Automated mechanism design with a structured outcome space
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Abstract

Previous research on automated mechanism de-
sign (proposed in UAI-02) assumed that the out-
come space was flatly represented, which makes
that work inapplicable if the outcome space is ex-
ponential, as it is, for example, in multi-item auc-
tions. This paper introduces (to our knowledge)
the first more concise representation for the prob-
lem, which relies on decomposing the outcome
space into distincissues While the decom-
posability makes the input to the design prob-
lem polynomial, we show that it is NP-complete
(even with a single agent with only two types)
to design a mechanism that maximizes one of
the following objectives: 1) expected social wel-
fare when payments are not possible, 2) a gen-
eral objective function even when payments are
possible, and 3) expected payments to the cen-
ter (designer). We show that the NP-hardness is
only weak by developing a pseudopolynomial al-
gorithm for the former two single-agent mech-
anism design problems with any constant num-
ber of types. Finally, we show that when design-
ing randomized mechanisms, we can exploit the
structure of the representation and even solve the
general problem in polynomial time for any con-
stant number of agents for any growing number
of types.

Introduction

In multiagent settings, often asutcomemust be chosen

comes could be potential presidents, joint plans, alloc

a-
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lecting an outcome that is more desirable to the agent than
the outcome that would be selected if the agent revealed its
preferences truthfully—causing the outcome to be socially
less desirable.Mechanism desigis the art of designing

the rules of the game so that 1) the self-interested agents
are motivated to report their preferences truthfully, and 2)
the mechanism chooses an outcome that is desirable from
the perspective of some objective. Mechanism design has
traditionally been a manual endeavor in economics [12] as
well as computer science (e.g. [16, 17]).

Recently (UAI-02), we proposed the idea afitomated
mechanism design, where an algorithm creates a cus-
tomized mechanism for the setting at hand [3, 4, 5]. This
approach has several advantages. First, it can be used even
in settings that do not satisfy the assumptions of the clas-
sical mechanisms (such as availability of side payments
and/or the objective being social welfare [21, 2, 10, 6, 1,
7]). Second, it can allow one to circumvent impossibility
results (such as the Gibbard-Satterthwaite theorem [9, 20])
which state that there is no mechanism that is desirable
across all preferences. When the mechanism is designed
for the setting at hand, it does not matter that it would not
work more generally. Third, it may yield better mecha-
nisms (in terms of better outcomes or stronger nonmanipu-
lability guarantees) than classical mechanisms because the
mechanism capitalizes on the particulars of the setting (the
probabilistic information that the mechanism designer has
about the agents’ type$)Fourth, the burden of design is
shifted from humans to a machine.

The prior paper on automated mechanism design assumed
that the outcome space was flatly represented, that is, all the
possible outcomes were enumerated. This makes that work
inapplicable if the outcome space is exponential, as it is,
for example, in multi-item auctions. In contrast, this paper
l’ﬁ’o our knowledge) is the first to examine automated mech-
anism design when the outcome space can be more con-

tions of goods or resources, etc. The preference aggre-

gator generally does not know the agents’ preferereces
priori. Rather, the aggregator has to elicit the agents’ pref-

!Some of the manual mechanism design work has resulted in
mechanisms that also capitalize on this probabilistic information

erences from th_em- Unfortun_ately, an agent may mi§r9p0ﬁh specific settings, e.g., in restricted auction settings where the
its preferences in order to mislead the mechanism into sesbjective is the seller’s revenue [14, 13].



cisely represented. Specifically, we allow for the decom-polynomial size and can be used to solve problems with
position of the outcome space into distinssues across any constant number of agents and any growing number of
which there are no interacting effects with regards to eithetypes in polynomial time-in the size of our concise repre-
the agents’ utility functions or the designer’s objective. (A sentation.

subtle point is that this doa®t mean that we can simply

solve each issue independently. We Wi_II discuss this Iate_r.b The model and definitions

We can represent any outcome space in our representation,

and in many realistic settings, our representation is expo-,, .. . . . -
nentially more concise than the flat representation. We first review the automated mechanism design defini-

tions. (These are the same as in our previous work [3, 4, 5].)
This type of situation occurs across the Al literature, andAfter that, we present our concise problem representation.
especially in the literature modeling uncertainty. For in-

stance, specifying a joint probability distribution over a2 1 Review of automated mechanism design

number of variables, in general, requires exponential space.

