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Abstract

Voting is a very general method of preference
aggregation. A voting rule takes as input ev-
ery voter’s vote (typically, a ranking of the
alternatives), and produces as output either
just the winning alternative or a ranking of
the alternatives. One potential view of vot-
ing is the following. There exists a “correct”
outcome (winner/ranking), and each voter’s
vote corresponds to a noisy perception of this
correct outcome. If we are given the noise
model, then for any vector of votes, we can
compute the maximum likelihood estimate of
the correct outcome. This maximum likeli-
hood estimate constitutes a voting rule. In
this paper, we ask the following question:
For which common voting rules does there
exist a noise model such that the rule is the
maximum likelihood estimate for that noise
model? We require that the votes are drawn
independently given the correct outcome (we
show that without this restriction, all vot-
ing rules have the property). We study the
question both for the case where outcomes
are winners and for the case where outcomes
are rankings. In either case, only some of
the common voting rules have the property.
Moreover, the sets of rules that satisfy the
property are incomparable between the two
cases (satisfying the property in the one case
does not imply satisfying it in the other case).

1 Introduction

Voting is a very general method for aggregating mul-
tiple agents’ preferences over a set of alternatives,
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such as potential presidents, joint plans, allocations
of goods or resources, etc.. As such, it is a topic of
significant and growing interest in the AI community
with applications in collaborative filtering [13], plan-
ning among automated agents [10, 11], determining
the importance of web pages [1], to name a few. Re-
cent AI research has studied the complexity of execut-
ing voting rules [7], the complexity of manipulating
elections [3, 2, 5], as well as efficient elicitation of the
voters’ preferences [4, 6]. In this paper, we study how
voting can be interpreted as a maximum likelihood es-
timation problem. We believe this will shed new light
on, and enhance the applicability of, both voting and
maximum likelihood techniques.

To see how voting may be interpreted as a maximum
likelihood problem, let us first contrast the following
two views of voting:

1. The voters’ preferences over candidates are idiosyn-
cratic, and there is no sense in trying to model where
they came from. The purpose of voting is solely to
find a compromise candidate that maximizes the com-
bined welfare of the agents, either explicitly or im-
plictly trading off agents’ utilities against each other.

2. There is some absolute sense in which some can-
didates are better than others, which is prior to and
not dependent on the agents’ preferences. Rather, the
agents’ preferences are merely their noisy estimates of
this absolute quality. The purpose of voting is to infer
the candidates’ absolute goodness based on the agents’
noisy signals, i.e., their votes.

For the purposes of this paper, we will be concerned
with the second interpretation (which is especially sen-
sible in contexts such as document selection). It is in-
structive to visualize this interpretation as the simple
Bayesian network given below. In this network, the
observed variable is the agents’ votes, and we seek to
estimate the correct outcome. The most natural way of
doing so is to take the maximum likelihood estimate of
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the correct outcome.1 Which outcome is chosen as the
maximum likelihood estimate (MLE) depends on the
conditional probability table for the “agents’ votes”
node—that is, it depends on the noise model. Each
noise model generates a maximum likelihood estima-
tor function from agents’ votes to outcomes, and this
function constitutes a voting rule.

The basic idea of using an MLE approach to voting
was introduced as early as the 18th century, by Con-
dorcet [8]. Condorcet studied a particular noise model
in which a voter ranked two candidates correctly with
some given probability p > 1/2. Condorcet solved the
cases of 2 and 3 candidates.2 The solution for arbi-
trary numbers of candidates was given two centuries
later by Young [15]: he showed that it coincided with
a voting rule proposed by Kemeny [12]. A slightly ex-
tended model where p is allowed to increase with the
distance between two alternatives in the correct rank-
ing of alternatives, and the rules that this produces,
has also been studied [9]. However, none of these rules
correspond to any of the commonly used voting rules.
Should the fact that we do not know how to interpret
the common voting rules as maximum likelihood esti-
mators be viewed as a criticism of the common voting
rules? This is perhaps somewhat unfair, because we
may simply not yet have studied the right noise mod-
els to generate these rules. Nevertheless, there is no
guarantee that such noise models exist. Moreover, it
is useful to actually know a noise model for a rule: it
increases our understanding of the rule, it allows us
to question the assumptions in the noise model (and
therefore in the rule), and, where we disagree with
these assumptions, we can modify the noise model to
obtain a rule that is more appropriate for our needs.

