
Automated mechanism design with a structured outcome space

Vincent Conitzer
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Previous research on automated mechanism de-
sign (proposed in UAI-02) assumed that the out-
come space was flatly represented, which makes
that work inapplicable if the outcome space is ex-
ponential, as it is, for example, in multi-item auc-
tions. This paper introduces (to our knowledge)
the first more concise representation for the prob-
lem, which relies on decomposing the outcome
space into distinctissues. While the decom-
posability makes the input to the design prob-
lem polynomial, we show that it is NP-complete
(even with a single agent with only two types)
to design a mechanism that maximizes one of
the following objectives: 1) expected social wel-
fare when payments are not possible, 2) a gen-
eral objective function even when payments are
possible, and 3) expected payments to the cen-
ter (designer). We show that the NP-hardness is
only weak by developing a pseudopolynomial al-
gorithm for the former two single-agent mech-
anism design problems with any constant num-
ber of types. Finally, we show that when design-
ing randomized mechanisms, we can exploit the
structure of the representation and even solve the
general problem in polynomial time for any con-
stant number of agents for any growing number
of types.

1 Introduction

In multiagent settings, often anoutcomemust be chosen
based on the preferences of a group of agents. Such out-
comes could be potential presidents, joint plans, alloca-
tions of goods or resources, etc. The preference aggre-
gator generally does not know the agents’ preferencesa
priori . Rather, the aggregator has to elicit the agents’ pref-
erences from them. Unfortunately, an agent may misreport
its preferences in order to mislead the mechanism into se-

lecting an outcome that is more desirable to the agent than
the outcome that would be selected if the agent revealed its
preferences truthfully—causing the outcome to be socially
less desirable.Mechanism designis the art of designing
the rules of the game so that 1) the self-interested agents
are motivated to report their preferences truthfully, and 2)
the mechanism chooses an outcome that is desirable from
the perspective of some objective. Mechanism design has
traditionally been a manual endeavor in economics [12] as
well as computer science (e.g. [16, 17]).

Recently (UAI-02), we proposed the idea ofautomated
mechanism design, where an algorithm creates a cus-
tomized mechanism for the setting at hand [3, 4, 5]. This
approach has several advantages. First, it can be used even
in settings that do not satisfy the assumptions of the clas-
sical mechanisms (such as availability of side payments
and/or the objective being social welfare [21, 2, 10, 6, 1,
7]). Second, it can allow one to circumvent impossibility
results (such as the Gibbard-Satterthwaite theorem [9, 20])
which state that there is no mechanism that is desirable
across all preferences. When the mechanism is designed
for the setting at hand, it does not matter that it would not
work more generally. Third, it may yield better mecha-
nisms (in terms of better outcomes or stronger nonmanipu-
lability guarantees) than classical mechanisms because the
mechanism capitalizes on the particulars of the setting (the
probabilistic information that the mechanism designer has
about the agents’ types).1 Fourth, the burden of design is
shifted from humans to a machine.

The prior paper on automated mechanism design assumed
that the outcome space was flatly represented, that is, all the
possible outcomes were enumerated. This makes that work
inapplicable if the outcome space is exponential, as it is,
for example, in multi-item auctions. In contrast, this paper
(to our knowledge) is the first to examine automated mech-
anism design when the outcome space can be more con-

1Some of the manual mechanism design work has resulted in
mechanisms that also capitalize on this probabilistic information
in specific settings, e.g., in restricted auction settings where the
objective is the seller’s revenue [14, 13].

cisely represented. Specifically, we allow for the decom-
position of the outcome space into distinctissues, across
which there are no interacting effects with regards to either
the agents’ utility functions or the designer’s objective. (A
subtle point is that this doesnot mean that we can simply
solve each issue independently. We will discuss this later.)
We can represent any outcome space in our representation,
and in many realistic settings, our representation is expo-
nentially more concise than the flat representation.

This type of situation occurs across the AI literature, and
especially in the literature modeling uncertainty. For in-
stance, specifying a joint probability distribution over a
number of variables, in general, requires exponential space.
Nevertheless, there are models such as Bayesian networks
that can represent many real distributions concisely. As an-
other example, in a combinatorial auction, each bidder in
the general case has a valuation for each of the exponen-
tially many bundles of goods, but there are models that al-
low for concise preference representation in many real set-
tings (e.g., [19, 8, 15, 11]).

Computational complexity is usually measured as a func-
tion of the input size. Therefore, for concise representa-
tions, the problem is often in a higher complexity class. For
example, probabilistic inference is in P for the flat repre-
sentation, but NP-complete for Bayesian networks; optimal
winner determination is in P (using dynamic programming)
for flatly represented combinatorial auctions [18], but NP-
complete [18] (and inapproximable [19]) for concise repre-
sentations.