Nevertheless, there are models such as Bayesian networkefinition 1 In a mechanism design settinge are given
that can represent many real distributions concisely. As ant. a finite set of outcomés and a finite set ofV agents; 2.
other example, in a combinatorial auction, each bidder irfor each agent, a) a finite set of type®;, b) a probabil-

the general case has a valuation for each of the exponeity distribution~; over ©, (in the case of correlated types,
tially many bundles of goods, but there are models that althere is a single joint distributiory over©; x ... x Oy),

low for concise preference representation in many real set) a utility functionu; : ©; x O — N; 3. the designer’s
tings (e.g., [19, 8, 15, 11]). objective functiory : O x 01 x...x Ox — N; 4. alinear
Computational complexity is usually measured as a funcfaCtor’ a’.SUCh that the designer attemptfs to maximize the
tion of the input size. Therefore, for concise representais')(pect"’ltlon Of + a3 1 <i<y i Wherer; is the payment

tions, the problem is often in a higher complexity class. Forby agent.

example, probabilistic inference is in P for the flat repre-—p s the designer can aim to maximize complex combi-
sentation, but NP-complete for Bayesian networks; Optimalnatioﬁs of interests regarding how the outcome function
winner determination is in P (using dynamic programming)

for flatly represented combinatorial auctions [18], but Np_rela.tes o the agents’ utilities, qnd payment.s made to Fhe
. . , designer. We show hardness arises already in the following
complete [18] (and inapproximable [19]) for concise repre-

: special cases:
sentations.

In this paper we first show that for our concise represen- o The designer’s objective Bocial welfare and the de-

tation, the three most important problems in designing de-  signer does not care about payments. (Social wel-

terministic mechanisms are NP-completeen when there fare is the sum of all agents’ utilities, plus an addi-

is only one agent—with only two typ&sThis is in con- tional termu, representing the interest of parties “out-

trast with flatly represented outcome spaces, where these  sjde” the mechanism that do not report a type.) Thus,

problems are solvable in polynomial time with a simple g= > ui(b;,0) +up(o) anda = 0.

brute force algorithm for any constant number of agents 1<i<N

with any constant number of types [3]. We show that the

NP-hardness is only weak in two of the three problems, by . .
. X . : the designer still does not care about paymedmts-(

developing a pseudopolynomial algorithm for those single- 0)

agent mechanism design problems, for any constant num- '

ber of types. We then consider randomized mechanisms. o The designer is only concerned with maximizing the

In flatly represented outcome spaces, such problems can  payments ¢ = 0 everywhere, and = 1).

typically be solved for any constant number of agents and

any growing number of types in polynomial time with a

straightforward linear program. However, with our struc-

tured representation, this program has an exponential NUNyefinition 2 A deterministic mechanism without pay-

ber of varlaflbles. Nevertheless, we Zhow T]OW to u[;e thehentsconsists of an outcome selection function ©; x
structure of our representation to reduce the variables 19, """ "9 " 0. A randomized mechanism with-

a polynomial number. The resulting linear program has, i havmentsonsists of a distribution selection function

— _ o p:O1 x Oz x...x On — P(O), whereP(O) is the set
Problems with small type spaces derive their importanceqs brohability distributions ove®. A deterministic mecha-
from situations where preferences are highly clustered, e.g. when. ith t ists of t lection f
a voter's stand on issues is entirely along the lines of the Demo[?ISm with paymentsonsists or an outcome selec 'OIT' unc-
cratic (or Republican) party, or situations in which too detailedtiono: ©1 x ©2 x ... x ©n — O and for each agent, a

preference revelation introduces privacy issues. payment selection functiorn : ©; x O x ... x O x5 — R,

e The designer’s objective is a general functignbut

We now define the kinds of mechanisms that we consider.