In this paper, we address these issues by turning the
traditional approach on its head, by asking: For which
common voting rules does there exist a noise model
such that the rule is the maximum likelihood rule for
that distribution? Perhaps surprisingly, if we assume

1A Bayesian (maximum a posteriori) interpretation
is, of course, also possible: Bayes’ rule gives P (correct
outcome|agents’ votes) = P (correct outcome)P (agents’
votes|correct outcome)/P (agents’ votes). If the distribu-
tion over correct outcomes is uniform, this expression is
maximized by the maximum likelihood estimate.

2This approach leads to inconsistent cyclical rankings
(e.g. a Â b Â c Â a) with nonzero probability, but this
does not affect the maximum likelihood approach.

that the voters’ votes are independent given the correct
outcome, it turns out that only some rules have this
property.

Answering our question has at least the following pur-
poses:

• Rules that have the property are in a sense more
natural than ones that do not, especially in settings
where information aggregation is the main purpose of
voting. Hence, answering the question will provide
some guidance in the problem of choosing a rule.

• Showing that a rule does have the property requires
us to construct a noise model, for which the rule is the
maximum likelihood estimator. Subsequently, we can
assess whether the noise model is reasonable, or needs
to be modified to become reasonable. In the latter
case, the modified noise model may lead to a novel
and useful voting rule.

The rest of this paper is organized as follows. In Sec-
tion 2, we define the common voting rules and define
the types of noise model that we consider. In Sec-
tion 3, we present our positive results (noise models
that have common voting rules as their maximum like-
lihood estimator). In Section 4, we present a technique
for showing that no noise model has a given rule as its
maximum likelihood estimator, and apply this tech-
nique to obtain our negative results.

2 Definitions

2.1 Voting rules

We have a set of candidates (aka. alternatives) C over
which the voters vote. A vote is defined as a strict
ordering (ranking) of the candidates in C. A (voting)
rule takes the (vector of) votes as input, and produces
an outcome. This outcome can either be a single can-
didate (the winner), or a ranking of the candidates
(where the top-ranked candidate is the winner). Most
rules allow for the possibility of ties, and do not specify
how ties should be broken. In this paper, for our posi-
tive results, we do not attempt to realize any particular
tie-breaking rule; our negative results hold regardless
of how ties are broken.

We next define the common voting rules that we study.

• scoring rules. Let ~α = 〈α1, . . . , αm〉 be a vector
of integers such that α1 ≥ α2 . . . ≥ αm. For each
voter, a candidate receives α1 points if it is ranked
first by the voter, α2 if it is ranked second etc. The
score s~α of a candidate is the total number of points
the candidate receives. The Borda rule is the scoring
rule with ~α = 〈m − 1,m − 2, . . . , 1, 0〉. The plurality
rule (aka. majority rule) is the scoring rule with ~α =



〈1, 0, . . . , 0, 0〉. The veto rule is the scoring rule with
~α = 〈1, 1, . . . , 1, 0〉. Candidates are ranked by score.

• single transferable vote (STV). The rule proceeds
through a series of m − 1 rounds, each one eliminat-
ing one candidate. In each round, the candidate with
the lowest plurality score (that is, the least number
of voters ranking it first among the remaining candi-
dates) is ranked at the bottom of the remaining can-
didates. Then, that candidate is eliminated from the
votes (each of the votes for that candidate “transfer”
to the next remaining candidate in the order given in
that vote). The last remaining candidate is the winner.

• Bucklin. For any candidate c and integer l, let B(c, l)
be the number of voters that rank candidate c among
the top l candidates. Candidate c’s Bucklin score is
min{l : B(c, l) > n/2}), and candidates are ranked
according to their scores (where lower scores are bet-
ter). That is, if we say that a voter “approves” her top
l candidates, then we repeatedly increase l by 1, and
whenever a candidate becomes approved by more than
half the voters (“passes the post”), that candidate is
placed next in the ranking. When multiple candidates
pass the post simultaneously, ties are broken by the
number of votes by which the post is passed.

