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ABSTRACT

We address the problem of realizing communicative plans in
graphics. Our approach calls for mapping communicative goals to
conceptual tasks and then using task-based graphic design for
sdlecting graphical techniques. In this paper, we present the map-
ping rules in several dimensions. data aggregation and selection,
task synthesis, and task aggregation. Those rules have been incor-
porated in AutoBrief, a research system for multimedia explana
tion.
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1. INTRODUCTION

Visualizations are used in narratives, arguments, explanations and
other communicative genres to succinctly convey complex rela-
tions or to organize a large amount of information. Such presenta
tions are planned to achieve communicative goals (e.g., the user
believes that insufficient airport capacity is the cause for some
late cargo). Communicative planning involves reasoning about
communicative goas, user's beliefs, and information about the
domain, in order to select a sequence of communicative acts (such
as asserting a proposition) that achieves the goals [9]. The rediza
tion of communicative plans has traditionally been studied in the
context of natural language generation. In this paper, we address
the realization of communicative goalsin graphics.

The problem is that automated graphic design has been studied
exclusively from the point of view of data exploration, where the
problems are specified in terms of data sets and the tasks that the
user needs to perform [3, 12]. The graphic designer selects graphi-
cal techniques (e.g., axes, bars, lines, and color) that make the
execution of the tasks efficient. In general, tasks are performed
efficiently when the graphic permits the use of simple perceptual
operations to be substituted for more complex cognitive ones (e.g.,
visual comparison instead of mental computation).

Thus, there is a gap between the output of research systems that
perform presentation planning by reasoning about communicative
goals and acts, and systems that design data graphic by reasoning
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about tasks and the graphic techniques that support them. To
bridge this gap, we propose trandating communicative goals into
conceptual tasks, so that if the users carry out those tasks on a
selected set of data, they will achieve the communicative goals.

2. AN EXAMPLE

Consider a summary of an airline delivery schedule, whose com-
municative goa is to make the reader believe that the destination
airport with the most total tons of bulk and equipment cargo is
Miami. To achieve this goal in graphics, first we need to select
data that express the fact. Clearly, the assertion is about the desti-
nation attribute of a discourse entity of type cargo identified by
conditions on two of its attributes: cargo type (bulk and equip-
ment) and quantity (the maximum total quantity among the cargo
arriving at the different ports). This characterization of the entity
can be expressed by data at different levels of aggregation. For
example, we might use the individua cargo orders (containers of
bulk cargo and pieces of equipment) and focus on the three rele-
vant attributes — cargo type, quantity, and destination. Or, we
might aggregate the cargo orders by destination and cargo type
(i.e, consider dl cargo orders of the same type that go to the same
destination as one object, and focus on its summary attributes
common cargo type, common destination, and total quantity).
Notice that aggregating just by cargo type cannot express the fact
in the goal because it does not allow computing the total quantity
to a given destination. Hence, we need to spell out the rules by
which expressive data sets can be selected for any given goal.

Let us assume that we have chosen the common cargo types,
common destinations, and total quantities of all cargo aggregated
by type and destination. Different graphics can portray this data
such as Table 1, the stacked bar chart in Figure 1, or the two
aligned charts in Figure 2. Table 1 expressed the data but to make
the intended conclusion the viewer will have to scan the rows of
the whole table, sum the two numbers in each row, and keep track
of the row with the maximum sum. Therefore, Table 1 is very
ineffective in redlizing the sample goa. On the other hand, the
message immediately jumps out in Figure 1. One instantaneously
spots the longest stacked bar and looks up the name of the city
associated with it. The stacked bar technique alows perceptua
summing and parallel comparison vs. the slow cognitive computa-
tion and serial comparison in Teble 1. Hence Figure 1 is not only
expressive but also highly effective in achieving the goal. Finally,
Figure 2 does not express the data at all even though it shows all
attributes. The table shows destination ports, and the chart plots
quantities versus @rgo type. Since the user cannot associate the
tonnage of cargo with their destinations, she will not be able to
compute the total quantity arriving at each port.

