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Abstract

Combinatorial auctions (CAs) are important mechanisms for
allocating interrelated items. Unfortunately, winner determi-
nation is NP-complete unless there is special structure. We
study the setting where there is a graph (with some desired
property), with the items as vertices, and every bid bids on a
connected set of items. Two computational problems arise: 1)
clearing the auction when given the item graph, and 2) con-
structing an item graph (if one exists) with the desired prop-
erty. 1 was previously solved for the case of a tree or a cycle,
and 2 for the case of a line graph or a cycle.
We generalize the first result by showing that given an item
graph with bounded treewidth, the clearing problem can be
solved in polynomial time (and every CA instance has some
treewidth; the complexity is exponential in only that parame-
ter). We then give an algorithm for constructing an item tree
(treewidth 1) if such a tree exists, thus closing a recognized
open problem. We show why this algorithm does not work for
treewidth greater than 1, but leave open whether item graphs
of (say) treewidth 2 can be constructed in polynomial time.
We show that finding the item graph with the fewest edges
is NP-complete (even when a graph of treewidth 2 exists).
Finally, we study how the results change if a bid is allowed
to have more than one connected component. Even for line
graphs, we show that clearing is hard even with 2 compo-
nents, and constructing the line graph is hard even with 5.

Introduction
Combinatorial auctions (CAs), where bidders can bid on
bundles of items, have emerged as key mechanisms for allo-
cating goods, tasks, resources, etc., both in computer science
and economics. They are desirable when a bidder’s valua-
tion of a bundle might not equal the sum of his valuations of
the individual items contained in the bundle.

Unfortunately, determining the winners in a general CA
is NP-complete (Rothkopf, Pekeč, & Harstad 1998). Three
main approaches have been pursued to address this: 1)
designing optimal search algorithms that are often fast
(e.g., (Sandholm 2002; Sandholm et al. 2001; Fujishima,
Leyton-Brown, & Shoham 1999; Boutilier 2002)), but re-
quire exponential time in the worst case (unless P =
NP), 2) designing approximation algorithms (e.g., (Hoos
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& Boutilier 2000; Zurel & Nisan 2001; van Hoesel &
Müller 2001))—but unfortunately no polytime algorithm
can guarantee an approximation (unless ZPP = NP) (Sand-
holm 2002), and 3) designing optimal polytime algorithms
for restricted classes of CAs (e.g., (Rothkopf, Pekeč, &
Harstad 1998; Tennenholtz 2000; Penn & Tennenholtz 2000;
Sandholm & Suri 2003)).

This paper falls roughly within the third approach: we
present hardness and easiness results for natural classes of
CAs. However, we also develop a problem instance parame-
ter (treewidth of the item graph, described below), such that
any CA instance falls within our framework, and winner de-
termination complexity is exponential in the parameter only.
Like almost all of the work on polynomial-time solvable
combinatorial auctions, we restrict our attention to the case
where any two bids on disjoint subsets can be simultane-
ously accepted (that is, no XOR-constraints between bids
are allowed).

Consider graphs with the auction’s items as vertices,
which have the property that for any bid, the items occurring
in it constitute a connected set in the graph. (For instance,
the fully connected graph (with an edge between every pair
of items) always has this property.) Such graphs can have
potentially useful structure (for example, the graph may be
a tree). For any type of structure, one can ask the following
two questions: 1) how hard is the clearing problem when we
are given a valid item graph with the desired structure? 2)
if the graph is not given beforehand, how hard is it to con-
struct a valid item graph with this structure (if it exists)? We
will investigate both questions. 1 has been solved for the
special case where the graph is a tree or a cycle (Sandholm
& Suri 2003); 2 has been solved for the special case where
the graph is a line (Korte & Mohring 1989) or a cycle (Es-
chen & Spinrad 1993). In each of these cases, a low-order
polynomial algorithm was presented.

One practical use of such polynomially detectable and
solvable special cases is to incorporate them into optimal
search algorithms (Sandholm & Suri 2003). At every node
of the search tree, we can detect whether the remaining prob-
lem is polynomially solvable, and if it is, we use the polyno-
mial special-purpose algorithm for solving it. Otherwise the
search will continue into the subtree.