In this paper we first show that for our concise represen-
tation, the three most important problems in designing de-
terministic mechanisms are NP-completeeven when there
is only one agent—with only two types.2 This is in con-
trast with flatly represented outcome spaces, where these
problems are solvable in polynomial time with a simple
brute force algorithm for any constant number of agents
with any constant number of types [3]. We show that the
NP-hardness is only weak in two of the three problems, by
developing a pseudopolynomial algorithm for those single-
agent mechanism design problems, for any constant num-
ber of types. We then consider randomized mechanisms.
In flatly represented outcome spaces, such problems can
typically be solved for any constant number of agents and
any growing number of types in polynomial time with a
straightforward linear program. However, with our struc-
tured representation, this program has an exponential num-
ber of variables. Nevertheless, we show how to use the
structure of our representation to reduce the variables to
a polynomial number. The resulting linear program has

2Problems with small type spaces derive their importance
from situations where preferences are highly clustered, e.g. when
a voter’s stand on issues is entirely along the lines of the Demo-
cratic (or Republican) party, or situations in which too detailed
preference revelation introduces privacy issues.

polynomial size and can be used to solve problems with
any constant number of agents and any growing number of
types in polynomial time—in the size of our concise repre-
sentation.

2 The model and definitions

We first review the automated mechanism design defini-
tions. (These are the same as in our previous work [3, 4, 5].)
After that, we present our concise problem representation.

2.1 Review of automated mechanism design

Definition 1 In a mechanism design setting, we are given
1. a finite set of outcomesO and a finite set ofN agents; 2.
for each agenti, a) a finite set of typesΘi, b) a probabil-
ity distributionγi overΘi (in the case of correlated types,
there is a single joint distributionγ overΘ1 × . . .×ΘN),
c) a utility functionui : Θi × O → N; 3. the designer’s
objective functiong : O×Θ1× . . .×ΘN → N; 4. a linear
factor, a, such that the designer attempts to maximize the
expectation ofg + a

∑
1≤i≤N πi, whereπi is the payment

by agenti.

Thus, the designer can aim to maximize complex combi-
nations of interests regarding how the outcome function
relates to the agents’ utilities, and payments made to the
designer. We show hardness arises already in the following
special cases:

• The designer’s objective issocial welfare, and the de-
signer does not care about payments. (Social wel-
fare is the sum of all agents’ utilities, plus an addi-
tional termu0 representing the interest of parties “out-
side” the mechanism that do not report a type.) Thus,
g =

∑
1≤i≤N

ui(θi, o) + u0(o) anda = 0.

• The designer’s objective is a general functiong, but
the designer still does not care about payments (a =
0).

• The designer is only concerned with maximizing the
payments (g = 0 everywhere, anda = 1).

We now define the kinds of mechanisms that we consider.

Definition 2 A deterministic mechanism without pay-
mentsconsists of an outcome selection functiono : Θ1 ×
Θ2 × . . . × ΘN → O. A randomized mechanism with-
out paymentsconsists of a distribution selection function
p : Θ1 ×Θ2 × . . .×ΘN → P(O), whereP(O) is the set
of probability distributions overO. A deterministic mecha-
nism with paymentsconsists of an outcome selection func-
tion o : Θ1 ×Θ2 × . . .×ΘN → O and for each agenti, a
payment selection functionπi : Θ1×Θ2× . . .×ΘN → R,

whereπi(θ1, . . . , θN) gives the payment made by agenti
when the reported types areθ1, . . . , θN . A randomized
mechanism with paymentsconsists of a distribution se-
lection functionp : Θ1 × Θ2 × . . . × ΘN → P(O),
and for each agenti, a payment selection functionπi :
Θ1 ×Θ2 × . . .×ΘN → R.3

The mechanism designer is constrained in choosing a
mechanism. The first type of constraint states that the util-
ity of each agent has to be at least as great as the agent’s
fallback utility, that is, the utility that the agent would re-
ceive if it did not participate in the mechanism. (We as-
sume that each agent’s fallback utility is zero for each one
of its types.4) This type of constraint is called anindivid-
ual rationality (IR)constraint.Ex interimIR means that for
every one of its types, each agent’s expected utility (aver-
aged over the other agents’ possible types) is nonnegative.
In other words, each agent is happy to participate when it is
still uncertain about the other agents’ private information.
Ex postIR means that for every one of its types and all types
of the other agents, each agent’s utility is nonnegative. In
other words, each agent is always happy to participate even
if it knows the other agents’ type revelations.

The second type of constraint states that for each agent, the
agent should never have an incentive to misreport its type.
The two most common variants of this areimplementation
in dominant strategies, andimplementation in Bayes-Nash
equilibrium[12]. A mechanism is said toimplement its out-
come and payment functions in dominant strategiesif, for
each agent, truthtelling is always optimal even if the agent
knows the types reported by the other agents. A mechanism
is said toimplement its outcome and payment functions in
Bayes-Nash equilibriumif truthtelling is always optimal
to an agent when that agent does not yet know the other
agents’ type revelations (but the probabilistic information
about all agents’ types is common knowledge among the
agents and the designer) and the other agents are telling the
truth.