* Thiswork was done while both authors were in the Robotics In-
stitute, Carnegie Méllon University.



The three graphics demonstrate that just selecting expressive data
is not enough. For the graphic designer to exclude inexpressive
graphics such as Figure 2, and to prefer expressive and effective
graphics such as Figure 1 to expressive but ineffective ones such
as Table 1, it needs to know what tasks the user will perform with
the graphic. The tasks are the second piece of information (in
addition to the data) that needs to be inferred from the
communicative goal and supplied to the graphic designer so that it
can select expressive and effective graphical techniques.

Table 1. Cargo aggregated by destination and type

Destination Bulk (tons) Equipment (tons)
Boston 0 115
Dallas 85 0
Denver 0 25
Houston 80 0
Miami 100 90

New York 110 0
Phoenix 0 45
Portland 75 0

San Diego 100 30
Seattle 80 15
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Figure 1. Cargo aggregated by destination and type
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Figure 2. Cargo aggregated by destination and type

Suppose now that the summary should also convey thefollowing
fact: a total of 4 pieces of equipment arrive at Miami. This goal
could have been achieved had we selected the individua cargo
orders and the technique in Figure 1 (stacking the quantities of al
cargo orders going to the same destination). The resulting graphic
(Figure 3) not only achieves the first goal with the same effective-
ness as Figure 1 but also achieves the new goal - one can easly
count the four white bars in the longest stacked bar. The joint re-
alization of more than one communicative goa in one graphic is
cdled aggregation (not to be confused with data aggr egation).

The benefit of aggregation is two-fold. First, achieving severa
goals in one graphic reduces the total overhead, which istheinitial
effort that the viewer makes to understand the presentation tech-
niques. For example, to understand Figure 1, one must look at the
caption, the axes, and the key to see what kinds of information is
presented and how. Only then can the user make conclusions
about the domain based a graphical relationships. When severa
acts share their overhead, the total interpretation is more efficient.
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A second, more important, benefit of aggregation is the increased
coherence. Coherent presentations provide facilities that help the
user make the logical connection between different parts of a mes-
sage. For example, in Figure 3, the longest stacked bar serves as
an anchor for the two communicative acts realized by the graphic.
The first goal results in the user recognizing that the longest
stacked bar corresponds to the total cargo arriving to Miami. Then,
to achieve the second god, all the user needs to do is count the
white pieces on that same stacked bar.

In this paper, we propose three conditions for aggregation: homo-
geneous goals, goals with common identification, and goals with
chained identification.

This section demonstrated the following phenomena:
Graphics present data about domain objects using graphical
relationships.
Users perform perceptual and cognitive tasks to achieve com-
municative goals in graphics.
For a given communicative goal, some levels of data aggrege
tion are expressive while others are not.
For a given communicative goa and an expressive data set,
some graphical techniques are expressive while others are not.
Some techniques are more effective than others.
The expressiveness and the effectiveness of the graphical
techniques depend on the tasks that the user needs to perform
with the graphic.
The redlization of more than one communicative goal in one
graphic can reduce the overhead and increase the coherence of
the presentation.

3. COMMUNICATIVE GOALSAND CON-
CEPTUAL TASKS

In this section, we look at the problem of mapping communicative
goals to conceptual tasks from an architectural point of view. In
particular, we show where it fits within the broader picture of
communicating information and introduce the languages in which
goals and tasks are expressed. We have studied the problem at
hand in the context of AutoBrief, a multimedia (natural language
and information graphics) generation system [5]. AutoBrief en-
ploys communicative planning and two media generators to pro-
duce a multimedia presentation that achieves a given high-leve
communicative goal (Figure 4). The communicative planner @-
plies media independent presentation strategies to decompose the
high-level goal into primitive communicative acts of type (Assert
<proposition>) that achieve simple subgoals of type (Believe User
<proposition>). After planning, media alocation rules assign the
acts (and the subgoals they echieve) to text and graphics. In gen-
eral, communicating complex quantitative relations or numerous
homogeneous facts is more effective in graphics than in text. The
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Figure 4. AutoBrief’ s architecture

two media generators produce English sentences and graphics,
which are merged into a unified multimedia presentation.