Also, there are two pure uses for graph structures which
make questions 1 and 2 easy. First, the auctioneer can de-



cide on the graph beforehand, and allow only bids on con-
nected sets of items. (In this case, 1 is most important, but
2 may also be useful if the auctioneer wants to make sure
that bids on certain bundles are allowed.) Second, the auc-
tioneer can allow bids on any bundle; then, once the bids
have been submitted, attempt to construct an item graph that
is valid for these bids; and finally, clear the auction using
this graph. Clearly, the second approach is only practical
if real instances are likely to have item graphs with some
structure. To a lesser extent, this is also important for the
first approach: if bidders must bid on bundles too different
from their desired bundles, economic value will be lost.

Fortunately, real-world instances are likely to have graphs
that are not fully connected. For instance, consider a com-
binatorial auction for tourist activities in the Bay Area. One
item for sale may be a ticket to Alcatraz (in San Francisco).
Another may be a ticket to the Children’s Discovery Mu-
seum (in San Jose). A third item may be a Caltrain ticket
to get back and forth between the two cities. Supposing (for
now) that there is no alternative transportation between the
two cities, the only bundle that is unlikely to receive a bid
is {Alcatraz, Children’s Discovery Museum}, because the
bidder will need transportation (no matter which city she is
based out of for the duration of her visit). Thus, a valid graph
for this auction is the following line graph (because its only
disconnected set is the one we just ruled out).

Caltrain Children’s
Museum

Alcatraz

To extend the example, suppose that there are alternative
modes of transportation which are also included in the auc-
tion: a Rental Car, and a Bus ticket. Now the following
bundles are unlikely to receive a bid: {Alcatraz, Children’s
Discovery Museum} (because the bidder requires a form
of transportation) and any bundle containing more than one
mode of transportation. Thus, the following is a valid item
graph (because we just ruled out all its disconnected sets).

Children’s
Museum

Alcatraz Rental Car

Bus

Caltrain

This graph does not fall under any of the previously stud-
ied structures (it is not a line, tree, or cycle). Still, it has
interesting structure: for instance, it has a treewidth of 2.

The rest of the paper is organized as follows. We first
show that given an item graph with bounded treewidth, the
clearing problem can be solved in polynomial time. Next,
we show how to construct an item tree (treewidth = 1), if
it exists, in polynomial time. This answers the proposed
open question of whether this can be done (Sandholm & Suri
2003). (We leave open the question of whether an item graph
with small treewidth (say, 2) can be constructed if it exists.)
We show that constructing the item graph with the fewest
edges is NP-complete (even when a graph of treewidth 2 is

easy to construct). Finally, we study a variant where a bid is
allowed to consist of k connected sets, rather than just one.
We show that the clearing problem is NP-complete even for
line graphs with k = 2, and the graph construction problem
is NP-complete for line graphs with k = 5.

Item graphs
We first formally define item graphs.

Definition 1 Given a combinatorial auction clearing prob-
lem instance, the graph G = (I, E), whose vertices corre-
spond to the items in the instance, is a (valid) item graph if
for every bid, the set of items in that bid constitutes a con-
nected set in G.

We emphasize that an item graph, in our definition, does
not need to have an edge connecting every pair of items that
occurs in a bid. Rather, each pair only needs to be connected
via a path consisting only of items in the bid. In other words,
the subgraph consisting of each bid must form only one con-
nected component, but it needs not be a clique.

Clearing with bounded treewidth item graphs
In this section, we show that combinatorial auctions can
be cleared in polynomial time when an item graph with
bounded treewidth is given. This generalizes a result by
Sandholm and Suri (Sandholm & Suri 2003) which shows
polynomial time clearability when the item graph is a tree
(treewidth = 1).1 Linear-time approximation algorithms
for clearing when the item graph has bounded treewidth
have also been given, where the approximation ratio is the
treewidth, plus one (Akcoglu et al. 2002). In contrast, we
will clear the auction optimally.

First we will give a very brief review of treewidth.

Definition 2 A tree decomposition T of a graph G = (I, E)
is a tree with the following properties.