Now we can define the computational problem of auto-
mated mechanism design.

Definition 3 (AUTOMATED-MECHANISM-DESIGN
(AMD)) We are given a mechanism design setting, an
IR notion (ex interim, ex post), and an IC notion (dom-
inant strategies or Bayes-Nash). Additionally, we are
told whether payments and randomization are possible.
Finally, we are given a target valueG. We are asked

3We do not randomize over payments because as long as the
agents and the designer are risk neutral with respect to payments,
that is, their utility is linear in payments, there is no reason to
randomize over payments.

4This is without loss of generality because we can simply add
a constant term to an agent’s utility function (for a given type),
without affecting the decision-making behavior of that expected
utility maximizing agent [12].

whether there exists a mechanism of the specified type that
satisfies both the IR notion and the IC notion, and gives an
expected value of at leastG for the objective function.

An interesting special case is the setting where there is only
one agent. In this case, the reporting agent always knows
everything there is to know about the other agents’ types—
because there are no other agents. Sinceex postand ex
interim IR only differ on what an agent is assumed to know
about other agents’ types, the two IR notions coincide here.
Also, because implementation in dominant strategies and
implementation in Bayes-Nash equilibrium only differ on
what an agent is assumed to know about other agents’
types, these two IC notions coincide here. This observa-
tion will prove to be a useful tool in proving hardness re-
sults:we prove computational hardness in the single-agent
setting, immediately implying hardness for both IR notions,
for both IC notions, for any number of agents.

2.2 Decomposition of the outcome space

We are now ready to present the first contribution of this
paper: our concise representation based on decomposition
of the outcome space.

Definition 4 O = O1×O2× . . .×Or is avalid decompo-
sitionofO (wherer is the number ofissues) if the following
two conditions hold:

• For each agenti, for each1 ≤ k ≤ r there ex-
ists a functionuki : Θi × Ok → N such that
ui(θi, (o1, . . . , or)) =

∑
1≤k≤r

uki (θi, ok);

• For each 1 ≤ k ≤ r there exists a func-
tion gk : Θ1 × . . . × Θn × Ok → N
such that g(θ1, . . . , θn, (o1, . . . , or)) =∑
1≤k≤r

gk(θ1, . . . , θn, o
k).

We observe that wheng is a social welfare function,
the first condition implies the second, because if the
first condition holds, g(θ1, . . . , θn, (o1, . . . , or)) =∑
1≤i≤n

ui(θi, (o1, . . . , or)) =
∑

1≤i≤n

∑
1≤k≤r

uki (θi, ok) =∑
1≤k≤r

∑
1≤i≤n

uki (θi, ok), so that we can define

gk(θ1, . . . , θn, o
k) =

∑
1≤i≤n

uki (θi, ok).

We call automated mechanism design with a valid decom-
positionmulti-issue automated mechanism design. It may
seem that we can solve a multi-issue AMD instance sim-
ply by solving the AMD problem for each individual is-
sue separately. However, doing so will in general not give
the optimal mechanism. The reason is that in general, the
designer may use one issue to tailor the incentives to get
better results on another issue. For example, in an auction

setting, one could think of the allocation as one issue, and
the payments as another issue. Even when the designer is
only concerned with bringing about the optimal allocation,
the payments are still a useful instrument to give the bid-
ders an incentive to bid truthfully. (We caution the reader
that apart from this minor deviation, we do not consider the
payments to be part of the outcome spaceO.) The hardness
results later in this paper will also imply that solving the
AMD problem separately for each issue does not give the
optimal solution. (The multi-issue AMD problem is NP-
complete even in settings where the corresponding single-
issue AMD problem is in P, so if the approach of solving the
problem separately for each issue were optimal, we would
have shown that P=NP.)

3 Example: Multi-item auctions

Consider auctioning a set of distinguishable items. If each
of then items can be allocated to any ofN agents (or to
no agent at all), the outcome spaceO has size(N + 1)n

(one for each possible allocation). If, for every bidder,
the bidder’s valuation for any bundle of items is the sum
of the bidder’s valuations of the individual items in the
bundle, then we can decompose the outcome space as
O = O1×O2× . . .×On, whereOj = {0, 1, 2, . . . , N} is
the set of all possible allocations for itemj (0 indicating it
goes to no agent). Agenti’s utility function can be written
asui((o1, o2, . . . , on)) =

∑
j∈{1,...,n} u

j
i (o

j) whereuji is

given byuji (i) = vi(j) anduji (m) = 0 for m 6= i, where
vi(j) is agenti’s valuation for itemj.

