studied in decision analysis. For example, how should one motivate a
meteorologist to state exactly his subjective probability that it will rain
tomorrow (rather than to under- or overstate it)? [17]

2.1. The general setting

In the general case, an automated mechanism design
problem is given by the following.
• A finite set of outcomesO.
• A finite set ofN agents.
• For each agenti, 1. a finite set of typesΘi; 2. a proba-

bility distributionpi overΘi (in the case of correlated types,
there is a single joint distributionp overΘ1× . . .×ΘN); 3.
a utility functionui : Θi ×O → R.2

•An objective functiong whose expectation the designer
wishes to maximize. Possible objective functions include
social welfare (the sum of all agents’ utilities), total pay-
ments extracted from the agents, the designer’s own agenda
for the outcome, and any mix of these.
• A specification of the tools available to the designer—

that is, what types of mechanisms are allowed. For instance,
are payments possible? Is randomization possible?

The mechanism designer has to construct a game for
the agents to play; how this game is played will determine
the outcome chosen. (Additionally, it determines any side
payments.) In designing the game, the mechanism designer
seeks to maximize the expected value of the objectiveg, un-
der the assumption that the agents will play the game strate-
gically. A useful result called therevelation principlestates
that the mechanism designer can restrict his attention to
truthful direct revelation mechanisms, where the agents re-
port their types directly and where they never have any in-
centive to report them falsely. Thus, adeterministicmech-
anism is given by a function from reported type vectors to
outcomes (and possibly to payment vectors). Arandomized
mechanism is given by a function from reported type vec-
tors to probability distributions over outcomes (and possi-
bly to payment vectors—but the agents will only care about
the expected payment they have to make as long as they are
risk-neutral.)

Furthermore, we need a definition of atruthful mech-
anism (one in which agents do not have incentives to lie
about their types). The corresponding constraint is known
as anincentive compatibility (IC)constraint. The two best-
known such constraints are the following. Inimplementa-
tion in dominant strategies (DS), an agent never has an in-
centive to misreport her type even if she knows what all
the other agents reported. Inimplementation in Bayes-Nash
equilibrium (BNE), an agent never has an incentive to misre-
port her type presuming that she knows nothing more about

2 Though this follows standard game theory notation [10], the fact that
the agent has both a utility function and a type is perhaps confusing.
The types encode the various possible preferences that the agent may
turn out to have, and the agent’s type is not known to the aggregator.
The utility function is common knowledge, but because the agent’s
type is a parameter in the agent’s utility function, the aggregator can-
not know what the agent’s utility is without knowing the agent’s type.

the other agents’ types than the commonly known prior, and
that she believes that all other agents will report truthfully.

Finally, in many cases, the designer needs to make sure
that the agents do not incur a loss as a result of participat-
ing in the mechanism (because the agent may then choose
not to participate). This is known as anindividual rational-
ity (IR) constraint. Two well-known notions areex interim
IR, where it always makes sense for the agent to participate
if she knows her own type but only the priors for the other
agents; andex postIR, where it always makes sense for the
agent to participate even if she knows everyone’s type.

2.2. Automatically designing deterministic mech-
anisms without payments with one type-
reporting agent

The definitions from the previous subsection simplify
significantly when applied to the setting where a deter-
ministic mechanism without payments must be designed,
with a single type-reporting agent. For one, the different
possible IC (truthfulness) constraints differ only in what a
type-reporting agent is assumed to know about other type-
reporting agents’ preferences and reports. Because in this
setting, there are no other type-reporting agents, the dif-
ferent IC constraints coincide. The same is true for the IR
(participation) constraints. We also do not need distributions
over outcomes, or payment functions. The result is the fol-
lowing formal definition for our special case.

(In a slight abuse of notation, we use the variableo (pos-
sibly with subscripts) both for elements of the outcome set
O and for functions from types to outcomes (o : Θ → O);
it should be clear from context what is meant.)