wherem; (61, ...,0x) gives the payment made by agént
when the reported types af,...,0y. A randomized
mechanism with paymentsonsists of a distribution se-

whether there exists a mechanism of the specified type that
satisfies both the IR notion and the IC notion, and gives an
expected value of at leaét for the objective function.

lection functionp : ©; x ©2 x ... x O — P(0),
and for each agent, a payment selection function;, :
O xOyx...xOn - R3

An interesting special case is the setting where there is only
one agent. In this case, the reporting agent always knows
everything there is to know about the other agents’ types—

The mechanism designer is constrained in choosing gecause there are no other agents. Sec@ostand ex
mechanism. The first type of constraint states that the utilinterimIR only differ on what an agent is assumed to know
ity of each agent has to be at least as great as the agenﬁgout other agents’ types, the two IR notions coincide here.
fallback utility, that is, the utility that the agent would re- Also, because implementation in dominant strategies and
ceive if it did not participate in the mechanism. (We as-implementation in Bayes-Nash equilibrium only differ on
sume that each agent's fallback utility is zero for each onévhat an agent is assumed to know about other agents’
of its types?) This type of constraint is called andivid-  types, these two IC notions coincide here. This observa-
ual rationality (IR)constraintEx interimlR means that for ~ tion will prove to be a useful tool in proving hardness re-
every one of its types, each agent's expected utility (aversults:we prove computational hardness in the single-agent
aged over the other agents’ possible types) is nonnegativé€tting, immediately implying hardness for both IR notions,
In other words, each agent is happy to participate when it i§or both IC notions, for any number of agents.

still uncertain about the other agents’ private information.

Ex postiR means that for every one of its types and all types2.2 Decomposition of the outcome space

of the other agents, each agent’s utility is nonnegative. In

other words, each agent is always happy to participate eveye are now ready to present the first contribution of this
if it knows the other agents’ type revelations. paper: our concise representation based on decomposition

_ of the outcome space.
The second type of constraint states that for each agent, the

agent should never have an incentive to misreport its typedefinition 4 O = O; x O x ... x O, is avalid decompo-
The two most common variants of this aneplementation  sitionof O (wherer is the number asueif the following
in dominant strategiesandimplementation in Bayes-Nash two conditions hold:

equilibrium[12]. A mechanism is said tonplement its out-
come and payment functions in dominant strategie®r
each agent, truthtelling is always optimal even if the agent

e For each agenti, for eachl < k < r there ex-

ists a functionwu? 0, x O, — N such that

knows the types reported by the other agents. A mechanism ui(0;, (o",...,0")) : S uk(6;,00);

is said toimplement its outcome and payment functions in 1Crer

Bayes-Nash equilibriunif truthtelling is always optimal .

to an agent when that agent does not yet know the other * Eor eal‘fh 1 = k < r there exists a func-
agents’ type revelations (but the probabilistic information tion g ©1 x ... x @1" % Oj - N
about all agents’ types is common knowledge among the Sl & that 9(91’;@' 50, (07, 07)) -
agents and the designer) and the other agents are telling the 1<§k:<r9 (B1--, 0, 0%).

truth.

Now we can define the computational problem of auto-We observe that whep is a social welfare function,

mated mechanism design. the first condition implies the second, because if the
first condition holds, g(1,...,0,,(0o!,...,0")) =
Definiion3  (AUTOMATED-MECHANISM-DESIGN 2. ui(0i,(0",...,0")) = > > wuf(0;,0") =
(AMD)) We are given a mechanism design setting, an <" X i tsisnishsr ,
> > wf(6;,0%), so that we can define

IR notion €x interim ex pos}, and an IC notion (dom- | 4= 5%
inant strategies or Bayes-Nash). Additionally, we are kg, . g, oF)= T uk (6;, o).
told whether payments and randomization are possible. 1<i<n

Finally, we are given a target valué/. We are asked ] ] ) )
We call automated mechanism design with a valid decom-

3We do not randomize over payments because as long as tHeositionmulti-issue automated mechanism desigrmay
agents and the designer are risk neutral with respect to paymentseem that we can solve a multi-issue AMD instance sim-
that is, their utility is linear in payments, there is no reason top|y by solving the AMD problem for each individual is-
randomize over payments. Sue separately. However, doing so will in general not give