1. Each v ∈ T has an associated set Iv of vertices in G.
2.

⋃
v∈T Iv = I (each vertex of G occurs somewhere in T ).

3. For each (i1, i2) ∈ E, there is some v ∈ T with i1, i2 ∈
Iv (each edge of G is contained within some vertex of T ).

4. For each i ∈ I , {v ∈ T : i ∈ Iv} is connected in T .

We say that the width of the tree is maxv∈T |Iv| − 1.

While the general problem of finding a tree decompo-
sition of a graph with minimum width is NP-complete,
when the treewidth is bounded, the tree decomposition can
be constructed in polynomial time (Areborg, Corneil, &
Proskurowski 1987). Because we are only interested in the
case where the treewidth of the item graph is bounded, we
may assume that the tree decomposition is given to us as
well as the graph itself.

The following (known) lemma will be useful in our proof.

Lemma 1 If X ⊆ I is a connected set in G, then {v ∈ T :
Iv ∩ X �= {}} is connected in T .

1The special case of a tree can also be solved in polynomial
time using algorithms for perfect constraint matrices (de Vries &
Vohra 2003), but those algorithms are slower in practice.



We are now ready to present our first result.

Theorem 1 Suppose we are given a combinatorial auction
problem instance, together with a tree decomposition T with
width tw of an item graph G. Then the optimal allocation
can be determined in O(|T |2(|B| + 1)tw+1) using dynamic
programming. (Both with and without free disposal.)

Proof: Fix a root in T (the “top” of the tree). At every vertex
v ∈ T with items Iv, consider all functions f : Iv → B ∪
{0}, indicating possible assignments of the items to the bids.
(f(i) = 0 indicates no commitment as to which bid item i
is assigned to.) This set has size (|B| + 1)|Iv|. Consider the
subset FIv

of these functions satisfying: 1. If f(i) = b, b
must bid on i; 2. All bids in the image f(Iv) include items
that occur higher up in T than v; 3. If f(i) = b and b also
bids on item j ∈ Iv, then f(j) = b also.

The interpretation is that each function in FIv
corresponds

to a constraint from higher up in the tree as to which bids
should be accepted. We now compute, for every node v
(starting from the leaves and going up to the root), for every
function f ∈ FIv

, the maximum value that can be obtained
from items that occur in v and its descendant vertices (but
not in any other vertices), and that do not occur in bids in
the image of f . (We observe that if v is the root node, there
can be no constraints from higher up in the tree (that is, there
is only one f function), and the corresponding value is the
maximum value that can be obtained in the auction.) Denot-
ing this value by r(v, f), we can compute it using dynamic
programming from the leaves up in the following manner:
• Consider all assignments g : {i ∈ Iv : f(i) = 0} →

B ∪{0},2 with the properties that: 1. If g(i) = b, b must bid
on i; 2. The image of g does not include any bids that include
items that occur higher in T than v. 3. If g(i) = b and b also
bids on item j ∈ Iv , then f(j) = 0 and g(j) = b also. (Thus,
g indicates which bids concerning the unallocated items in
Iv we are considering accepting, but only bids that we have
not considered higher in the tree.)
• The value of such an assignment is

∑
b∈g(Iv) a(b) +∑

w∈T :p(w)=v r(w, qw(f, g)), where g(Iv) is the image of
g, a(b) is the value of bid b, p(w) is the parent of w, and
qw(f, g) : Iw → B maps items occurring in a bid in the
image of either f or g to that bid, and everything else to 0.

• The maximum such value over all g is r(v, f).
Because we need to do this computation once for each

vertex v in T , the number of assignments g is at most (|B|+
1)|Iv| where |Iv| ≤ tw+1, and for each assignment we need
to do a lookup for each of the children of v, this algorithm
has running time O(|T |2(|B| + 1)tw+1).

The allocation that the algorithm produces can be ob-
tained going back down the tree, as follows: at the root node,
there is only one constraint function f mapping everything
to 0 (because no bid has items higher up the tree). Thus, con-
sider the r-value maximizing assignment groot for the root;
all the bids in its image are accepted. Then, for each of its
children, consider the r-value maximizing assignment under
the constraint imposed by groot; all the bids in the image of
that assignment are also accepted, etc.