Definition 1 (AMD) We are given a set of outcomesO, and
a set of typesΘ for the agent together with a probability dis-
tributionp over these types. Additionally we are given a util-
ity function for the agent,u : Θ×O → R, and an objective
function for the designer,g : Θ × O → R. We are asked to
find an outcome functiono : Θ→ O (a deterministic mech-
anism without payments) such that:

1. For everyθ, θ̂ ∈ Θ, u(θ, o(θ)) ≥ u(θ, o(θ̂)) (the IC
constraint).

2. If there is an IR constraint, for everyθ ∈ Θ,
u(θ, o(θ)) ≥ 0. (In this case there typically also is a
default outcomeo0 with u(θ, o0) = 0 for all θ ∈ Θ.3)

3. Subject to the previous constraints, the mechanism
maximizes

∑
θ∈Θ

p(θ)g(θ, o(θ)).

3 We can set the utility of the default outcome to0 without loss of gen-
erality, by normalizing the utility function. (From a decision-theoretic
point of view it does not matter how utilities compare across types, be-
cause the agent always knows her own type and will not take utilities
for other types into account in making any decision.)

In our previous work on AMD, we have already shown
that this problem is NP-complete by a reduction from MIN-
SAT (even without the IR constraint, and even when the ob-
jective function is a social welfare function including an-
other agent outside of the mechanism).

3. Application: one-on-one bartering

As an interlude, we first present an application. Consider
the situation where two agents each have an initial endow-
ment of goods. Each agent has a valuation for every subset
of then goods that the agents have together. It is possible
that both agents can become better off as a result of trade.
Suppose, however, that the agents cannot make any form of
payment; all they can do is swap goods. This is known as
bartering. Additionally, suppose that one agent (agent 1) is
in the position of dictating the rules of the bartering pro-
cess. Agent 1 can credibly say to agent 2, “we will barter by
my rules, or not at all”. This places agent 1 in the position
of the mechanism designer, and corresponds to the follow-
ing AMD problem. The set of outcomes is the set of all allo-
cations of the goods (there are2n of them). Agent 2 is to re-
port his preferences over the goods (the valuation that agent
has for each subset), and on the basis of this report an out-
come is chosen. This outcome function, which is selected
by agent 1 beforehand, must be incentive compatible so that
agent 2 has no incentive to misreport. Also, it must be in-
dividually rational, or agent 2 simply will not trade.4 Under
these constraints, agent 1 wishes to make the expected value
of her own allocation under the mechanism as large as pos-
sible. The revelation principle justifies that restricting agent
1 to this approach comes at no loss to that agent.

Automatically generated mechanisms for this setting are
likely to be useful in barter-based electronic marketplaces,
such as Recipco, firstbarter.com, BarterOne, and Intagio.

We now return to computational aspects, but we will
readdress the bartering problem in our experiments. We will
postpone dealing with IR constraints for a few sections, and
then return to it.

4. Search over subsets of outcomes

In this section, we associate with each subset of out-
comes a truthful mechanism for that set of outcomes; we
then show that for some subset of outcomes, the truthful
mechanism associated with that subset of outcomes is an
optimal mechanism for the setting. Because the mechanism
associated with a subset of outcomes is easy to compute,

4 If agent 1 actually wants to make the rules so that there is no trade for
a certain type report, she can simply make the original allocation the
outcome for this type report; so there is no loss to agent 1 in design-
ing the outcome function in such a way that agent 2 always wishes to
participate in the mechanism.

we can search over subsets of outcomes (of which there
are2|O|) rather than over all possible outcome functions (of
which there are|O||Θ|).5

We first define the outcome function (mechanism)oX as-
sociated with a particular subset of the outcomes.

Definition 2 For a given subset X ⊆ O,
let oX(θ) be (the lowest-indexed element of)
arg max{o∈X:(∀o′∈X)u(θ,o)≥u(θ,o′)} g(θ, o). Let v(X)
be given by

∑
θ∈Θ

p(θ)g(θ, oX(θ)).

Intuitively, oX(θ) is the outcome we wish to pick for type
θ, if we (somehow) know that the set of other outcomes used
in the mechanism is exactlyX, and we wish to pick an out-
come fromX as well.v(X) is the expected value of the ob-
jective function for the mechanismoX , presuming that the
agent reports truthfully. The next lemma shows that indeed,
the agent has no incentive to report falsely.