• maximin (aka. Simpson). Let N(c1, c2) be
the number of votes that rank candidate c1 higher
than candidate c2. Candidate c’s maximin score is
minc′ 6=c N(c, c′) (the candidates worst score in a pair-
wise election). Candidates are ranked by score.

• Copeland. A candidate c gains one Copeland point
for every pairwise election it wins (one point for ev-
ery c′ such that N(c, c′) > N(c′, c)), and loses one
Copeland point for every pairwise election it loses
(minus one point for every c′ such that N(c, c′) <
N(c′, c)). Candidates are ranked by score.

• ranked pairs. Sort all ordered pairs of candidates
(a, b) by N(a, b), the number of voters who prefer a
to b. Starting with the pair (a, b) with the highest
N(a, b), we “lock in” the result of their pairwise elec-
tion (a Â b). Then, we move to the next pair, and we
lock the result of their pairwise election. We continue
to lock every pairwise result that does not contradict
the ordering Â established so far.

2.2 Noise models

In this paper, we will place the following restrictions
on the noise model. First, we require that the noise
is independent across votes. That is, votes are con-
ditionally independent given the correct outcome, as
illustrated by the Bayesian network below.

Second, we require that the conditional distribution
given the correct outcome is the same for each vote

vote 1

"correct" outcome

vote 2 vote n...

(for example, the first vote cannot be more likely to
agree with the correct outcome than the second vote).
Together, the two restrictions amount to the noise be-
ing i.i.d.

These restrictions strengthen our positive results that
show that certain rules can be interpreted as maximum
likelihood estimators. As for the negative results that
certain rules cannot be so interpreted, it turns out that
without any restrictions on the noise model, the ques-
tion becomes trivial. Specifically, if we do not make the
restriction that votes are drawn independently given
the correct outcome, then any rule is an MLE, as the
following trivial proposition shows.

Proposition 1 Any voting rule ρ can be interpreted
as a maximum likelihood estimator (if we do not re-
quire that votes are drawn independently given the cor-
rect outcome). Moreover, if the rule is anonymous (it
treats all voters symmetrically), then the noise model
can also be anonymous (i.e. the conditional distribu-
tion given the correct outcome is the same for each
vote).

Proof: The following noise model will suffice: given
any correct outcome, let the probability of all vote
vectors on which ρ produces an outcome that is
different from the correct outcome be 0, and let the
probability on all other vote vectors be positive. We
note that if the rule is anonymous, then this is an
anonymous noise model.

Hence, in the remainder of the paper, we make the
above two restrictions. We say that a rule that can
be viewed as a maximum likelihood estimator un-
der these restrictions when the outcome is a winner
is an MLEWIV (Maximum Likelihood Estimator for
Winner under I.i.d. Votes) rule, and one that can
be viewed as a maximum likelihood estimator under
these restrictions when the outcome is a ranking is an
MLERIV (Maximum Likelihood Estimator for Rank-
ing under I.i.d. Votes) rule.

3 Voting rules that can be interpreted
as MLEs

In this section, we lay out our positive results: we show
which of the common voting rules can be interpreted as



maximum likelihood estimators under the assumption
of i.i.d. votes (both for the case where the outcome
is the winner and the case where the outcome is a
ranking).

It turns out that scoring rules satisfy both the
MLEWIV and MLERIV properties.

Theorem 1 Any scoring rule is both an MLEWIV
and an MLERIV rule.

Proof: We first show that every scoring rule is an
MLEWIV rule. If candidate w is the winner in the
correct outcome, then let the probability (given the
correct outcome) of a vote j that ranks candidate w
in position rj(w) be proportional to 2s(rj(w)) (where
s(r) is the number of points a candidate derives from
being ranked rth in a vote). Thus, the probability of
votes 1 through n given the correct outcome is pro-

portional to
n∏

j=1

2s(rj(w)) = 2

(
n∑

j=1

s(rj(w))

)
. Of course,

n∑
j=1

s(rj(w)) is exactly candidate w’s score. Now, the

problem of finding the maximum likelihood estimate
of the correct outcome is the problem of choosing a
candidate w to maximize the former expression. This
is done by choosing the candidate c with the high-

est score
n∑

j=1

s(rj(c)). Hence every scoring rule is an

MLEWIV rule.