Two extensions of this that also allow for decomposable
outcome spaces are the following:

• An agent, if it does not receive an item, still cares which
agent (if any) receives that item. Here we no longer always
haveuji (m) = 0 for m 6= i. For example, John may pre-
fer it if the museum wins the painting rather than a private
collector, because in the former case he can still see the
painting.

• Some items exhibit substitutability or complementarity
(so an agent’s valuation for a bundle is not the sum of its
valuations of the individual items in the bundle), but the
items can be partitioned into subsets so that there are no
substitution or complementarity effects across subsets in
the partition. In this case, we can still decompose the out-
come space over these subsets. For example, a plane trip,
a hotel stay, a cell phone and a pager are all for sale. The
plane trip and the hotel stay are each worthless without the
other: they are perfect complements. The cell phone and
the pager each reduce the value of having the other: they
are (partial) substitutes. But the value of the plane trip or
the hotel stay has nothing to do with whether one also gets
the cell phone or the pager. Thus, we decompose the out-
come space into two issues, one indicating the winners of

the plane trip and hotel stay, and one indicating the winners
of the cell phone and the pager.

In each of these settings, the approach of this paper can be
used directly to maximize any objective the designer has.
(This requires that the vaulations lie in a finite interval and
are discretized.)

4 Hardness results

In this section we show that for the concise representation,
the three most important variants of the problem of design-
ing a deterministic mechanism are NP-complete. (Mem-
bership in NP is guaranteed only if the number of agents
is constant.) While hardness results have already been es-
tablished for some of these problems in the general (single-
issue) representation [3, 4, 5], under the multi-issue rep-
resentation, hardness occurs even in much more restricted
settings (with small type spaces and a small outcome space
for each issue). Of course, hardness in a restricted setting
implies hardness in any more general setting.

Theorem 1 Multi-issue automated deterministic mecha-
nism design without payments to maximize social welfare
is NP-complete even when there is only a single type-
reporting agent (but there is also another interested agent
who does not report a type), even when there are only two
possible types and|Oi| = 2 for all i. (Membership in NP
is guaranteed only if the number of agents is constant.)

Proof: The problem is in NP because we can nondetermin-
istically generate the full outcome selection functiono (as
long as the number of agents is constant, because other-
wise there are exponentially many type vectors). To show
NP-hardness, we reduce an arbitrary KNAPSACK instance
(given by a set of pairs{(cj , vj)}j∈{1,...,m}, a cost limitC,
and a value goalV) to the following single-agent determin-
istic multi-issue AMD instance, where payments are not al-
lowed and the objective is social welfare. Let the number
of issues ber = m+ 1. For everyj ∈ {1, . . . ,m+ 1}, we
haveOj = {t, f}. The agent’s type set, over which there
is a uniform distribution, isΘ = {θ1, θ2}, and the agent’s
utility function u =

∑
k∈{1,...,r} u

k is given by:

• For all k ∈ {1, . . . ,m}, uk(θ1, t) = AB where
A = 2

∑
j∈{1,...,m}

cj andB = 2
∑

j∈{1,...,m}
vj ; and

uk(θ1, f) = 0.

• um+1(θ1, t) = um+1(θ1, f) = 0.

• For all k ∈ {1, . . . ,m}, uk(θ2, t) = ck, and
uk(θ2, f) = 0.

• um+1(θ2, t) = C, andum+1(θ2, f) = 0.

The part of the social welfare that does not correspond to
any agent in the game is given byu0 =

∑
k∈{1,...,r}

uk0 where

• For allk ∈ {1, . . . ,m}, uk0(t) = 0, anduk(f) = vkA.

• um+1
0 (t) = um+1

0 (f) = 0.

The goal social welfare is given byG = A(mB+V)
2 . We

show the two instances are equivalent. First suppose there
is a solution to the KNAPSACK instance, that is, a subset
S of {1, . . . ,m} such that

∑
j∈S

cj ≤ C and
∑
j∈S

vj ≥ V .

Then consider the following mechanism:

• For allk ∈ {1, . . . ,m}, ok(θ1) = t.

• Fork ∈ {1, . . . ,m}, ok(θ2) = f if k ∈ S, ok(θ2) = t
otherwise.

• om+1(θ1) = f , andom+1(θ2) = t.

First we show there is no incentive for the agent to mis-
report. If the agent has typeθ1, then it is getting the
best possible outcome for each issue by reporting truth-
fully, so there is certainly no incentive to misreport. If
the agent has typeθ2, reporting truthfully gives it a util-
ity of C +

∑
j∈{1,...,m},/∈S

cj , whereas reportingθ1 instead

gives it a utility of
∑

j∈{1,...,m}
cj ; so the marginal utility of

misreporting is−C +
∑
j∈S

cj ≤ −C + C = 0. Hence

there is no incentive to misreport. Now we show that the
goal social welfare is reached. If the agent has typeθ1,
the social welfare will bemAB. If it has typeθ2, it will
be
∑
j∈S

vjA +
∑

j∈{1,...,m},/∈S
cj + C ≥

∑
j∈S

vjA ≥ V A.