The graphic generator consists of two modules. a graphic m-
croplanner and a graphic designer. This paper provides the theo-
retical foundation of the microplanner, whose function is to trans-
late the primitive communicative goals expressed in a logic-based
language into conceptual tasks that operate on concrete data sets.
The output of the microplanner comprises a design request accept-
able by an automated graphic designer such as SAGE [12] or BOZ
[3]. The designer then selects graphical techniques that support the
conceptual tasks.

To define the knowledge that guides the microplanner, we need to
be more specific about what goals and tasks actually are and how
they are expressed. Communicative goals represent the message
that needs to be conveyed to the user. The content of a god, its
proposition, is expressed in a logic-based language [13, 4]. For
example, sample-goal below expresses the assertion from section
2 in such alanguage. As a reminder, this assertion reads the desti-
nation airport with the most total tons of bulk and equipment
cargo is Miami.

Sample-goal :
MAI N PREDI CATE (dest-c MAX- QUANT- CARGO M ani)
MAX- QUANT- CARGO: t he subset of ALL-CARGO AGERS
whose total quantity is MAX- QUANTI TY
MAX- QUANTI TY: the maxi mum of ALL- QUANTI Tl ES
ALL- QUANTITIES: the set of the total quantities
of ALL- CARGO- AGGRS
ALL- CARGO- AGGRS: all sets of cargo objects of
type bul k or equiprment that go to the sane
destination

This content expression specifies the main predication and the
discourse entities using logica constructs such as quantifiers,
domain types (e.g., cargo), domain predicates (e.g., dest-c and
total-quantity), and general predicates (e.g., the maximum of a
set). Each discourse entity is defined in a separate entry after the

main predicate. Some of the entities (e.g., ALL- CARGO- AGGRS)
define sets by imposing conditions on their members.

Conceptual tasks, on the other hand, prescribe operations that
users perform on data objects to extract information about the
domain. Using tasks as an intermediate representation between
communicative planning and graphic design is justified by studies
in cognitive psychology, which show that humans interpret graph-
ics by performing simple perceptual and cognitive tasks [6, 10].
Some examples of such tasks are perceiving visual predicates
(e.g., abar is much longer than the rest), associating visual predi-
cates with data objects (e.g., the longest bar with the airport re-
celving the most cargo), and inferring propositions about those
objects (e.g., Miami is the port that receives the most cargo).
Hence, communicative goals that we achieve in text by asserting
facts are realized in information graphics by enabling the user to
perform certain operations. Modeling those operations at the data
level as conceptua tasks provides the graphic designer with im-
portant information to support the selection of graphical tech-
niques.

We propose that the tasks be composed of three groups of primi-
tives: vaue-accessing, entity-manipulating, and organization
tasks. The value-accessing tasks produce values in one of three
ways: by interpreting a constant (the VAL UE task), by accessing the
value of an attribute (the ATTRI BUTE task), or by computing a
value (the COMPUTE task). The entity-manipulating tasks are
SEARCH (for activating an object or a set of objects), LOOKUP (for
evaluating attributes of objects), and COVMPARE (for evaluating the
relationship between attributes of objects). The organization tasks
are SEQUENCE (establishes sequential execution of its subtasks
where the output of a subtask serves as input to the next subtask),
DI SJO NT (marks independent execution of its subtasks) and
CONJOI NT (the subtasks jointly produce a common output).