PR . .
This is without loss of generality because we can simply ad . . . .
a constant term to an agent's utility function (for a given type),the optimal mechanism. The reason is that in general, the

without affecting the decision-making behavior of that expectedd€signer may use one issue to tailor the incentives to get
utility maximizing agent [12]. better results on another issue. For example, in an auction



setting, one could think of the allocation as one issue, anthe plane trip and hotel stay, and one indicating the winners
the payments as another issue. Even when the designera$the cell phone and the pager.
only concerned with .bnngmg abput the optimal 'aIIocatlo_n, In each of these settings, the approach of this paper can be
the payments are still a useful instrument to give the bid- . 2 o .
ders an incentive to bid truthfully. (We caution the readeruse_oI dlrec_tly to maximize any obj_ec_t|ve t_h(_a d_e5|gner has.
L o . (This requires that the vaulations lie in a finite interval and
that apart from this minor deviation, we do not consider theare discretized.)
payments to be part of the outcome spé&cgThe hardness '
results later in this paper will also imply that solving the
AMD problem separately for each issue does not give thel Hardness results
optimal solution. (The multi-issue AMD problem is NP-
complete even in settings where the corresponding singlgp, this section we show that for the concise representation,
issue AMD problemis in P, so if the approach of solving thé e three most important variants of the problem of design-
problem separately for each issue were optimal, we woulqhg a deterministic mechanism are NP-complete. (Mem-
have shown thatPNP.) bership in NP is guaranteed only if the number of agents
is constant.) While hardness results have already been es-
tablished for some of these problems in the general (single-
issue) representation [3, 4, 5], under the multi-issue rep-
resentation, hardness occurs even in much more restricted
Consider auctioning a set of distinguishable items. If eaCfSettings (with small type spaces and a small outcome space
of then items can be allocated to any 6f agents (or to  for each issue). Of course, hardness in a restricted setting
no agent at all), the outcome spa@ehas size(N + 1)"  implies hardness in any more general setting.
(one for each possible allocation). If, for every bidder,
the bidder’s valuation for any bundle of items is the sumTheorem 1 Multi-issue automated deterministic mecha-
of the bidder’s valuations of the individual items in the nism design without payments to maximize social welfare
bundle, then we can decompose the outcome space g NP-complete even when there is only a single type-
O =01 x0zx...x0n,whereO; = {0,1,2,...,N}is  reporting agent (but there is also another interested agent
the set Of a” pOSSib|e a||00ati0nS fOI’ |th(0 indicating |t Who does not report a type), even When there are on|y two
goes to no agent). Ageuis utility function can be written  possible types anfD;| = 2 for all i. (Membership in NP

3 Example: Multi-item auctions

asu;((0!,0%,...,0")) = 3jc1, _ny i (o)) whereuj is s guaranteed only if the number of agents is constant.)
given byu! (i) = v;(j) andu!(m) = 0 for m # i, where

v;(j) is agenti’s valuation for itemy. Proof: The problem is in NP because we can nondetermin-
Two extensions of this that also allow for decomposableStically generate the full outcome selection functio(as
outcome spaces are the following: long as the number of agents is constant, because other-

o . . _ _wise there are exponentially many type vectors). To show
e An agent, if it does not receive an |tem, still cares which NP_hardneSS’ we reduce an arbitrary KNAPSACK instance
agent (if any) receives thqt item. Here we no longer alwangiven by a set of pair§(c;, v;)}jeq1,....m}. & cost limitC,
haveu;(m) = 0 for m # i. For example, John may pre- and a value godl) to the following single-agent determin-
fer it if the museum wins the painting rather than a privatejstic multi-issue AMD instance, where payments are not al-
collector, because in the former case he can still see theyed and the objective is social welfare. Let the number

painting. of issues be = m + 1. Foreveryj € {1,...,m + 1}, we

e Some items exhibit substitutability or complementarity haveO; = {t, f}. The agent's type set, over which there
(so an agent's valuation for a bundle is not the sum of itdS & uniform distribution, i = {0',6}, and the agent's
valuations of the individual items in the bundle), but the utility functionw =37, ., . u"* is given by:

items can be partitioned into subsets so that there are no

substitution or complementarity effects across subsets in ¢ For all k € {1,...,m}, u*(6',t) = AB where
the partition. In this case, we can still decompose the out- 4 — 9 > ¢ andB =2 Y w;and
come space over these subsets. For example, a plane trip, je{l,...m} je{l,....m}

a hotel stay, a cell phone and a pager are all for sale. The  «*(¢!, f) = 0.