Hence the expected social welfare is at leastmAB+V A
2 =

G. So there is a solution to the AMD instance. Now
suppose there is a solution to the AMD instance. If it
were the case that, for somej ∈ {1, . . . ,m}, oj(θ1) =
f , then the maximum social welfare that could possi-
bly be obtained (even if we did not worry about misre-

porting) would be (m−1)AB+vjA
2 +

∑
j∈{1,...,m}

vjA+C

2 =
(m−1)AB+AB

2 +vjA+C

2 < mAB+V A
2 = G. Thus, for allj ∈

{1, . . . ,m}, ok(θ1) = t. Now, letS = {j ∈ {1, . . . ,m} :
oj(θ2) = f}. Then, if the agent has typeθ2 and reports
truthfully, it will get utility at mostC +

∑
j∈{1,...,m},/∈S

cj ,

as opposed to the at least
∑

j∈{1,...,m}
cj that it could get

for this type by reportingθ1 instead. Because there is no
incentive to misreport in the mechanism, it follows that∑
j∈S

cj ≤ C. Also, the total social welfare obtained by

the mechanism is at most
mAB+

∑
j∈S

vjA+
∑

j∈{1,...,m},/∈S
cj+C

2 .

Because
∑

j∈{1,...,m},/∈S
cj + C < A, and all the other terms

in the numerator are some integer timesA, it follows that
this fraction is greater than or equal to the goalmAB+V A

2
(where the numerator is also an integer timesA) if and
only if

∑
j∈S

vj ≥ V—and this must be the case because

by assumption, the mechanism is a solution to the AMD
instance. ThusS is a solution to the KNAPSACK instance.

Theorem 2 Multi-issue automated deterministic mecha-
nism design with payments for general objective functions
g (even with no interest in the payments, i.e.,a = 0) is NP-
complete even for a single agent, even when there are only
two possible types and|Oi| = 2 for all i. (Membership in
NP is guaranteed only if the number of agents is constant.)

Proof: We omit this proof because of space constraint.

Theorem 3 Multi-issue automated deterministic mecha-
nism design where the objective is to maximize the pay-
ments (from the agents to the designer) is NP-complete
even for a single agent, even when there are only two pos-
sible types and|Oi| = 2 for all i. (Membership in NP is
guaranteed only if the number of agents is constant.)

Proof: It is easy to see that the problem is in NP. (We
can nondeterministically guess an outcome function, after
which setting the payments is a linear programming prob-
lem and can hence be done in polynomial time.) To show
NP-hardness, we reduce an arbitrary KNAPSACK instance
(given by a set of pairs{(cj , vj)}j∈{1,...,m+1}, a cost limit
C, and a value goalV) to the following single-agent de-
terministic multi-issue AMD instance, where we seek to
maximize the expected payments from the agent. Let the
number of issues ber = m+ 1. For everyj ∈ {1, . . . ,m},
we haveOj = {t, f}. The agent’s type set, over which
there is a uniform distribution, isΘ = {θ1, θ2}, and the
agent’s utility functionu =

∑
k∈{1,...,r} u

k is given by:

• For all k ∈ {1, . . . ,m}, uk(θ1, t) = ckA whereA =
4

∑
j∈{1,...,m}

vj ; anduk(θ1, f) = 0.

• um+1(θ1, t) = 0, andum+1(θ1, f) = −CA.

• For all k ∈ {1, . . . ,m}, uk(θ2, t) = vk, and
uk(θ2, f) = 0.

• um+1(θ2, t) = 0, andum+1(θ2, f) = 0.

The goal expected revenue is given byG = AB+V
2 , where

B =
∑

j∈{1,...,m}
cj . We show the two instances are equiv-

alent. First suppose there is a solution to the KNAP-
SACK instance, that is, a subsetS of {1, . . . ,m} such that

∑
j∈S

cj ≤ C and
∑
j∈S

vj ≥ V . Then consider the following

mechanism. Let the outcome function be

• For allk ∈ {1, . . . ,m}, ok(θ1) = t.

• Fork ∈ {1, . . . ,m}, ok(θ2) = t if k ∈ S, ok(θ2) = f
otherwise.

• om+1(θ1) = t, om+1(θ2) = f .

Let the payment function beπ(θ1) = AB, π(θ2) =
∑
j∈S

vj .