We next show that every scoring rule is also
an MLERIV rule. If the candidates are ranked
c1 Â c2 Â . . . Â cm in the correct outcome, then let the
probability (given the correct outcome) of a vote j that
ranks candidate ci in position rj(ci) be proportional to
m∏

i=1

(m+1− i)s(rj(ci)). Thus, the probability of votes 1

through n given the correct outcome is proportional to

n∏
j=1

m∏
i=1

(m+1−i)s(rj(ci)) =
m∏

i=1

(m+1−i)

(
n∑

j=1

s(rj(ci))

)
.

Of course,
n∑

j=1

s(rj(ci)) is exactly candidate ci’s score.

Now, the problem of finding the maximum likelihood
estimate of the correct outcome is the problem of
labeling the candidates as ci so as to maximize the
former expression. Because m + 1 − i is positive and
decreasing in i, this is done by labeling the candidate

c with the highest score
n∑

j=1

s(rj(c)) as c1 (thereby

maximizing the number of factors m + 1 − 1 = m
in the expression), the candidate with the second
highest score as c2, etc. Hence every scoring rule is
an MLERIV rule.

STV, on the other hand, satisfies only the MLERIV
property (we will see later that it violates the
MLEWIV property).

Theorem 2 The STV rule is an MLERIV rule.

Proof: Let the candidates be ranked c1 Â c2 Â . . . Â
cm in the correct outcome. Let δj(ci) = 1 if all the
candidates that are ranked higher than ci in vote j are
contained in {ci+1, ci+2, . . . , cm}, and let δj(ci) = 0
otherwise. Then, let the probability of vote j be pro-

portional to
m∏

i=1

k
δj(ci)
i , where, for every i, 0 < ki < 1,

and ki+1 is much smaller than ki. Thus, the proba-
bility of votes 1 through n given the correct outcome

is proportional to
n∏

j=1

m∏
i=1

k
δj(ci)
i =

m∏
i=1

k

(
n∑

j=1

δj(ci)

)

i .

Again, the problem of finding the maximum likelihood
estimate of the correct outcome is the problem of
labeling the candidates as ci so as to maximize this
expression. To do so, we must first minimize the
number of factors km, because these factors dominate.

The number of such factors is
n∑

j=1

δj(cm), which is

the number of votes that rank the candidate that we
label cm first. Hence, we must rank the candidate
that is ranked first the fewest times last (as cm).
Next, we must minimize the number of factors km−1.

The number of such factors is
n∑

j=1

δj(cm−1), which is

the number of votes that rank the candidate that we
label cm−1 either first, or second after cm. Hence,
we must rank the candidate that is ranked first the
fewest times after cm is removed second-to-last (as
cm−1)—etc. Thus the maximum likelihood estimate
of the ranking is exactly the STV ranking. Hence,
STV is an MLERIV rule.

4 Voting rules that cannot be
interpreted as MLEs

In this section, we will show that some rules cannot
be interpreted as maximum likelihood estimators un-
der the restriction that the votes are i.i.d. (given the
correct outcome). To do so, we rely on the following
lemma.

Lemma 1 For a given type of outcome (e.g. winner
or ranking), if there exist vectors of votes V1, V2 such
that rule ρ produces the same outcome on V1 and V2,
but a different outcome on V1+V2 (the votes in V1 and



V2 taken together), then ρ is not a maximum likelihood
estimator for that type of outcome under i.i.d. votes.
Specifically, if there exist vectors of votes V1, V2 such
that rule ρ produces the same winner on V1 and V2,
but a different winner on V1 + V2, then ρ is not an
MLEWIV rule; if there exist vectors of votes V1, V2

such that rule ρ produces the same ranking on V1 and
V2, but a different ranking on V1 + V2, then ρ is not
an MLERIV rule.3

Proof: Let s be the outcome that ρ pro-
duces on V1 and on V2. Given a distribution
such that s ∈ arg maxs′ P (V1|S = s′) and
s ∈ arg maxs′ P (V2|S = s′) (where S is the cor-
rect outcome), we have s ∈ arg maxs′ P (V1|S =
s′)P (V2|S = s′) = arg maxs′ P (V1 + V2|S = s′). But
s is not the outcome that ρ produces on V1 + V2,
so ρ is not a maximum likelihood estimator for the
distribution.

vote nvote k+1vote kvote 1

V2V1

"correct" outcome

... ...