Sample-task:
1. SEQUENCE
1.1. DI SJO NT
1.1.1. SEARCH for {all-bul k-cargo}
in {all-cargo} by
(= (cargo-type-c all-bul k-cargo) bulk))
1.1.2. SEARCH for {all-eqpt-cargo}
in {all-cargo} by

(= (cargo-type-c all-eqpt-cargo) eqgpt))

1. 2. SEARCH for {(bul k-cargo eqgqpt-cargo)} in
({all -bul k-cargo} {all-eqgpt-cargo})
by (= (dest-c bul k-cargo)
(dest-c eqpt-cargo)))
1. 3. SEARCH for (max-bul k-cargo max-eqpt -cargo)
in {(bul k-cargo eqpt-cargo)} by
(= (SUM (total -quant max-bul k-car go)
(total -quant mex-eqpt-cargo))
( MAX
{(SUM (total -quant bul k-car go)
(total -quant eqgpt-cargo))}))

1.4. LOOKUP (dest-c max-bul k-cargo) M am

Sample-task isa SEQUENCE of four subtasks (1.1-1.4) derived
from sample-goal and realized in Fgure 1. For clarity, while ex-
plaining the tasks we will refer to Figure 1. The tasks operate on a
set of data objects, which we call scope of the tasks (and of the
graphics that realize them). The scope of sample-task, {al I -
car go}, is the set of al aggregates of bulk and equipment cargo
whose members have the same destination and cargo type.
SEARCH tasks 1.1.1 and 1.1.2 produce two subsets of {all -

car go}: those of type bulk (the gray barsin Figure 1) and of type
equipment (the white bars). Subtask 1.2 identifies the pairs of bulk



and equipment aggregates with common destination (each pair is
represented by one stacked bar). SEARCH task 1.3 identifies the
pair of aggregates whose total quantity is the maximum among al
pairs activated in task 1.2. The longest stacked bar expresses this
pair. Finaly, the LOOKUP task associates the destination of max-
bul k- car go (which is the same as the destination of max- eqpt -
car go) with Miami. In Figure 1, the ports are looked up as labels
on they-axis.

The main differences between the content descriptions of commu-

nicative goals and task specifications can be summarized as fol-
lows:

The content language describes discourse entities by their
properties while the task language expresses them by concrete
data sets from an underlying database.

The content language expressions are declarative, while the
task language expressions are mostly procedural.

The mapping of communicative goals to conceptual tasks is pre-
sented in the next three sections by the following dimensions:
Sdecting a data set (scope) at an appropriate level of aggrege-
tion to express the entities involved in the goal .
SEARCH tasks to activate the relevant objects within the s
lected scope.
L OOKUP or COMPARE tasks to realize the main predicate.
SEQUENCE, DI SJOI NT or CONJOI NT relations to convey de-
pendencies between the entity manipulating tasks to the
graphic designer.
Aggregating goals with certain relations between them and
conflating their tasks into a single task.

We will illustrate the mapping rules using four goals (given ke-
low) supporting the hypothesis that insufficient port capacity at
Miami is the possible cause for all late cargo arriving at that port.
The goals are part of an explanation strategy based on the follow-
ing pattern in the data: a port works at capacity level (communica
tive goals 1 and 2), some cargo arrives late (goa 3), and the late
cargo arrives after the dates when the port works at full capacity
(god 4).
Goal 1. On 6.03.1998! the usage of Miami equalsits capeity.
Goal 2. On 6.04.1998 the usage of Miami equalsits capecity.
Goal 3. About 200 tons of late cargo arrives at Miami.
Goal 4. The dates of arrival of the late cargo are after the dates
when the usage of Miami reaches its capecity.

4. EXPRESSING PRIMITIVE DISCOURSE
ENTITIES

In this section, we consider the expression of primitive entities,
whereas the following section deals with sets. A primitive dis-
course entity is described in the communicative goa by the defini-
tive quantifier (“the”), a primitive type (not a set), and a conjunc-
tion of conditions. Such entities are expressed by data objects in
the domain database that satisfy the conditions imposed on the
corresponding entity. Goal 1 of the sample plan illustrates this
case. Discourse entitiesM AM - CAP- 3 and M AM - USE- 3 are of
types port capacity and port usage, respectively, and are repre-
sented by the data objects retrieved from the database using their
entity descriptions as queries. The scope of the tasks (and the
graphic) must at minimum include those two objects. For goal 1,
the scope rule allows at least four aternatives: (sl) the capacity

! From now on, the dates will be denoted by their day component only.

and usage of Miami on date 3 (two objects); (s2) all capacity and
usage on date 3 (the number of objects is two times the number of
ports); (s3) al capacity and usage of Miami (two times the number
of days in the schedule); (s4) all capacity and usage (two times the
product of ports and days in the schedule).