First, to see that the IR constraint is satisfied, observe that
for each type, the mechanism extracts exactly the agent’s
utility obtained from the outcome function. Second, we
show there is no incentive for the agent to misreport. If
the agent has typeθ1, reportingθ2 instead gives a util-
ity (including payments) of−CA +

∑
j∈S

cjA −
∑
j∈S

vj ≤

−CA+ CA−
∑
j∈S

vj < 0, which is what the agent would

have got for reporting truthfully. If the agent has typeθ2,
reportingθ1 instead gives a utility (including payments) of
A
4 − AB < 0, which is what the agent would have got
for reporting truthfully. Hence there is no incentive to mis-
report. Third, the goal expected payment is reached be-

cause
AB+

∑
j∈S

vj

2 ≥ AB+V
2 = G. So there is a solution to

the AMD instance. Now suppose there is a solution to the
AMD instance. The maximum utility that the agent can get
from the outcome function if it has typeθ2 is A

4 , and by
the IR constraint this is the maximum payment we may ex-
tract from the agent when the reported type isθ2. Because
the goal is greater thanAB2 , it follows that the payment
the mechanism should extract from the agent when the re-
ported type isθ1 is at leastAB− A

4 . Because the maximum
utility the agent can derive from the outcome function in
this case isAB, it follows that the agent’s utility (includ-
ing payments) for typeθ1 can be at mostA4 . Now con-
sider the setS = {j ∈ {1, . . . ,m} : oj(θ2) = t}. Then,
if the agent falsely reports typeθ2 when the true type is
θ1, the utility of doing so (including payments) is at least∑
j∈S

cjA−CA− A
4 . This is to be at most the agent’s utility

for reporting truthfully in this case, which is at mostA4 . It
follows that

∑
j∈S

cjA− CA− A
4 ≤

A
4 , which is equivalent

to
∑
j∈S

cj ≤ C + 1
2 . Because thecj andC are integers, this

implies
∑
j∈S

cj ≤ C. Finally, because we need to extract

at least a payment ofV from the agent when typeθ2 is re-
ported, but the utility that the agent gets from the outcome
function in this case is at most

∑
j∈S

vj and we can extract at

most this by the IR constraint, it follows that
∑
j∈S

vj ≥ V .

Thus,S is a solution to the KNAPSACK instance.

5 Pseudopolynomial algorithm for one agent

In this section we develop a pseudopolynomial algorithm
that shows that the first two multi-issue AMD problems
discussed in the previous section are onlyweakly NP-
complete. (A problem is only weakly NP-complete if it
is NP-complete, but there exists an algorithm that would
be polynomial if the numbers in the instance were given in
unary, rather than binary—apseudopolynomialalgorithm.)
This algorithm only works when there is only one type-
reporting agent. While this is still a significant problem
because of the conflict of interest between the designer and
the agent, it is an interesting open problem to see if the al-
gorithm can be generalized to settings with multiple agents.

Theorem 4 Multi-issue automated deterministic mecha-
nism design in the setting where there is only one agent,
there is no interest in the payments (a = 0), and the number
of types is a constant, can be solved in pseudopolynomial
time using dynamic programming. This holds both with and
without payments.

Proof: The dynamic program adds in the issues one at
a time. For eachk ∈ {0, 1, . . . , r}, it builds a matrix
which concerns a reduced version of the problem instance
where only the firstk issues are included. Letr(θi, θj) =
u(θi, o(θj))− u(θi, o(θi)), that is, the regret that the agent
has for reporting its true typeθi rather than submitting the
false reportθj . (These regrets may be negative.) Any out-
come function mapping the reported types to outcomes de-
fines a vector of|Θ|(|Θ| − 1) such regrets, one for each
pair (θi, θj). Then, our matrix for the firstk issues con-
tains, for each possible regret vectorv, a number indicating
the highest expected value of the objective function that can
be obtained with an outcome function over the firstk issues
whose regret vector is dominated byv. (One vector is said
to be dominated by another if all entries of the former are
less than or equal to the corresponding ones of the latter.)
This entry is denotedMk[v]. We observe that ifv1 domi-
natesv2, thenMk[v1] ≥ Mk[v2]. If the absolute value of
the regret between any two types is bounded byR, it suf-
fices to consider(2R+1)|Θ|(|Θ|−1) regret vectors (each en-
try taking on values in{−R,−R+1, . . . , 0, . . . , R−1, R}).
The matrix fork = 0 (i.e., when no issues have yet been
added) is 0 everywhere. We then successively build up the
next matrix as follows. When we add in issuek, there
are |Ok||Θ| possibilities for setting the outcome function
ok from types to elements ofOk. Denoting a possible set-
ting of ok by a vectorw = (ok(θ1), ok(θ2), . . . , ok(θ|Θ|)),
letting gk(w) =

∑
θ∈Θ

gk(θ, ok(θ)) be the total value gained

in the objective function as a result of this vector, and let-
ting r(w) = (uk(θi, ok(θj))−uk(θi, ok(θi)){θi 6=θj} be the
regret vector over this issue alone, we have the following
recursive identity fork > 0: Mk[v] = maxw{gk(w) +
Mk−1[v − r(w)]}. It is possible that, when we use this

identity to fill in the matrices, the identity refers to an entry
”outside” the previous matrix, that is, one of the entries of
v − r(w) has absolute value greater thanR. If this occurs,
one of the following two cases applies:

• One of the entries is greater thanR. This means
that the regret allowed for one of the pairs(θi, θj) is
greater than the maximum it could be. We may reduce
the value of this entry toR, without causing a reduc-
tion in the highest value of the objective function that
can be obtained.