plane trip and the hotel stay are each worthless without the

other: they are perfect complements. The cell phone and e w™+1(91,¢) = um+1 (6L, f) = 0.

the pager each reduce the value of having the other: they

are (partial) substitutes. But the value of the plane trip or e For all k € {1,...,m}, «*(6%t) = ¢, and
the hotel stay has nothing to do with whether one also gets ~ «*(62, f) = 0.

the cell phone or the pager. Thus, we decompose the out-

come space into two issues, one indicating the winners of e v™*1(6% ¢) = C, andu™"1(0?, f) = 0.



The part of the social welfare that does not correspond t@ecause > c; + C < A, and all the other terms

any agentin the gameisgivenby = >  uf where | je{l,...,m},¢S ) _ _
ke{l,...r} in the numerator are some integer timésit follows that
this fraction is greater than or equal to the ggatZtv4
o Forallk € {1,...,m},ub(t) = 0, andu*(f) = vz A. (where the numerator is also an integer tim#&sif and
only if > v; > V—and this must be the case because
o u () = upt(f) = 0. js

by assumption, the mechanism is a solution to the AMD

. . m instance. Thus' is a solution to the KNAPSACK instance.
The goal social welfare is given by = 2EEY) e

show the two instances are equivalent. First suppose there
is a solution to the KNAPSACK instance, that is, a subset

Sof {1,...,m} such that} > ¢; < Cand > v; > V. Theorem 2 Multi-issue automated deterministic mecha-
jes Jj€S nism design with payments for general objective functions
Then consider the following mechanism: g (even with no interest in the payments, ice= 0) is NP-
complete even for a single agent, even when there are only
o Forallk € {1,...,m},o"(0") = t. two possible types and);| = 2 for all i. (Membership in

o Fork e {1,...,m},o"(6%) = fif k € S,o"(6%) = t NP is guaranteed only if the number of agents is constant.)

otherwise.

e omTL(0Y) = f,ando™ 1 (6%) = t.

Proof: We omit this proof because of space constraintm

Theorem 3 Multi-issue automated deterministic mecha-
First we show there is no incentive for the agent to mis-pjsm design where the objective is to maximize the pay-
report. If the agent has typ@', then it is getting the ments (from the agents to the designer) is NP-complete
best possible outcome for each issue by reporting trutheyen for a single agent, even when there are only two pos-
fully, so there is certainly no incentive to misreport. If siple types andO;| = 2 for all i. (Membership in NP is

the agent has typ#”, reporting truthfully gives it a util-  guaranteed only if the number of agents is constant.)
ity of C' + > cj, Whereas reporting! instead
je{1,....m},¢S

gives ita utilty of > ¢;: so the marginal utility of Proof: It is easy to see that the problem is in NP. (We

Jefl,m} can nondeterministically guess an outcome function, after
misreporting is—C' + Y. ¢; < —C + C = 0. Hence which setting the payments is a linear programming prob-
Jj€S lem and can hence be done in polynomial time.) To show

there is no incentive to misreport. Now we show that thenp.hardness, we reduce an arbitrary KNAPSACK instance
goal social welfare is reached. If the agent 2ha_s t&_he (given by a set of pair§(c;, v;)}ic1.....m41}, @ cost limit
the social welfare will ben AB. If it has type#=, it will C, and a value goaV) to the following single-agent de-
be %:S”J'A + o > }gscj +C > %:S”J'A > VA terministic multi-issue AMD instance, where we seek to
J Jets my, J P
. . VA maximize the expected payments from the agent. Let the

e e e, o TTDer o ssesbe— 1 11 Foreveny € (1.1,
SU. ose there is a solution to the AMD instancé If it ha_ver - {t’f}.' The_agent’s type set, over which
Weprz the case that, for somee {1 1 o(6Y) ' there is a uniform distribution, i® = {6!,62}, and the