Figure 1: Graphical illustration of Lemma 1. If the
maximum likelihood estimate for the correct outcome
given only the votes V1 coincides with the the maxi-
mum likelihood estimate given only the votes V2, then
it must also coincide with the maximum likelihood es-
timate given all the votes V1 + V2.

Below, when we use Lemma 1 to show that a rule is
neither an MLEWIV nor an MLERIV rule, we will
exhibit vectors of votes V1 and V2 such that the rule
produces the same ranking on them (and hence also
the same winner), but the rule produces a different
winner on V1+V2 (and hence also a different ranking).4

Theorem 3 The Bucklin rule is neither an MLEWIV
nor an MLERIV rule.

Proof: We will apply Lemma 1 to both cases. Let
V1 contain two votes a Â b Â c Â d Â e, and one

3Such paradoxical outcomes are perhaps reminiscent of
a known paradox in which statistical tests in two different
subpopulations both suggest that a treatment is helpful,
but when the data of the two tests are aggregated, this
suggests that the treatment is actually harmful [14]!

4We note that a proof using Lemma 1 that a rule is
not MLEWIV is not sufficient to show that the rule is not
MLERIV, because in the proof, V1 and V2 may produce
the same winner but different rankings.

vote b Â a Â c Â d Â e. The following describes at
which points the candidates pass the n/2 votes mark.
a is ranked the top candidate by two votes; b is ranked
among the top two candidates by all votes; c is ranked
among the top three candidates by all votes; and d
is ranked among the top four candidates by all votes.
Hence the ranking produced by the Bucklin rule on V1

is a Â b Â c Â d Â e.

Let V2 contain two votes b Â d Â a Â c Â e, one vote
c Â e Â a Â b Â d, and one vote c Â a Â b Â d Â e.
The following describes at which points the candidates
pass the n/2 votes mark. a is ranked among the top
three candidates by all votes; b is ranked among the
top three candidates by three votes; c is ranked among
the top four candidates by all votes; and d is ranked
among the top four candidates by three votes. Hence
the ranking produced by the Bucklin rule on V2 is a Â
b Â c Â d Â e, the same as on V1.

Now, consider the ranking that the Bucklin rule
produces on V1 +V2. The following describes at which
points the candidates pass the n/2 votes mark. b is
ranked among the top two candidates by five votes; a
is ranked among the top two candidates by four votes;
c is ranked among the top three candidates by five
votes; and d is ranked among the top four candidates
by six votes. Hence the ranking produced by the
Bucklin rule on V1 + V2 is b Â a Â c Â d Â e.

We have already shown that STV is an MLERIV rule,
which implies that the condition of Lemma 1 for an
MLERIV rule does not hold. Still, it is interesting to
see directly why this condition does not hold. Suppose
that we have votes V1 and votes V2, on which STV
produces the same ranking. The candidate cm ranked
last by STV in both of V1 and V2 receives the lowest
number of votes in both cases, and therefore must also
receive the lowest number of votes in V1 + V2, and be
ranked last in this case as well. Then, the candidate
cm−1 ranked second last in both of V1 and V2 receives
the lowest number of votes in both cases after the re-
moval of cm, and therefore must also receive the lowest
number of votes in V1+V2 after the removal of cm, and
be ranked second last in this case as well—etc. Hence
the ranking produced by the STV rule on V1+V2 must
agree with that produced on V1 and V2.

However, this does not yet imply that the Lemma fails
on STV for the MLEWIV property, and in fact it does
not:

Theorem 4 The STV rule is not an MLEWIV rule.

Proof: We will apply Lemma 1. Let V1 contain three
votes c Â a Â b, four votes a Â b Â c, and six votes



b Â a Â c. Given these votes, c drops out first; its
three votes transfer to a, who then has seven votes,
one more than b. Hence, a wins the election on V1

under the STV rule.