2In the case of no free disposal, g cannot map to 0.

To show that the algorithm works correctly, we need to
show that no bids that are accepted high up in the tree are
“forgotten about” lower in the tree (and its items lower in
the tree awarded to other bids). Because the items in a bid
constitute a connected set in the item graph G, by Lemma 1,
the vertices in T containing items from such a bid are also
connected. Now, if a bid b is accepted at the highest vertex
v ∈ T containing an item in b (that is, the items in that
vertex occurring in b are awarded to b), each of v’s children
must also award all its items occurring in b to b; and by
the connectedness pointed out above, for each child, either
there is at least one such an item in that child, or none of its
descendants have any items occurring in b. In the former
case, b is also in the image of the child’s allocation function,
and the same reasoning applies to its children, etc.; in the
latter case the fact that b has been accepted is irrelevant
to this part of the tree. So, either an accepted bid forces a
constraint in a child, and the fact that the bid was accepted
is propagated down the tree; or the bid is irrelevant to all
that child’s descendants as well, and can be safely forgotten
about.

Constructing a valid item tree
So far we discussed question 1: how to clear the auction
given a valid item graph. In this section, we move on to
the second question of constructing the graph. We present a
polynomial-time algorithm that constructs an item tree (that
is, an item graph without cycles), if one exists for the bids.
This closes a recognized open research problem (Sandholm
& Suri 2003), and is necessary if one wants to use the poly-
nomial item tree clearing algorithm as a subroutine of a
search algorithm, as discussed in the introduction.

First, we introduce some notation. In a combinatorial auc-
tion with bid set B and item set I , define items(b) ⊆ I to be
the set of items in bid b. Also, let Tb refer to the subgraph of
a tree containing only vertices represented by items(b) and
all edges among elements of items(b).

With these definitions in hand, we are now ready to
present the main theorem of this section. This theorem
shows how to give a tree that “minimally violates” the re-
quirement of an item tree that each bid bids on only one
component. Thus, if it is actually possible to give a valid
item tree, such a tree will be produced by the algorithm.

Theorem 2 Given an arbitrary set of bids B for items I , a
corresponding tree T that minimizes

∑

b∈B

the number of connected components in Tb

can be found in O(|B| · |I|2) time.

Proof: Consider the algorithm MAKETREE(B, I) shown
below, which returns the maximum spanning tree of the
complete undirected weighted graph over vertices I in which
each edge (i, j) has a weight equal to the number of bids b
such that i, j ∈ items(b).



MAKETREE(B, I)
1 A ← An |I| × |I| matrix of 0s
2 for each b in B
3 do for each i in items(b)
4 do for each j �= i in items(b)
5 do A(i, j) ← A(i, j) + 1
6 return the maximum spanning tree of the graph A

The running time of MAKETREE(B, I) is O(|B| · |I|2)
from the triply nested for loops, plus the time needed to find
the maximum spanning tree. The maximum spanning tree
can be found in O(|I|2) time (Cormen, Leiserson, & Rivest
1990), so the running time of the algorithm as a whole is
O(|B| · |I|2) + O(|I|2) = O(|B| · |I|2).

To see that MAKETREE(B, I) returns the tree T with the
minimum sum of connected components across all Tb, note
that the total weight of T can be written as

∑

b∈B

the number of edges in T among items(b).

Because T is a tree, each subgraph Tb is a forest, and the
number of edges in any forest equals the number of vertices
in the forest, minus the number of components in the forest.
It follows that we can rewrite the above expression as

s =
∑

b∈B

|items(b)|− the number of components in Tb.

Because
∑

b∈B |items(b)| is a constant, maximizing s is
the same as minimizing the sum of the number of connected
components across all Tb.

In particular, if an item tree exists for the given bids, then
in that tree, each bid bids on only one connected compo-
nent, so the summation in Theorem 2 is equal to the number
of bids. Because each term in the summation must always
be greater than or equal to 1, this tree minimizes the sum-
mation. Thus, MAKETREE will return a tree for which the
summation in Theorem 2 is equal to the number of bids as
well. But this can only happen if each bid bids on only one
connected component. So, MAKETREE will return an item
tree.