- . R _agent’s utility functionu = k¥ is given by:
f, then the maximum social welfare that could possi- g Uity funct Z’fe‘{lvm”}u IS gV Y
bly be obtained (even if we did not worry about misre-

Y T watC e Forallk € {1,...,m}, u*(6',t) = cx A whereA =
porting) would be"=DAB+tvA | seliom) = 4 Y vy anduk (9, f) = 0.
(m—l)AB+ATB+’(JjA+C mAB+V A je{1,....m}

5 < = G. Thus, forallj €
{1,...,m}, o*(0') = t. Now, letS = {j € {1,...,m} : o u (91 ¢) =0, andu™ (0, f) = —CA.
0’ (6%) = f}. Then, if the agent has typ# and reports

k(pn2 —
truthfully, it will get utility at mostC' + 3> ¢;, o Forall ke {l,...,m}, u(0%1) = v, and
jE{l, m}, g8 ut(0°, f) = 0.
as opposed to the at Ieajset{l;m} ¢; that it could get o um (G2, 1) = 0, andu (62, f) = 0.

for this type by reporting! instead. Because there is no o ABAY
incentive to misreport in the mechanism, it follows that The goal expected revenue is given@y= ===, where

S ¢; < C. Also, the total social welfare obtained by B = {Z }Cj- We show the two instances are equiv-
jeSs JjE 12""m ) )
mAB+ Y v; A+ b c;+C alent. First suppose there is a solution to the KNAP-

the mechanism is at most——=>cmh#5 - gACK instance, that is, a subs&of {1, ...,m} such that




> ¢; < Candy” v; > V. Then consider the following 5 Pseudopolynomial algorithm for one agent
€S j€S
?nechanism. Lejt the outcome function be . . . .
In this section we develop a pseudopolynomial algorithm
el that shows that the first two multi-issue AMD problems
e Forallk € {1,...,m}, 0%(0") = t. discussed in the previous section are omigakly NP-
o« Fork e {1,...,m}, ok (62) = tif k € S, ok (62) = f _complete. (A problem is only weakly NP_—compIete if it
otherwise. is NP-complete, but there exists an algorithm that would
be polynomial if the numbers in the instance were given in
o o (OY) =1, 0 T1(62) = f. unary, rather than binary—a@seudopolynomialgorithm.)
This algorithm only works when there is only one type-
; N 2y _ _ reporting agent. While this is still a significant problem
Letthe payment function be(6”) = A, (0%) = J%:S " pecause of the conflict of interest between the designer and
First, to see that the IR constraint is satisfied, observe thahe agent, it is an interesting open problem to see if the al-
for each type, the mechanism extracts exactly the agentgorithm can be generalized to settings with multiple agents.
utility obtained from the outcome function. Second, we
show there is no incentive for the agent to misreport. IfTheorem 4 Multi-issue automated deterministic mecha-
the agent has typé!, reporting6? instead gives a util- nism design in the setting where there is only one agent,
ity (including payments) of-CA + >~ ¢;A — > v; < there is no interest in the payments-£ 0), and the number
o J€S J€S of types is a constant, can be solved in pseudopolynomial
—CA+CA = 5 v; <0, which is what the agent would time using dynamic programming. This holds both with and

JES .
have got for reporting truthfully. If the agent has tygle ~ Without payments.

reportingd* instead gives a utility (including payments) of
% — AB < 0, which is what the agent would have got Proof: The dynamic program adds in the issues one at

for reporting truthfully. Hence there is no incentive to mis- a time. For eachk € {0,1,...,r}, it builds a matrix
report. Third, the goal expected payment is reached bewhich concerns a reduced version of the problem instance
AB+ 3 v; where only the firsk issues are included. Let#*,607) =