Let V2 contain three votes b Â a Â c, four votes a Â
c Â b, and six votes c Â a Â b. Thus, V2 has the same
votes as V1, except the roles of b and c are switched.
Hence a wins the election on V2 under the STV rule.

Now, consider the set of votes V1 + V2. b and c each
receive nine votes, whereas a receives only eight votes.
Hence, a drops out first and cannot win.

The remaining rules are all based on pairwise elections.
For these, it is useful to consider the pairwise elec-
tion graph between the candidates, in which there is
a directed edge from candidate a to candidate b with
weight w if a defeats b by w votes in their pairwise
election. For example, if the votes are a Â b Â c and
b Â a Â c, then the pairwise election graph is:

b c

a

2

2

In the remaining proofs, when we apply Lemma 1, it
will be easier not to give the votes in V1 and V2, but
rather only the pairwise election graphs for V1 and
V2. (The pairwise election graph of V1 + V2 can be
inferred from these graphs by summing their edges.)
Of course, this approach is legitimate only if we can
show that there do indeed exist votes for V1 and V2

that realize these graphs. This is the purpose of the
following lemma.

Lemma 2 For any pairwise election graph G whose
weights are even-valued integers, votes can be con-
structed that realize G.

Proof: To increase the weight on the edge from candi-
date a to b by 2 without affecting any other weights, we
can add the following two votes (where c1, c2, . . . , cm−2

are the remaining candidates):

• a Â b Â c1 Â c2 Â . . . Â cm−2,

• cm−2 Â cm−3 Â . . . Â c1 Â a Â b.

Hence we can realize any pairwise election graph G
with even-valued integer weights.

Theorem 5 The Copeland rule is neither an
MLEWIV nor an MLERIV rule.

Proof: We will apply Lemma 1 to both cases. Let
V1 realize the following pairwise election graph (by
Lemma 2):

a

b e

c d

2

2

2

2

2
22

2

2

A candidate’s Copeland score is the number of outgo-
ing edges minus the number of incoming edges. There-
fore, the scores in this election are as follows: a gets 2
points, b gets 1 point, c gets 0 points, d gets −1 point,
and e gets −2 points. Hence the ranking produced by
the Copeland rule on V1 is a Â b Â c Â d Â e.

Let V2 realize the following pairwise election graph (by
Lemma 2):

a

b e

c d

2

2

2

22

2

2

4

2

The Copeland scores in this election are as follows: a
gets 2 points, b gets 1 point, c gets 0 points, d gets
−1 point, and e gets −2 points. Hence the ranking
produced by the Copeland rule on V2 is a Â b Â c Â
d Â e, the same as on V1.

The pairwise election graph of V1 +V2 is the following:

a

b e

c d

2

4

4

4

4 4

4

The Copeland scores in this election are as follows:
b gets 2 points, a gets 1 point, c gets 0 points, d
gets −1 point, and e gets −2 points. Hence the
ranking produced by the Copeland rule on V1 + V2 is
b Â a Â c Â d Â e.

Theorem 6 The maximin rule is neither an
MLEWIV nor an MLERIV rule.



Proof: We will apply Lemma 1 to both cases. Let
V1 realize the following pairwise election graph (by
Lemma 2):

a 6

8

10

12

b c

d

4

2

In this election, a’s worst pairwise defeat is by 6 votes;
b’s worst pairwise defeat is by 8 votes; c’s worst pair-
wise defeat is by 10 votes; and d’s worst pairwise de-
feat is by 12 votes. Hence the ranking produced by
the maximin rule on V1 is a Â b Â c Â d.

Let V2 realize the following pairwise election graph (by
Lemma 2):

a

b c

d

4

2

6

8

10

12

In this election, again, a’s worst pairwise defeat is by 6
votes; b’s worst pairwise defeat is by 8 votes; c’s worst
pairwise defeat is by 10 votes; and d’s worst pairwise
defeat is by 12 votes. Hence the ranking produced by
the maximin rule on V2 is a Â b Â c Â d, the same as
on V1.

The pairwise election graph of V1 +V2 is the following:

a 6

b c

d

4

82

2

2

In this election, c’s worst pairwise defeat is by 2 votes;
a’s worst pairwise defeat is by 4 votes; d’s worst
pairwise defeat is by 6 votes; and b’s worst pairwise
defeat is by 8 votes. Hence the ranking produced by
the maximin rule on V1 + V2 is c Â a Â d Â b.