Corollary 1 MAKETREE will return a valid item tree if and
only if one exists, in O(|B| · |I|2) time. (And whether a tree
is a valid item tree can be checked in O(|B| · |I|) time.)

Implications for bid sets without an item tree
The above result presents an algorithm for constructing a
tree T from a set of bids that minimizes the sum of the num-
ber of connected components across all Tb. Even when the
tree returned is not a valid item tree, we can still use it to help
us clear the auction, as follows. Suppose MAKETREE was
“close” to being able to construct an item tree, in the sense
that only a few bids were split into multiple components.
Then, we could use brute force to determine which of these
split bids to accept, and solve the rest of the problem using

dynamic programming as in (Sandholm & Suri 2003). If the
number of split bids is k, this algorithm takes O(2k · |B| · |I|)
time (so it is efficient if k is small). We note, however, that
MAKETREE(B, I) does not minimize the number of split
bids (k), as would be desirable for the proposed search tech-
nique. Rather, it minimizes the total number of components
(summed over bids). Thus, it may prefer splitting many bids
into few components each, over splitting few bids into many
components each. So there may exist trees that have fewer
split bids than the tree returned by MAKETREE.

Also, MAKETREE does not solve the general problem
of constructing an item graph of small treewidth if one ex-
ists. The straightforward adaptation of the MAKETREE al-
gorithm to finding an item graph of treewidth 2 (where we
find the maximum spanning graph of treewidth 2 in the last
step) does not always provide a valid item graph, even when
a valid item graph of treewidth 2 exists. To see why, con-
sider an auction instance for which the following graph is
the unique item graph of treewidth 2 (for example, because
for each edge, there is a bid on only its two endpoints).

C

D

B

A

If there are many bids on the bundle {A,B,D}, and few
other bids, the adapted algorithm will draw the edge (A,D).
As a result, it will fail to draw one of the other edges (be-
cause otherwise the graph would have treewidth 3), and thus
the graph will not be a valid item graph.

For now, we leave open the question of how to construct a
valid item graph with treewidth 2 (or 3, or 4, ...) if one exists.
However, in the next section, we solve a related question.

Constructing the item graph with the fewest
edges is hard

The more edges an item graph has, the less structure there is
in the instance. A natural question is therefore to construct
the valid item graph with the fewest edges. It should be
pointed out that this is not necessarily the best graph to work
on. For example, given our algorithm, a graph of treewidth
2 may be more desirable to work on than a graph with fewer
edges of high treewidth. On the other hand, assuming that
the items cannot be disjoint into two separate components
(which is easy to check), a tree is always a graph with the
minimum number of edges (and if a tree exists, then only
trees have the minimum number of edges). So in this case,
generating a graph of minimum treewidth is the same as gen-
erating a graph with the minimum number of edges.

We next show that constructing the graph with the fewest
edges is hard. Interestingly, the question is hard already for
instances with treewidth 2. (For instances of treewidth 1
(forests) it is easy: divide the items into as many separate
components (with no bids across more than one component)
as possible, and run our MAKETREE algorithm on each.)
Thus, if a graph of treewidth 2 can be constructed in polyno-



mial time (and P�=NP), the algorithm for doing so cannot be
used to get the fewest edges—unlike the case of treewidth 1.

Theorem 3 Determining whether an item tree with fewer
than q edges exists is NP-complete, even when an item graph
of treewidth 2 is guaranteed to exist and each bid is on at
most 5 items, and whether or not the item tree we construct
is required to be of treewidth 2.

Proof: The problem is in NP because we can nondeter-
ministically generate a graph with the items as vertices
and at most k edges, and check whether it is valid item
graph. To show that the problem is NP-complete, we re-
duce an arbitrary 3SAT instance to the following set of
items and bids. For every variable v ∈ V , let there be
two items i+v, i−v . Furthermore, let there be two more
items, i0 and i1. Let the set of bids be as follows. For
every v ∈ V , let there be bids on the following sets:
{i0, i+v}, {i0, i−v}, {i+v, i−v}, {i+v, i−v, i1}. Finally, for
every clause c ∈ C, let there be a bid on {i+v : +v ∈
c} ∪ {i−v : −v ∈ c} ∪ {i0, i1} (the set of all items corre-
sponding to literals in the clause, plus the two extra items—
we note that because we are reducing from 3SAT, these are at
most 5 items). Let the target number of edges be q = 4|V |.
We proceed to show that the two instances are equivalent.