• One of the entries is smaller than−R. This means
that the regret allowed for one of the pairs(θi, θj) is
smaller than the minimum it could be. Hence, it is im-
possible to construct an outcome function that satis-
fies this, and hence we simply sayMk−1[v− r(w)] =
−∞.

Once we have constructedMr, we can use this matrix to
solve any of our deterministic automated mechanism de-
sign problems. If payments are not allowed, we simply
look at the entryMr[(0, 0, . . . , 0)], because this is the high-
est possible expected value of the objective function that
we can obtain without the agent having positive regret any-
where. If payments are allowed, then we look at all the
entriesMr[v] where the regret vectorv is such that we can
set the payments so as to make every regret disappear—
that is, where we can setπθ such that for anyθi, θj , we
haver(θi, θj)+π(θj)−π(θi) ≤ 0. (This is a simple linear
program and can hence be solved in polynomial time.) Of
all these entries, we choose the one with the highest value
of the objective function. If we want to know not only the
highest possible expected value of the objective function,
but also a mechanism that achieves it, we need to store at
each step not only the highest possible expected value for
each matrix entry, but also a partial outcome function that
achieves it.

6 Polynomial algorithm for designing an
optimal randomized mechanism

Allowing randomization in the mechanism itself can never
hurt the designer’s objective, because the set of determin-
istic mechanisms is a strict subset of randomized mech-
anisms. Interestingly, when we allow randomization in
the mechanism, an optimal mechanism can be designed
in polynomial time in the length of the concise represen-
tation. (This is already known for the single-issue prob-
lem [3, 4, 5], but, as argued earlier, this does not directly
imply that this is also the case in the multi-issue problem,
because the problem does not decompose over issues.)

Theorem 5 Multi-issue automated randomized mecha-
nism design can be solved in polynomial time using lin-

ear programming, for any constant number of agents, any
IR notion, any IC notion, any objective functiong and any
weight,a, on payments collected. This holds even for a
growing number of types, with and without payments.

Proof: We will solve this by casting it as a linear program.
One method of solving this problem is to construct a linear
program with, for each type report vector, for each out-
come, a variable representing the probability that this out-
come will be chosen (in addition to variables representing
the payments). While this technique is effective for flatly
represented outcome spaces [3, 4, 5], here it is not because
the outcome space is exponential in the size of the repre-
sentation. However, we can reduce the number of variables
to a polynomial number. To this end, we observe:

• For all i, E(ui|(θ̂1, . . . , θ̂N), θi) =∑
(o1,...,or)∈O

P ((o1, . . . , or)|(θ̂1, . . . , θ̂N))
∑

1≤k≤r
uki (θi, o

k) =∑
1≤k≤r

∑
(o1,...,or)∈O

P ((o1, . . . , or)|(θ̂1, . . . , θ̂N))uki (θi, o
k) =∑

1≤k≤r

∑
ok∗∈Ok

uki (θi, o
k
∗)

∑
(o1,...,or):ok=ok∗

P ((o1, . . . , or)|(θ̂1, . . . , θ̂N))

=
∑

1≤k≤r

∑
ok∗∈Ok

P (ok = ok∗|(θ̂1, . . . , θ̂N))uki (θi, o
k
∗).

• Similarly,E(g|(θ̂1, . . . , θ̂N)) =∑
1≤k≤r

∑
ok∗∈Ok

P (ok =

ok∗|(θ̂1, . . . , θ̂N))gk((θ̂1, . . . , θ̂N), ok∗).

It follows that for the purposes at hand, we care only
about the quantitiesP (ok = ok∗|(θ̂1, . . . , θ̂N)), rather
than about the entire distribution. There are precisely∑
1≤k≤r

|Ok|
∏

1≤i≤N
|Θi| such probabilities, which is a poly-

nomial number when the number of agents,N , is a
constant. Additionally, onlyN

∏
1≤i≤N

|Θi| variables are

needed to represent the payments made by the agents in
each case (or none if payments are not possible).

The linear program, which contains constraints for the IC
notions and IR notion in question, and attempts to optimize
some linear function of the expected value of the objec-
tive function and payments made, is now straightforward
to construct. (We do not give it explicitly due to limited
space, but we have given the analogous linear program for
the flat representation [3, 4, 5].) Because linear programs
can be solved in polynomial time, and the number of vari-
ables and equations in our program is polynomial for any
constant number of agents, the problem is in P.