Lemma 1 For all X ⊆ O, oX is truthful. (Thusv(X) is
indeed the expected value of the objective function for it.)

Proof: For any pair of typesθ1, θ2, we have thatoX(θ2) ∈
X because all outcomes ever chosen byoX are inX; and
thus thatu(θ1, oX(θ1)) ≥ u(θ1, oX(θ2)), because for any
θ, oX(θ) maximizesu(θ, ·) among outcomeso ∈ X.

The next lemma shows that for any subsetX, the mecha-
nismoX dominates all mechanisms that use exactly the out-
comes inX.

Lemma 2 For any X ⊆ O, suppose thato : Θ → X
is a truthful mechanism making use only of outcomes in
X, but using each outcome inX at least once—that is,
o(Θ) = X. Let its expected value of the objective func-
tion bevo =

∑
θ∈Θ

p(θ)g(θ, o(θ)). Thenv(X) ≥ vo.

Proof: For anyθ ∈ Θ, we must have that for anyo ∈ X,
u(θ, o(θ)) ≥ u(θ, o)—because there exists someθ′ ∈ Θ
such thato(θ′) = o, and thus the agent can guarantee her-
self at least utilityu(θ, o) by reportingθ′. But oX(θ) max-
imizesg(θ, ·) among such outcomes. Thus,g(θ, oX(θ)) ≥
g(θ, o(θ)). It follows thatv(X) =

∑
θ∈Θ

p(θ)g(θ, oX(θ)) ≥∑
θ∈Θ

p(θ)g(θ, o(θ)) = vo.

It is not necessarily the case thatv(X) = vo for some
truthful o making use of all outcomes inX; for instance,
there could be some outcome inX that has both a very
low utility value and a very low objective value. ThenoX

5 In the case where|O| is bigger than|Θ|, we can restrict ourselves
to outcome subsets of size at most|Θ|, making our approach still
more efficient than the straightforward brute search approach. For sim-
plicity of presentation, in this paper we will focus on settings where
|Θ| > |O| (as is commonly the case).

will not use this outcome, and thereby have a higher ex-
pected value of the objective function than any mechanism
that does use it.

We are now ready to present the main theorem of this
section, which states that the bestoX is indeed an optimal
mechanism.

Theorem 1 maxX⊆O v(X) is the maximum expected
value of the objective overall mechanisms (that are deter-
ministic and use no payments).oX is an optimal mechanism
(among mechanisms that are deterministic and use no pay-
ments) ifX ∈ arg maxX⊆O v(X).

Proof: Consider an optimal truthful mechanismo,6 and let
X be the set of all outcomes it uses (X = o(Θ)). By
Lemma 1,oX is truthful andv(X) is the expected value
of the objective function for it. By Lemma 2, we have
v(X) ≥ vo wherevo is the expected value of the objec-
tive function foro.

5. A heuristic and its admissibility

We now proceed to define an outcome function that is as-
sociated with two disjoint subsetsX andY of the outcomes;
we will use this outcome function to compute an admissi-
ble heuristic for our search problem. The interpretation is as
follows. In the process of constructing a mechanism of the
kind described in the previous section, we successively la-
bel each outcome as “in” or “out”, depending on whether
we wish to include this outcome in the set that the eventual
mechanism is associated with.X consists of the outcomes
that we have already decided are “in”;Y consists of the out-
comes that we have already decided are “out”. To get an op-
timistic view of the mechanisms we may eventually arrive
at from here, we assign to each type the outcome inO − Y
that gives us the highest objective value for that type (the
mechanisms certainly will not use any outcome inY), un-
der the constraint that this outcome will make that type at
least as well off as any outcome inX (because we have al-
ready decided that these are certainly “in”, so we know this
constraint must apply).

