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against diseases), (cyber)security, and other 

domains. On page 145 of this issue, Bowling 

et al. ( 1) report on having computed a strat-

egy for two-player limit Texas Hold’em poker 

that is so close to optimal that, at the pace a 

human plays poker, it cannot be beaten with 

statistical significance in a lifetime. While 

strong strategies have been computed for 

larger imperfect-information games as well 

(2–6), this is, to my knowledge, the larg-

est imperfect-information game essentially 

solved to date, and the first one competi-

tively played by humans that has now been 

essentially solved.

The general leading approach for solv-

ing imperfect-information games is shown 

in the figure; for a review, see ( 7). First, the 

game is abstracted to generate a smaller but 

strategically similar game, reducing it to a 

size that can be tackled with an equilibrium-

finding algorithm. Then, the abstract game 

is solved for equilibrium or near-equilib-

rium. A Nash equilibrium defines a notion 

of rational play. It is a profile of strategies, 

one per player, such that no player can in-

crease her expected payoff by switching to 

a different strategy. A strategy for a player 

states for each information set where it is 

the player’s turn, the probability with which 

the player should select each of her available 

actions. An information set is a collection of 

game states that cannot be distinguished by 

the player whose turn it is because of private 

information of the other players. Finally, 

the strategies from the abstract game are 

mapped back to the original game.
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Playing at a normal human pace, one can’t beat a computer program for limit Texas Hold’em with statistical significance in a lifetime.

PERSPECTIVES

          I
mperfect-information games model set-

tings where players have private infor-

mation. Tremendous progress has been 

made in solving such games over the 

past 20 years, especially since the An-

nual Computer Poker Competition was 

established in 2006, where programs play 

each other. This progress can fuel the opera-

tionalization of seminal game-theoretic so-

lution concepts into detailed game models, 

powering a host of applications in business 

(e.g., auctions and negotiations), medicine 

(e.g., making sophisticated sequential plans 
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Two main kinds of abstraction are used. 

One is information abstraction, where it is 

assumed in the abstract game that a player 

does not know some information that she 

knows—that is, information sets are bundled. 

Lossless abstraction algorithms ( 8) yield an 

abstract game from which each equilibrium 

is also an equilibrium in the original game, 

and typically reduce the size of poker games 

by one-to-two orders of magnitude. My 

group ( 8) first used them to solve Rhode Is-

land Hold’em, a benchmark 

introduced in 2001. Bowling 

et al. used lossless abstrac-

tion in the form of encod-

ing the game in a way that 

avoids card suit symmetries. 

This reduced the number of 

information sets from 3.19 

× 1014 to 1.38 × 1013. Their 

scalable equilibrium-finding 

algorithm enabled them to 

essentially solve this lossless 

abstract game. For many 

larger games, the losslessly 

abstracted game would still be prohibitively 

large. Lossy abstraction algorithms ( 2, 3, 

8–10) are used to create a smaller, coarser 

abstract game. An optimal strategy from 

such a game is typically not optimal for the 

original game.

The second method, action abstraction 

( 2,  4,  5,  9), removes some actions from con-

sideration in the game model, and is useful 

when the number of actions that a player can 

choose is large. For example, in two-player 

no-limit Texas Hold’em—a more popular 

game with 6.38 × 10161 information sets—a 

player can bet a variable number of chips, 

unlike in limit Texas Hold’em, where the 

bet size is fixed. Sophisticated techniques 

are then needed to map any action that the 

opponent plays that is not included in the 

abstract game to an action in the abstract 

game (6), because the opponent may try to 

manipulate the action abstraction—by clever 

bet-sizing in the case of poker.

Empirically, in Texas Hold’em, as a finer-

grained abstraction is used, the quality of 

the strategy improves even when evaluated 

in the original game. Unfortunately, this is 

not always the case. Unlike in single-player 

settings, using a finer-grained abstrac-

tion can cause the computed strategy to 

be worse (more exploitable) in the original 

game. Despite this, some recent frame-

works for lossy abstraction yield bounds 

on solution quality ( 5,  9). For a review of 

abstraction, see ( 10).

The second step of the game-solving pro-

cess is finding an equilibrium in the abstract 

game (as shown in the figure). Before 2006, 

general-purpose linear programming solv-

ers and the sequence-form representation 

were used to solve small variants of poker or 

coarse abstractions of two-player limit Texas 

Hold’em. Since then, two families of dramati-

cally more scalable equilibrium-finding al-

gorithms and problem representations have 

been developed for two-player zero-sum 

games. One family is based on smoothed gra-

dient descent algorithms and a decomposed 

problem representation ( 11,  12). The other 

family, counterfactual regret minimization 

(CFR) ( 13), is based on a form of self-play 

using no-regret learning, adapted cleverly 

so that regret updates can be computed at 

each information set separately, instead of 

the naïve approach that would require re-

grets to be updated for entire game strate-

gies. The best available guarantees for CFR 

require ~1/ε2 iterations over the game tree 

to reach an ε-equilibrium, that is, strategies 

for the players such that no player can be ex-

ploited by more than ε by any strategy. The 

gradient-based algorithms require only ~1/ε 

( 11) or ~log(1/ε) iterations ( 12). The latter ap-

proach matches the optimal number of itera-

tions required (previously only achievable by 

interior-point methods that have prohibitive 

memory requirements). On the other hand, 

more effective sampling techniques have 

been developed for CFR than for the gradi-

ent-based algorithms, so quick approximate 

iterations can be used.

The key contribution of Bowling et al. is 

a scalable equilibrium-finding algorithm. 

It uses full CFR iterations rather than sam-

pling. It distributes the computation across 

computers by dividing the game into disjoint 

pieces based on publicly observable infor-

mation—public cards and past moves of the 

players—akin to related CFR work ( 6,  7). The 

numeric resolution of probabilities was re-

duced to save memory, with the drawback 

of slightly reducing solution quality. Careful 

compression techniques were used to store 

the game pieces on local disks and to bring 

them back into memory for updates. To 

empirically enhance speed, their algorithm 

never lets the regrets decrease below zero 

and uses the most recent computed strate-

gies as the solution—instead of average strat-

egies as in CFR convergence proofs.

Bowling et al. lower the bar for “solving” 

the game from finding an exact equilibrium 

or one within machine precision to requiring 

that at human playing speed, an adversary 

could not win with statistical significance in 

a lifetime. For many applications, this guar-

antee will be strong enough.

Much work is still required on tackling 

larger imperfect-information games ( 2–6). 

Another key direction is opponent exploi-

tation—taking advantage of suboptimal 

play. Solely using machine learning for this 

typically opens oneself up to considerable 

exploitation in return, and one also typi-

cally accrues substantial losses during the 

learning process. Interesting recent ap-

proaches hybridize the game-theoretic ap-

proach and opponent exploitation in various 

ways ( 14,  15). It is even possible to exploit 

an opponent’s weaknesses more than any 

equilibrium strategy would, without open-

ing oneself to any exploitation! This can 

be accomplished by—and only by—risking 

in one’s exploitation attempts winnings ob-

tained so far via the opponent’s mistakes 

rather than luck ( 16).

Games with more than two players and 

that are not zero sum also deserve further at-

tention. Most of the abstraction techniques 

apply here, but these equilibrium-finding 

problems are in a complexity class for which 

no polynomial-time algorithm is known. It 

is not even clear that finding a Nash equi-

librium is the right goal in such games. Dif-

ferent equilibria can have different values to 

the players. If the opponents fail to play an 

equilibrium strategy, it may not be safe for us 

to play an equilibrium strategy. Finally, op-

ponents may collude.           ■
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