Goal 1:
MAI N PREDI CATE: (= cap-throughput
used-t hroughput)

cap-t hroughput: the anpbunt of M AM - CAP-3

used-t hroughput: the anount of MAM-USE-3

M AM - CAP- 3: the capacity of Mam on day 3

M AM - USE- 3: the usage of Mam on day 3
Three additional criteria with effectiveness flavor guide the selec-
tion of scope: (el) to be as small as possible, (€2) to be described
by a short logical form, and (e3) to promote aggregation. Criterion
el, linked to the principle of cognitive economy and parsimony
[11], simplifies the presentation and reduces the side effects (non-
planned assertions). Criterion €2 facilitates the external identifica
tion of the scope[1], i.e. the description of the scopein the caption
of the graphic (e.g., “al port capacity on 6.3.1998"). Criterion e3
reduces the overhead and increases the coherence of the graphic.
Under these criteria, if there was just goal 1, then aternative sl
would be preferable. With goal 2, however, aternative s3 becomes
more desirable because it enables aggregation (cf. section “God
and task aggregation”).
Once a scope is selected, SEARCH tasks are included for each en-
tity to activate the relevant objectsin user’s mind. The SEARCH is
done using conditions on all attributes that both identify the entity
and vary across the scope. Attributes that do not vary cannot dif-
ferentiate the relevant objects within the particular scope, and
therefore there is no use for SEARCH tasks by such attributes. Thus
in scope s1, no SEARCH tasks are necessary because both identify -
ing attributes are invariant. In scope s2, the SEARCH tasks are by
port, in scope s3 by date, and in scope 4 by both port and date. If
more than one SEARCH task is to be used, such as in scope 4, a
CONJOI NT operator should group the SEARCH tasks to inform the
graphic designer that they produce their resultsjointly.

The main predicate is mapped to a LOOKUP task, if it predicatesthe
vaue of an attribute, or a COMPARE task, if it predicates an equive
lence, ordering, or arithmetic relation. Those mappings follow

directly from the definition of the two tasks. In goa 1, thearith-
metic relation between the throughput amounts requires aCOv

PARE task.

A SEARCH, LOOKUP, or COMPARE task T depends on a SEARCH
task S if Sproduces (activates) objects that are used in T. Sucha
dependency implies that S must be performed before T, which
means that Sand T must be grouped by a SEQUENCE operator. If a
task T depends on two independent tasks S; and S;, the independ-
ent tasks are grouped by a DI SJO NT operator before being
grouped with T by a SEQUENCE operator. An example of thisrule
is shown below in Task 1.1, where the COMPARE task depends on
two independent SEARCH tasks. Likewise, if two mutualy inde-
pendent tasks T, and T, depend on task S they arefirst grouped by
a DI SJOI NT operator and then grouped with S by a SEQUENCE
operator.

The rules for task synthesis applied to goal 1 yield task 1.1 when
the scope consists of al Miami capacity and usage (s3), {M AM -
DAI LY- CAPS} and {M AM - DAI LY- USES}, respectively.

Task 1.1:
1. SEQUENCE



1.1. DI SJO NT
1.1.1. SEARCH for M AM-CAP-3 in
{M AM - DAI LY- CAPS} by
(= (date M AM - CAP-3) 3)
1.1.2. SEARCH for M AM -USE-3 in

{M AM - DAI LY- USES} by
(= (date M AM - USE- 3) 3)
1.2. COMPARE (= (ampunt M AM - CAP- 3)
(amount M AM - USE-3))))

Task 1.1 is sufficient for the graphic designer to generate the
graphic in Figure 5. The following perceptual and cognitive opera
tions lead the user to believe the proposition of goal 1. The caption
and the color key let the user understand that the gray and the
black lines represent daily usage and capacity of port Miami. At
this point, the user is aware of what the scope of the graphic is.
The labels on the axes indicate that x-positions encode dates and y-
positions encode throughput. The x-position encoding date 3
serves as a reference for finding the two overlapping marks that
represent the capacity and usage of Miami on date 3. This accom-
plishes the two SEARCH tasks. Since the marks have the same y-
position, the user concludes that the activated usage and capacity
objects have equal throughputs, which was the goal. This accom-
plishes the COMPARE task.