Definition 3 For given subsets X,Y ⊆ O,
let oX,Y (θ) be (the lowest-indexed element of)
arg maxo∈O−Y :(∀o′∈X)u(θ,o)≥u(θ,o′) g(θ, o). Let v(X,Y)
be given by

∑
θ∈Θ

p(θ)g(θ, oX,Y (θ))

Outcome functions of this type donotnecessarily consti-
tute truthful mechanisms. (For instance, ifX andY are both
the empty set, thenoX,Y will simply choose the objective-
maximizing outcome for each type.) Nevertheless, because
we are merely trying to obtain an optimistic estimate, we

6 Which, by the revelation principle, is an optimal mechanism, period.

computev(X,Y) as before, presuming the agents will re-
port truthfully. The following theorem shows thatv(X,Y)
is indeed admissible.

Theorem 2 For any subsetsX,Y ⊆ O, for any Z ⊆
O − X − Y , for any θ ∈ Θ, we haveg(θ, oX,Y (θ)) ≥
g(θ, oX∪Z(θ)); andv(X,Y) ≥ v(X ∪ Z).

Proof: Using the facts thatX ⊆ X ∪ Z andX ∪ Z ⊆
O − Y , we can conclude that{o ∈ X ∪ Z : (∀o′ ∈
X ∪ Z)u(θ, o) ≥ u(θ, o′)} ⊆ {o ∈ X ∪ Z : (∀o′ ∈
X)u(θ, o) ≥ u(θ, o′)} ⊆ {o ∈ O − Y : (∀o′ ∈
X)u(θ, o) ≥ u(θ, o)}. It follows that g(θ, oX,Y (θ)) =
maxo∈O−Y :(∀o′∈X)u(θ,o)≥u(θ,o′) g(θ, o) ≥
maxo∈X∪Z:(∀o′∈X∪Z)u(θ,o)≥u(θ,o′) g(θ, o) =
g(θ, oX∪Z(θ)). Thusv(X,Y) =

∑
θ∈Θ

p(θ)g(θ, oX,Y (θ)) ≥∑
θ∈Θ

p(θ)g(θ, oX∪Z(θ)) = v(X ∪ Z).

The following theorem shows that conveniently, at a leaf
node, where we have decided for every outcome whether it
is in or out, the heuristic value coincides with the value of
that outcome set.

Theorem 3 For any X ⊆ O, θ ∈ Θ, we have
oX,O−X(θ) = oX(θ) andv(X,O −X) = v(X).

Proof: Immediate usingO − (O −X) = X.

6. The algorithm

6.1. Basic structure

We now summarize the backbone of our algorithm. A
node in our search space is defined by a set of outcomes
that are definitely “in” (X)7 and a set of outcomes that are
definitely out (Y). For a node at depthn,X∪Y always con-
stitutes the firstn outcomes for some fixed order of the out-
comes; thus, a node has two children, one where the next
outcome is added toX, and one where it is added toY . The
expansion order is fixed at putting the node inX first, and
then inY . The heuristic value (bound) of a node is given by
v(X,Y), as described above.

We can now simply apply A*; this, however, quickly
fills up the available memory, so we resort to more space-
efficient methods. We first present branch and bound depth-
first search for our setting, and then IDA*.

In the following,v is the heuristic for the current node.
d is the depth of the current node.n (a global variable) is

7 We emphasize that this doesnotmean that the outcome will definitely
be used by the mechanism corresponding to any descendant leaf node;
rather, this outcomemaybe used by any descendant leaf node; and for
any descendant leaf node, in the mechanism associated with this node,
any type must receive an outcome at least as good to it as this one.

the number of outcomes.CB (another global) is the out-
come set corresponding to the best mechanism found so
far. L (another global) is the expected value of the ob-
jective function for the best mechanism we have found
so far. oi is outcomei. The other variables are as de-
scribed above.