Theorem 7 The ranked pairs rule is neither an
MLEWIV nor an MLERIV rule.

Proof: We will apply Lemma 1 to both cases. Let
V1 realize the following pairwise election graph (by
Lemma 2):

a

b c

d8

6

10 414

In this election, the pairwise rankings are locked in
as follows. First, b Â d is locked in; then, a Â b is
locked in; then d Â a is inconsistent with the rankings
locked in already, so the next pairwise ranking locked
in is b Â c; and finally, c Â d is locked in. Hence
the ranking produced by the ranked pairs rule on V1

is a Â b Â c Â d.

Let V2 realize the following pairwise election graph (by
Lemma 2):

a

b c

d

16  2

12

14

4

In this election, the pairwise rankings are locked in
as follows. First, a Â c is locked in; then, c Â d is
locked in; then d Â a is inconsistent with the rankings
locked in already, so the next pairwise ranking locked
in is b Â c; and finally, a Â b is locked in. Hence
the ranking produced by the ranked pairs rule on V2

is a Â b Â c Â d, the same as on V1.

The pairwise election graph of V1 +V2 is the following:

a

b c

d20

18

16

14

10

  12

In this election, the pairwise rankings are locked in
as follows. First, d Â a is locked in; then, c Â d is
locked in; then, a Â c is inconsistent with the rankings
locked in already, so the next pairwise ranking locked
in is b Â d; then, a Â b is inconsistent with the
rankings locked in already, so the next (and last)
pairwise ranking locked in is b Â c. Hence the ranking
produced by the ranked pairs rule on V1 + V2 is
b Â c Â d Â a.

Among the common voting rules that we have stud-
ied, none is an MLEWIV rule but not an MLERIV
rule. So, one may wonder if perhaps the MLEWIV
property implies the MLERIV property. To see that
this is not the case, consider a hybrid rule A that first
chooses a winner according to some MLEWIV rule B,



and produces the ranking of the remaining candidates
according to rule C which is not an MLERIV rule.
A is an MLEWIV rule because B is, but it is not an
MLERIV rule because C is not.

5 Conclusions and future research

Voting is a very general method of preference aggrega-
tion. We considered the following view of voting: there
exists a “correct” outcome (winner/ranking), and each
voter’s vote corresponds to a noisy perception of this
correct outcome. Given the noise model, for any vec-
tor of votes, we can compute the maximum likelihood
estimate of the correct outcome. This maximum likeli-
hood estimate constitutes a voting rule. In this paper,
we asked the following question: For which common
voting rules does there exist a noise model such that
the rule is the maximum likelihood estimate for that
noise model? The following table summarizes our re-
sults for the rules discussed in this paper.

MLERIV ¬ MLERIV
Scoring rules Hybrids of

MLEWIV (incl. plurality, MLEWIV and
Borda, veto) ¬ MLERIV

Bucklin
¬ MLEWIV STV Copeland

maximin
ranked pairs

Classification of voting rules discussed in this paper.

We believe the techniques that we used to prove these
results should be easy to apply to other rules as well.

There are many questions left to be answered by future
research, including at least the following. How reason-
able are the noise models that we gave to show that
certain rules are MLEWIV or MLERIV rules? To the
extent that they are not reasonable, can we improve
them? Do these improved noise models lead to the
same rules, or different (and possibly altogether new)
ones? For the rules that we showed are not MLEWIV
or MLERIV rules, can we still interpret them as max-
imum likelihood estimators if we relax somewhat the
assumption of votes being drawn independently? (If
we have no restriction at all, then Proposition 1 shows
that this can always be done.) Alternatively, are there
other rules that can be interpreted as maximum likeli-
hood estimators under our independence assumption,
while producing outcomes that are “close” to those
produced by rules that cannot be so interpreted? Fi-
nally, are there rules that are not MLEWIV/MLERIV
but for which Lemma 1 cannot be used to show this, or
does Lemma 1 in fact also provide us with a sufficient
condition for a rule being MLEWIV/MLERIV?
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