First, suppose there exists a solution to the 3SAT instance.
Then, let there be an edge between any two items which
constitute a bid by themselves; additionally, let there be an
edge between i+v and i1 whenever v is set to true in the
SAT solution, and an edge between i−v and i1 whenever v
is set to false in the SAT solution (for a total of 4|V | edges).
We observe that all the bids of the form {i+v, i−v, i1} are
now connected. Also, for any c ∈ C, because the 3SAT
solution satisfied c, either i1 is connected to some i+v with
+v ∈ c, or i1 is connected to some i−v with −v ∈ c. (And
all the items besides i1 in the bid corresponding to c are
clearly connected.) So all the bids constitute connected sub-
sets, and there exists a valid item graph with at most 4|V |
edges. (Also, this is a series parallel graph, and such graphs
have treewidth 2.)

Now, suppose there exists a valid item graph with at most
4|V | edges. Of course, there must be an edge between any
two items which constitute a bid by themselves; and because
of the bids on three items, for every v ∈ V , there must be an
edge either between i+v and i1, or between i−v and i1. This
already requires 4|V | edges, so there cannot be any more
edges. Because each bid corresponding to a clause c must
be connected, there must be either an edge between some
i+v with +v ∈ c and i1, or between some i−v with −v ∈ c
and i1. But then, it follows that if we set v to true if there is
an edge between i+v and i1, and to false if there is an edge
between i−v and i1, we have a solution to the SAT instance.

All that remains to show is that in these instances, a
valid item graph of treewidth 2 always exists. Consider
the graph that has an edge between any two items which
constitute a bid by themselves; an edge between i+v and i1
for any v ∈ V ; and an edge between i0 and i1 (for a total of
4|V | + 1 edges). This is a series parallel graph, and such
graphs have treewidth 2.

Bids on multiple connected sets
In this section, we investigate what happens if we reduce the
requirements on item graphs somewhat. Specifically, let the
requirement be that for each bid, the items form at most k
connected components in the graph. (The case where k = 1
is the one we have studied up to this point.) So, to see if a
bid is valid given the graph, consider how many connected
components the items in the bid constitute in the graph; if
(and only if) there are at most k components, the bid is valid.
The following figure shows an example item tree. One bid
bids on all the items encapsulated by rectangles (2 connected
components); the other, on all the items encapsulated by el-
lipses (3 connected components). Thus, if k = 2, then the
first bid is valid, but the second one is not. (Equivalently, the
graph is not valid for the second bid.)

As we will see, both clearing when a simple graph is
known, and detecting whether a simple graph exists, become
hard for k > 1.

Clearing is hard even with 2 connected sets on a
line graph
Even if the item graph is a line, it is hard to clear auctions in
which bidders may bundle two intervals together. To show
this, we prove the following slightly stronger theorem.

Theorem 4 If an item graph is created that consists of two
disconnected line graphs, and bidders are permitted to bun-
dle one connected component from each line, then determin-
ing if the auction can generate revenue r is NP-complete.

Proof: The problem is in NP because the general clearing
problem is in NP. To show that it is NP-complete, an arbi-
trary instance of VERTEXCOVER will be reduced to a cor-
responding auction problem. In VERTEXCOVER, the goal is
to determine whether there exists a set of vertices C of size
at most k in a graph G = (V,E) such that for each edge
(x, y) ∈ E, either x ∈ C or y ∈ C.