SEARCH1(X, Y , v, d)
if d = n+ 1
CB = X
L = v

else
if v(X ∪ {od}, Y) > L
SEARCH1(X ∪ {od}, Y , v(X ∪ {od}, Y), d+ 1)

if v(X,Y ∪ {od}) > L
SEARCH1(X, Y ∪ {od}, v(X,Y ∪ {od}), d+ 1)

BRANCH-AND-BOUND-DFS()
CB := NULL
L :=−∞
SEARCH1({}, {}, 0, 1)
return CB

Our implementation of IDA* is similar, except we do
not initialize L to −∞. Rather, we initialize it to some
high value, and decrease it every time we fail to find a
solution—either to a fraction of itself, or to the high-
est value that is still feasible (whichever isless). This also
requires us to keep track of the highest value still feasi-
ble (given byHF , another global variable), so that we have
to modify the search call slightly.

SEARCH2(X, Y , v, d)
if d = n+ 1
CB = X
L = v

else
if v(X ∪ {od}, Y) > L
SEARCH2(X ∪ {od}, Y , v(X ∪ {od}, Y), d+ 1)

else ifv(X ∪ {od}, Y) > HF
HF := v(X ∪ {od}, Y)

if v(X,Y ∪ {od}) > L
SEARCH2(X, Y ∪ {od}, v(X,Y ∪ {od}), d+ 1)

else ifv(X,Y ∪ {od}) > HF
HF := v(X,Y ∪ {od})

IDA*()
CB := NULL
L := initial-limit
while CB = NULL
HF :=−∞
SEARCH2({}, {}, 0, 1)
L := min{HF, fraction·L}

return CB

6.2. Efficiently updating the heuristic

Rather than computing the heuristic anew each time, it
can be computed much more quickly from information used
for computing the heuristic at the parent node. For instance,
when adding an outcomeo toX, we will not have to change
oX,Y (θ) unlessu(θ, o) > u(θ, oX,Y (θ)). As another exam-
ple, when adding an outcomeo to Y , we will not have to
changeoX,Y (θ) unlessoX,Y (θ) = o. In addition to this,
maintaining appropriate data structures (such as a list of the
outcomes sorted by objective value for a given type) allows
us to quickly find the new outcome when we do need to
make a change.

7. Individual rationality

We now show how to deal with an individual rationality
constraint in this setting.

Theorem 4 oX is individually rational if and only if for ev-
eryθ ∈ Θ, there is someo ∈ X such thatu(θ, o) ≥ 0.

Proof: If for some θ ∈ Θ, there is noo ∈ X such that
u(θ, o) ≥ 0, oX cannot give the agent nonnegative utility
for type θ becauseoX uses only outcomes fromX; so it
is not individually rational. On the other hand, if for every
θ ∈ Θ, there is someo ∈ X such thatu(θ, o) ≥ 0, thenoX
will give the agent nonnegative utility for that typeθ, be-
causeoX is constrained to choose an outcome that maxi-
mizesu(θ, ·) among outcomes fromX, and at least one of
the outcomes inX gives nonnegative utility. So it is indi-
vidually rational.

It follows that when we have an individual rationality
constraint, in our search procedures, we do not need to ex-
pand nodes where for some typeθ, there are no outcomes
left in O− Y that give the agent a nonnegative utility forθ.

8. Experimental results

In this section, we compare the performances of branch
and bound DFS and IDA* over our search space with the
performance of CPLEX 8.0,8 on random instances drawn
from three different distributions. In each case, we investi-
gate both scalability in the number of types and in the num-
ber of outcomes.

8 CPLEX is a state of the art general-purpose solver that typically per-
forms very well even on special purpose domains—for instance, its
performance in combinatorial auction clearing is at least competitive
with many algorithms designed specifically for this purpose. It is al-
most ade factostandard as the first cut at solving optimization prob-
lems. To apply CPLEX to our problem, we use the mixed integer pro-
gram formulation obtained by taking the standard LP formulation for
automatically designing randomized mechanisms [4, 5, 6], and forc-
ing all probabilities to be0 or 1.

8.1. Uniform distribution, no IR

For this distribution, each valueu(θ, o) and each value
g(θ, o) is independently and uniformly drawn from[0, 100].
No IR constraint applies (all utilities are nonnegative).