JES

cause > A5EL = G. So there is a solution 0 ,(p¢ (7)) — u(67, o(6")), that is, the regret that the agent
the AMD instance. Now suppose there is a solution to the, a5 for reporting its true typ@ rather than submitting the
AMD instance. The maximum utility that the agent can getfy|ge report’. (These regrets may be negative.) Any out-
from the outcome function if it has typ# is 4, and by  come function mapping the reported types to outcomes de-
the IR constraint this is the maximum payment we may eXfines a vector of®|(|6] — 1) such regrets, one for each
tract from the agent when the reported typé3s Because pair (§%,07). Then, our matrix for the firsk issues con-
the goal is greater thad?, it follows that the payment taing, for each possible regret vectom number indicating
the mechanism should extract from the agent when the rene highest expected value of the objective function that can
ported type i9" is atleastd B — 4. Because the maximum  he obtained with an outcome function over the firitsues
utility the agent can derive from the outcome function inyngse regret vector is dominated by(One vector is said
this case isAB, it follows that the agent's utility (includ- 5 pe dominated by another if all entries of the former are
ing payments) for typ@' can be at most;. Now con- |ess than or equal to the corresponding ones of the latter.)
sider the sef§ = {j € {1,...,m} : 0/(¢°) = t}. Then,  Thjs entry is denoted/*[v]. We observe that if; domi-

if the agent falsely reports typ# when the true type is natesvs, thenM*[v;] > MP¥[v,]. If the absolute value of
6', the utility of doing so (including payments) is at least {he regret between any two types is boundedihyt suf-

> A-CA— %. This is to be at most the agent’s utility fices to considef2R+1)!€1(1®1=1) regret vectors (each en-
j€S ) .

for reporting truthfully in this case, which is at mo$t It ;rﬁ;aﬁgﬂiinfﬂuis (I)'{(i_f’ ;Vﬁ;l o Iégl’JeS ’h];;el ’yfg L cen
follows that 3 c;A — CA — 4 < 4, which is equivalent added) is 0 everywhere. We then successively build up the

€S . o
oY ¢ < é~+ 1 Because the; andC are integers, this N€Xt matrix as follows. When we add in isske there
J = 2" ) ’

jes are |O*|I®! possibilities for setting the outcome function
implies Y ¢; < C. Finally, because we need to extract o* from types to elements @d*. Denoting a possible set-
Jjes , ting of o* by a vectorw = (0*(8'), 0% (62),...,0"(01°1)),
at least a paymer_lt_ df from the agent when typ# is re- letting ¢* (w) = 3~ g*(0,0*(0)) be the total value gained
ported, but the utility that the agent gets from the outcome 0o
function in this case is at mo§t. v; and we can extract at in the objective fu_nction_ as a res‘ult of '_[his vector, and let-
j€S tingr(w) = (uF (0%, 0%(67)) —u* (6", 0% (6%)) {91 0:} be the

most this by the IR constraint, it follows thgf v; > V. regret vector over this issue alone, we have the following

JES . : : . k _ k
Thus,S is a solution to the KNAPSACK instance. = reciu_rlswe identity fork' > 0 M [v] = max.,{g"(w) + .
M?* v — r(w)]}. It is possible that, when we use this



identity to fill in the matrices, the identity refers to an entry ear programming, for any constant number of agents, any
"outside” the previous matrix, that is, one of the entries of IR notion, any IC notion, any objective functigrand any

v — r(w) has absolute value greater th&nIf this occurs, weight, a, on payments collected. This holds even for a
one of the following two cases applies: growing number of types, with and without payments.

e One of the entries is greater thadd This means Proof: We will solve this by casting it as a linear program.
that the regret allowed for one of the pait8,6”) is  One method of solving this problem is to construct a linear
greater than the maximum it could be. We may reduceprogram with, for each type report vector, for each out-
the value of this entry tdz, without causing a reduc- come, a variable representing the probability that this out-
tion in the highest value of the objective function that come will be chosen (in addition to variables representing
can be obtained. the payments). While this technique is effective for flatly

represented outcome spaces [3, 4, 5], here it is not because

e the outcome space is exponential in the size of the repre-

that the regret allowed for one of the palts, 67) is sentation. However, we can reduce the number of variables

smal!er than the minimun it could be. He_.\nce, Itis M 5a polynomial number. To this end, we observe:
possible to construct an outcome function that satis-