To perform the reduction, given G = (V,E), create an
item ui for each edge ei. Place all of the ui items into
the upper line. In addition, for each vertex vi ∈ V , cre-
ate the items l

ej
vi for each edge ej that vi is part of. For

each vi, align all of its corresponding l
ej
vi items into a con-

tiguous interval on the lower line. Now, create the follow-
ing bids: 1. A bid of price 2 for each “edge item pair”
(lej

vi , uj). 2. A bid of price 1 for each “vertex interval bun-
dle,” {lej

vi |for all ej for which vi is part of ej}.
We now show that there exists a vertex cover of size at

most k exactly when the optimal revenue of the correspond-
ing auction is at least 2 · |E| + |V | − k.



Suppose there is a vertex cover of size k for a graph
G = (V,E). Then it is possible to sell all |E| of the edge
items breaking up only k of the vertex interval bundles. The
resulting revenue if only those k intervals are rendered un-
sellable by matching one or more of their members with
edge items is r = 2 · |E| + |V | − k as required; the profit
is 2 for each of the edge pairs of the form (lej

vi , uj) that are
sold, plus 1 for each of the vertex interval bundles that have
not had any of their items matched to edges.

Conversely, suppose there is a way to achieve revenue
r = 2 · |E| + |V | − k. Suppose all of the edge item
pairs were sold in this case. Then, because |V | − k vertex
intervals were sold, only k were spoiled by selling some of
their items with edge pairs. These k vertices can be used as
a vertex cover. On the other hand, suppose not all edge pairs
were sold. Then the revenue could be increased by selling
the rest of the edge pairs even if it means spoiling additional
vertex bundles because edge pairs carry a price of 2 while
vertex interval bundles only have price 1. This implies that
it is possible, by selling all of the edge item pairs, to acheive
revenue r′ = 2 · |E| + |V | − k′ > r so that k′ < k, where
k′ represents the size of a possible vertex cover.

Corollary 2 The problem of optimally clearing bids that
bundle together at most two connected components of a line
item graph is NP-hard because joining the two lines of item
graphs of the form discussed in Theorem 4 constitutes a triv-
ially correct reduction.

Constructing a line graph is hard even with 5
connected sets
We now move on to the task of constructing a simple item
graph that is valid when bids are allowed to consist of multi-
ple components. The graph construction question is perhaps
less interesting here because, as we just showed, clearing
remains hard even if we are given an item line graph. Never-
theless, the graph may still be helpful in reducing the clear-
ing time: maybe the clearing time bound can be reduced to
a smaller exponential function, or maybe it can reduce the
clearing time in practice. In this section, we show that un-
fortunately, detecting whether a valid line graph exists with
multiple (5) components is also NP-complete.

Lemma 2 Suppose a bid is allowed to contain up to k con-
nected components of items. Then, if there are m ≥ 2k + 5
items, there exists a set of O(mk) bids such that there is
exactly one line graph (one ordering of the items, up to sym-
metry) consistent with these bids.

Proof: Label the items 1 through m. For any subset of k +1
items of which at least two items are successors (i and i+1),
let there be a bid on that set of items. We observe that there
are at most (m−1)

(
m

k−1

)
such bids (choosing the successive

pair of items first, and then the remaining k − 1—of course
we are double-counting some combinations this way, but
we only want an upper bound), which is O(mk). Ordering
the items 1, 2, . . . ,m (or equivalently m,m − 1, . . . , 1),
we get a valid item graph (because any two successive items

are adjacent in this graph, there are at most k components
in every bid). What remains to show is that if the items
are ordered differently, there is at least one bid with k + 1
components. If the items are ordered differently, there is
at least one pair of successive (according to the original
labeling) items i, i + 1 which are not adjacent in the graph.
Consider the set of these two items, plus every item that has
an odd index in the ordering of this graph (besides the ones
that coincide with, or are adjacent to, the first two). This set
has at least 2 + (k + 3) − 4 = k + 1 items, two of which
are adjacent in the original labeling, and each of which is
a separate component. It follows that there exists a subset
of this set which constituted one of the bids, and now has
k + 1 components.

Lemma 3 Suppose each bid is allowed to contain at most k
connected components, and we have a set of bids that forces
a unique ordering of the items (up to symmetry). Then sup-
pose we replace one item r with two new items n1 and n2,
and let every bid bidding on the original item bid on both
the new items. Then the only valid orderings of the new set
of items are the valid orderings for the original set, where r
is replaced by n1, n2 (where these two can be placed in any
order). This extends to replacing multiple items by pairs.