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50 60 70 80 90

lo
g(

tim
e

in
 s

ec
on

ds
)

types

branch and bound
IDA*

CPLEX 8.0

Figure 1. Performance vs. types for the uni-
form, no IR case with 20 outcomes

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

10 15 20 25 30

lo
g(

tim
e

in
 s

ec
on

ds
)

outcomes

branch and bound
IDA*

CPLEX 8.0

Figure 2. Performance vs. outcomes for the
uniform, no IR case with 30 types

Both versions of our algorithm outperform CPLEX
soundly; our approach is especially more scalable in the
number of types.

8.2. Uniform distribution, with IR

Now, each valueu(θ, o) and each valueg(θ, o) is inde-
pendently and uniformly drawn from[−50, 50]. We apply
an IR constraint (the agent can never get negative utility).

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

10 20 30 40 50 60 70 80 90

lo
g(

tim
e

in
 s

ec
on

ds
)

types

branch and bound
IDA*

CPLEX 8.0

Figure 3. Performance vs. types for the uni-
form, with IR case with 20 outcomes

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

10 15 20 25 30

lo
g(

tim
e

in
 s

ec
on

ds
)

outcomes

branch and bound
IDA*

CPLEX 8.0

Figure 4. Performance vs. outcomes for the
uniform, with IR case with 30 types

Both versions of our algorithm still solidly outperform
CPLEX, but the gaps are a little tighter; CPLEX manages
to get a greater speedup factor out of the IR constraint.

8.3. Bartering

The final distribution corresponds to the bartering prob-
lem described earlier. The designer and the agent each have
k goods (for22k outcomes—each good can end up with ei-
ther agent); the designer has a randomly drawn value (from

[0, 10]) for each individual good (constitutingg, which does
not depend onθ in this case), and the agent has a randomly
drawn value (from[0, 10]) for each individual good for each
type (constitutingu). The value of a bundle to an agent is
the sum of the values of the individual goods.9 If the to-
tal number of goods is odd, the agent gets one more good
than the designer.

-2

-1.5

-1

-0.5

0

0.5

10 15 20 25 30 35 40 45 50

lo
g(

tim
e

in
 s

ec
on

ds
)

types

branch and bound
IDA*

CPLEX 8.0

Figure 5. Performance vs. types for the bar-
tering case with 32 outcomes

-2.5

-2

-1.5

-1

-0.5

0

0.5

5 10 15 20 25 30 35

lo
g(

tim
e

in
 s

ec
on

ds
)

outcomes

branch and bound
IDA*

CPLEX 8.0

Figure 6. Performance vs. outcomes for the
bartering case with 50 types

The gaps here are much tighter, and it appears that
CPLEX may in fact get the upper hand on even larger in-
stances. (Space limitations prevented us from taking the ex-
periments further.) CPLEX apparently makes very good use

9 There is nothing preventing our approach from having more compli-
cated values over bundles; we simply felt it was nice to present the
simplest example.

of the additional structure in this domain, whereas our algo-
rithm is not geared towards exploiting this structure. Also,
IDA* seems to outperform branch and bound DFS now.

9. Conclusions

In this paper, we have proposed (to our knowledge) the
first algorithm designed specifically for automated mecha-
nism design (AMD). It solves AMD in the setting where
there is only one type-reporting agent, the mechanism must
be deterministic, and payments are not possible. This setting
is important for theoretical reasons (the hardness in this set-
ting is at the core of hardness in more general settings), as
well as for practical reasons (there are few classical mech-
anisms, and no general poly-time algorithms, available for
this setting; many important applications (such as barter-
ing) fit this setting). The algorithm relied on an association
of a particular (easy to compute) mechanism to each sub-
set of outcomes, and a proof that one such mechanism is an
optimal one—which allows us to reduce the search space to
one of size2|O|. We proposed an admissible heuristic to use
in searching over this space, and showed how it can be up-
dated efficiently from node to node. We showed how to ap-
ply branch and bound DFS as well as IDA* to this search
space, and showed that this approach outperformed CPLEX
8.0, a general-purpose solver, solidly on unstructured in-
stances, both with and without an IR constraint. However,
on our third example, a bartering problem, CPLEX almost
achieved the performance of our algorithm by exploiting the
structure inherent in the domain.