fies this, and hence we simply sa§*~![v — r(w)] = . R R

e One of the entries is smaller thanR. This means

0. For all 4, E(ui|(01,...,0n),0:) =
> P4 00, 08) X i (6:,0") =
. . X (o1,..., o")eO 1<k<r
Once we have constructfév;f , We can use this matrix to S P((0h .., 000, ., B8 ) (0:,0F) =
solve any of our deterministic automated mechanism de-  1<k<r (o1,. " 0m)c0
sign problems. If payments are not allowed, we simply S uk(6;,0") > P((0},...,0")|(61,...,0x))
look at the entryd/7[(0, 0, .. ., 0)], because this is the high- 1Sk<rokeO* (o1,-..,07):0k =0
est possible expected value of the objective function that = NP(OIc =0f|(6r,...,0n))ul(6;,05).

we can obtain without the agent having positive regret any- ="
where. If payments are allowed, then we look at all the similarly, E(g|(d1, ..., 0x)) =

entriesM" [v] where the regret vectaris such that we can S Y PoF -
set the payments so as to make every regret disappear— 1<k<rokeok
that is, where we can set such that for any?, 7, we oF|(61,...,0n))g" ((61,...,0n),0").

haver(6%,07) 4+ (67) — w(0*) < 0. (This is a simple linear

program and can hence be solved in polynomial time.) Of fo|iows that for the purposes at hand, we care only
all these entries, we choose the one with the highest valugnot the quantities?(of — of|(dy,...,6)), rather

of the objective function. If we want to know not only the 3 apout the entire distribution. There are precisely
highest possible expected value of the objective function, ) 0| [T |©¢| such probabilities, which is a poly-
but also a mechanism that achieves it, we need to store atr<r 1<i<N

each step not only the highest possible expected value fagtomial number when the number of agents, is a
each matrix entry, but also a partial outcome function thaconstant. Additionally, onlyN' [] |©’| variables are

; : 1<i<N
achievesit. m needed to represent the payments made by the agents in

each case (or none if payments are not possible).

6 Polynomial algorithm for designing an The linear program, which contains constraints for the IC

optimal randomized mechanism notions and IR notion in question, and attempts to optimize
some linear function of the expected value of the objec-

Allowing randomization in the mechanism itself can nevertive function and payments made, is now straightforward

hurt the designer’s objective, because the set of determif0 construct. (We do not give it explicitly due to limited

istic mechanisms is a strict subset of randomized mechsPace, but we have given the analogous linear program for

anisms. Interestingly, when we allow randomization inthe flat representation [3, 4, 5].) Because linear programs

the mechanism, an optimal mechanism can be designe&fh be solved in polynomial time, and the number of vari-

in polynomial time in the length of the concise represen-ables and equations in our program is polynomial for any

tation. (This is already known for the single-issue prob-constant number of agents, the problem is in Fa

lem [3, 4, 5], but, as argued earlier, this does not directly

imply that this is also the case in the multi-issue problem, )

because the problem does not decompose over issues.) / Conclusions

Theorem 5 Multi-issue automated randomized mecha-Previous research on automated mechanism design as-
nism design can be solved in polynomial time using lin-sumed that the outcome space was flatly represented, which



makes that work inapplicable if the outcome space is ex-
ponential, as it is, for example, in combinatorial auctions.
This paper introduced (to our knowledge) the first more
concise representation for the problem, which relies on de-
composing the outcome space into distirssiues While

the decomposability makes the input to the design problem
polynomial, we showed that it is NP-complete (even with
a single agent with only two types) to design a mechanism
that maximizes one of the following objectives: 1) expected
social welfare when payments are not possible, 2) a generatg]
objective function even when payments are possible, and
3) expected payments to the center (designer). We showed
that the NP-hardness is only weak by developing a pseu-10]
dopolynomial algorithm for the former two single-agent
mechanism design problems with any constant number of
types. Finally, we showed that when designing randomize
mechanisms, we can exploit the structure of the representa-
tion and solve the general problem in polynomial time for
any constant number of agents for any growing number of

types® [12]
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