Proof: We omit the proof because of space constraint.

Theorem 5 Given the bids, detecting whether an ordering
of the items (a line graph) exists such that each bidder bids
on at most 5 connected components is NP-complete.

Proof: The problem is in NP because we can nondeter-
ministically generate an ordering of the items, and check
whether any bid is bidding on more than 5 components.
To show that the problem is NP-hard, we reduce an
arbitrary 3SAT instance to the following sets of items
and bids. For every variable v ∈ V , let there be four
items, i∗v, iv, i+v, i−v . Let the set of bids be as follows.
First, using Lemma 2 and Lemma 3, let there be O(m5)
bids such that the only remaining valid orderings are
i∗v1

, iv1 , {i+v1 , i−v1}, i∗v2
, iv2 , {i+v2 , i−v2}, . . . , i∗vn

, ivn
,

{i+vn
, i−vn

}. (Here, two items are in set notation if their
relative order is not yet determined.) Finally, for every
clause c ∈ C, let there be a bid bidding on any iv with v
occurring in c (whether it is +v or −v), and on any i+v with
+v occurring in c, and on any i−v with −v occurring in c.
(So, 6 items in total.) We show the instances are equivalent.

First suppose there exists a solution to the 3SAT instance.
Then, whenever a variable v is set to true, let i+v be ordered
to the left of i−v; otherwise, let i+v be ordered to the right
of i−v . Then, for every clause, for some literal +v (or −v)
occurring in that clause, i+v (or i−v) is adjacent to iv , and it
follows that the bid corresponding to the clause has at most
5 connected components. So, there is a valid ordering.

Now suppose there exists a valid ordering. Because of
the i∗v items, the only items in a bid corresponding to a
clause that can possibly be adjacent are an i+v and the



corresponding iv , or an i−v and the corresponding iv . This
must happen at least once for every bid corresponding to a
clause (or the bid would have 6 components. But then, if
we set a variable v to true if i+v and iv are adjacent, and to
false otherwise, every clause must have at least one +v in
it where v is set to true, or at least one −v in it where v is
set to false. It follows that there is a solution to the 3SAT
instance.

Conclusions and future research
Combinatorial auctions (CAs) are important mechanisms for
allocating interrelated items. Unfortunately, (even approx-
imate) winner determination is NP-complete unless there
is special structure. In this paper, we studied the setting
where there is a graph (with some desired property), with
the items as vertices, and every bid bids on a connected set
of items. Two computational problems arise: 1) clearing the
auction when given the item graph, and 2) constructing an
item graph (if one exists) with the desired property. 1 was
previously solved for the case of a tree or a cycle, and 2 for
the case of a line graph or a cycle.

We generalized the first result by showing that given an
item graph with bounded treewidth, the clearing problem
can be solved in polynomial time (and every CA instance
has some treewidth; the complexity is exponential in only
that parameter). We then gave an algorithm for constructing
an item tree (treewidth 1) if such a tree exists, thus closing
a recognized open problem. We showed why this algorithm
does not work for treewidth greater than 1, but leave open
whether item graphs of (say) treewidth 2 can be constructed
in polynomial time. We showed that finding the item graph
with the fewest edges is NP-complete (even when a graph
of treewidth 2 exists). Finally, we studied how the results
change if a bid is allowed to have a few connected compo-
nents (rather than just one). Even for line graphs, we showed
that clearing is hard even with 2 components, and construct-
ing the line graph is hard even with 5 components.

For future research, the most important specific question
left open is whether item graphs of bounded treewidth w
can be constructed in polynomial time (when they exist), for
w ≥ 2. Another question is whether a line graph can be con-
structed in polynomial time in the variant where a bid is al-
lowed to have k components, when k < 5. Also, we can ask
whether we can reduce the runtime bound of the tree detec-
tion algorithm. More open-ended future research includes
doing experimental work with the algorithms presented here
(for instance, comparing their running time to solvers such
as CPLEX), and integrating these algorithms into search al-
gorithms as subroutines, as discussed in the introduction.
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