10. Future research

The most immediate future research is to expand the
techniques discussed here to other, possibly more general
cases of automated mechanism design. The general case of
automated mechanism design, with an arbitrary number of
agents, any IC and any IR constraint, with or without pay-
ments and with or without randomization, can already be
solved with a general purpose solver such as CPLEX, but
there is likely to be room for improvement over CPLEX
even in the general AMD case. Attempting to generalize the
optimization techniques used here to the general AMD set-
ting appears to be a good approach to this.

Of course, even algorithms that are applicable only to
other special cases of AMD would be of great interest. One
exciting application area of AMD for which better algo-
rithms are needed isoptimal combinatorial auction design,
where the auctioneer designs the rules of a combinatorial
auction to maximize expected revenue. This is a different
problem thanclearing combinatorial auctions, where the
auctioneer attempts to maximize the sum of the values of
the accepted bids; in this problem there is typically no dis-

cussion of why the agents are motivated to bid truthfullly
(or it is assumed that a VCG payment scheme is used, which
makes the agents bid truthfully—but this does not maximize
expected revenue). Optimal combinatorial auction design is
a well-recognized open problem [2, 16]. Other exciting ap-
plication areas include public goods problems and dispute
settlements. It would also be interesting to see if an algo-
rithm can be tailored to the bartering problem proposed in
this paper, as our algorithm apparently does not do as well
as CPLEX in exploiting the specific structure of the barter-
ing problem.

References

[1] K. Arrow. The property rights doctrine and demand revela-
tion under incomplete information. In M. Boskin,Economics
and human welfare. New York Academic Press, 1979.

[2] C. Avery and T. Hendershott. Bundling and optimal auctions
of multiple products.Review of Economic Studies, 67:483–
497, 2000.

[3] E. H. Clarke. Multipart pricing of public goods.Public
Choice, 11:17–33, 1971.

[4] V. Conitzer and T. Sandholm. Complexity of mechanism de-
sign. UAI, pages 103–110, Edmonton, Canada, 2002.

[5] V. Conitzer and T. Sandholm. Automated mechanism design:
Complexity results stemming from the single-agent setting.
In Proceedings of the 5th International Conference on Elec-
tronic Commerce (ICEC-03), pages 17–24, 2003.

[6] V. Conitzer and T. Sandholm. Self-interested automated
mechanism design and implications for optimal combinato-
rial auctions.ACM-EC, New York, NY, 2004.

[7] C. d’Aspremont and L. A. Ǵerard-Varet. Incentives and in-
complete information. J. of Public Economics, 11:25–45,
1979.

[8] Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the
computational complexity of combinatorial auctions: Opti-
mal and approximate approaches.IJCAI, pages 548–553,
Stockholm, Sweden, Aug. 1999.

[9] T. Groves. Incentives in teams.Econometrica, 41:617–631,
1973.

[10] A. Mas-Colell, M. Whinston, and J. R. Green.Microeco-
nomic Theory. Oxford University Press, 1995.

[11] R. Myerson. Optimal auction design.Mathematics of Oper-
ation Research, 6:58–73, 1981.

[12] N. Nisan. Bidding and allocation in combinatorial auctions.
ACM-EC, pages 1–12, Minneapolis, MN, 2000.

[13] M. H. Rothkopf, A. Pekěc, and R. M. Harstad. Computa-
tionally manageable combinatorial auctions.Management
Science, 44(8):1131–1147, 1998.

[14] T. Sandholm. Algorithm for optimal winner determination
in combinatorial auctions.Artificial Intelligence, 135:1–54.

[15] W. Vickrey. Counterspeculation, auctions, and competitive
sealed tenders.Journal of Finance, 16:8–37, 1961.

[16] R. V. Vohra. Research problems in combinatorial auctions.
Mimeo, version Oct. 29, 2001.

[17] D. von Winterfeldt and W. Edwards.Decision analysis and
behavioral research. Cambridge University Press, 1986.