7 Conclusions

Previous research on automated mechanism design as-
sumed that the outcome space was flatly represented, which

makes that work inapplicable if the outcome space is ex-
ponential, as it is, for example, in combinatorial auctions.
This paper introduced (to our knowledge) the first more
concise representation for the problem, which relies on de-
composing the outcome space into distinctissues. While
the decomposability makes the input to the design problem
polynomial, we showed that it is NP-complete (even with
a single agent with only two types) to design a mechanism
that maximizes one of the following objectives: 1) expected
social welfare when payments are not possible, 2) a general
objective function even when payments are possible, and
3) expected payments to the center (designer). We showed
that the NP-hardness is only weak by developing a pseu-
dopolynomial algorithm for the former two single-agent
mechanism design problems with any constant number of
types. Finally, we showed that when designing randomized
mechanisms, we can exploit the structure of the representa-
tion and solve the general problem in polynomial time for
any constant number of agents for any growing number of
types.5

References

[1] Kenneth Arrow. The property rights doctrine and de-
mand revelation under incomplete information. In
M Boskin, editor, Economics and human welfare.
New York Academic Press, 1979.

[2] E H Clarke. Multipart pricing of public goods.Public
Choice, 11:17–33, 1971.

[3] Vincent Conitzer and Tuomas Sandholm. Complex-
ity of mechanism design. InThe 18th Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI-
02), pages 103–110, Edmonton, Canada, 2002.

[4] Vincent Conitzer and Tuomas Sandholm. Auto-
mated mechanism design: Complexity results stem-
ming from the single-agent setting. InThe 5th Inter-
national Conference on Electronic Commerce (ICEC-
03), pages 17–24, Pittsburgh, PA, USA, 2003.

[5] Vincent Conitzer and Tuomas Sandholm. Self-
interested automated mechanism design and implica-
tions for optimal combinatorial auctions. InProceed-
ings of the ACM Conference on Electronic Commerce
(ACM-EC), New York, NY, 2004.

[6] C d’Aspremont and L A Ǵerard-Varet. Incentives
and incomplete information.Journal of Public Eco-
nomics, 11:25–45, 1979.

[7] Eithan Ephrati and Jeffrey S Rosenschein. The Clarke
tax as a consensus mechanism among automated

5The pseudopolynomial algorithm and the algorithm for de-
signing randomized mechanisms can be trivially extended to de-
signing optimalε-incentive compatiblemechanisms as well, i.e.,
where the agents’ regrets, defined above, can go up toε.

agents. InProceedings of the National Conference on
Artificial Intelligence (AAAI), pages 173–178, 1991.

[8] Yuzo Fujishima, Kevin Leyton-Brown, and Yoav
Shoham. Taming the computational complexity of
combinatorial auctions: Optimal and approximate ap-
proaches. InThe Sixteenth International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 548–
553, Stockholm, Sweden, August 1999.

[9] A Gibbard. Manipulation of voting schemes.Econo-
metrica, 41:587–602, 1973.

[10] Theodore Groves. Incentives in teams.Econometrica,
41:617–631, 1973.

[11] Holger Hoos and Craig Boutilier. Bidding languages
for combinatorial auctions. InThe Seventeenth In-
ternational Joint Conference on Artificial Intelligence
(IJCAI), pages 1211–1217, Seattle, WA, 2001.

[12] Andreu Mas-Colell, Michael Whinston, and Jerry R.
Green.Microeconomic Theory. 1995.

[13] Eric S Maskin and John Riley. Optimal multi-unit
auctions. In Frank Hahn, editor,The Economics
of Missing Markets, Information, and Games, chap-
ter 14, pages 312–335. 1989.

[14] Roger Myerson. Optimal auction design.Mathemat-
ics of Operation Research, 6:58–73, 1981.

[15] Noam Nisan. Bidding and allocation in combinatorial
auctions. InProceedings of the ACM Conference on
Electronic Commerce (ACM-EC), pages 1–12, 2000.

[16] Noam Nisan and Amir Ronen. Algorithmic mech-
anism design. Games and Economic Behavior,
35:166–196, 2001. Early version in STOC-99.

[17] Ryan Porter, Yoav Shoham, and Moshe Tennenholtz.
Fair imposition. Journal of Economic Theory, 2004.
To appear. Early version appeared in IJCAI-01.

[18] M. Rothkopf, A. Pekěc, and R. Harstad. Computa-
tionally manageable combinatorial auctions.Man-
agement Science, 44(8):1131–1147, 1998.

[19] Tuomas Sandholm. Algorithm for optimal winner de-
termination in combinatorial auctions.Artificial In-
telligence, 135:1–54, January 2002.

[20] M A Satterthwaite. Strategy-proofness and Arrow’s
conditions: existence and correspondence theorems
for voting procedures and social welfare functions.
Journal of Economic Theory, 10:187–217, 1975.

[21] W Vickrey. Counterspeculation, auctions, and com-
petitive sealed tenders.J. of Finance, 16:8–37, 1961.