5. EXPRESSING SETS

The expression of sets by data objects is challenging but also very
flexible, giving opportunities for designing highly effective graph-
ics. It is challenging because we can think of a set at different
levels of aggregation: as the collection of its members, as one
whole aggregate, or as a partition by subaggregates. Therefore,
when making decisions about how to express discourse entities of
type set, we have to carefully analyze the communicative goasin
order to pick levels of aggregation that support what is meant to be
conveyed. Before proceeding with this analysis, we will introduce
some concepts related to data aggregetion.

5.1. Data Aggregates

In this paper, we consider only aggregates created by imposing
equality conditions on attributes of their members; e.g., all cargo
of type bulk, or all late cargo of type equipment. The attributes we
impose conditions on are called aggregation attributes. One can
view this type of aggregation as binning, where abin is crested for
each combination of values of the aggregation attributes and each
object is placed into the bin corresponding to the values of the
aggregation attributes of the object. The bins then are the aggre-
gates and the objects inside them are their members.

Aggregates have their own attributes derived from attributes of
their members. For example, the attribute total-quantity of a cargo
aggregate is computed by totaling the quantities of its members;
status-c is the common status of al members (or undefined if two
members have different status). Attribute a' of aggregate Aisa
summary attribute derived from base attribute a using operator Sif
its values are computed by expression (1):

@) a (A) T exte?sio(\A) a(o)

Thus, attribute total-quantity is derived from base attribute quan-
tity using summary operator TOTAL. Attribute status-c is derived
from base attribute status using operator COMMON- VAL UE. Other
common operatorsare M N, MAX and MEAN.

An aggregate A is partitioned by subaggregates if no two subag
gregates have common members and the total membership of the
subaggregates is the same as the membership of A. Re-aggregating
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Figure 5. Daily capacity and usage for Miami

the members of an aggregate by some of their attributes partitions
the aggregate. For example, re-aggregating the members of the
aggregate of al cargo to Miami by their status produces two dis-
joint subaggregates, one for late and another for on-time cargo.
Expression (2) lets us express assertions about a summary attribute
(a') of an aggregate (A) through assertions about its partition Ay,
Ay, ..., A (Sisthe derivational operator of &'):

k
@ a(A)=Sa(A)
5.2. Mapping rules

The mapping rules are based on how discourse entities of type set
are defined and what is predicated about them.

A discourse entity of type set can be defined: (d1) by enumerating
its members (extensionally), @d2) by imposing conditions on its
members (intensionally), and (d3) as a subset in the partition of a
superset through conditions on its summary attributes (cf. the
definition of MAX- QUANT- CARGO as a subset of ALL- CARGO-
AGGRS in sample-goal ).

The predication about a discourse entity of type set can be: (pl)
enumeration of its members; (p2) a predicate about all its mem-
bers; and (p3) a summary attribute about the set.

An entity of type set can always be expressed by its members
(baseline rule). However, this rule may not be the most effective
one. If asummary attribute is asserted about a set expressed by its
members, the user should compute the summary attribute to
achieve the goal. Compare this to expressing the set by one aggre-
gate object, of which the summary attribute is encoded directly by
agraphical value. By the principles of effectiveness [7] and cogni-
tive economy [11], we will seek the highest expressive level of
aggregation to reduce the computation cost incurred by the user
during graphic interpretation.

Expressing discourse entities of type set by data aggregates is
subject to congtraints on their level of aggregation. Those con-
straints are based on how the sets are defined and what is asserted
about them.

al. The set is defined or predicated about by enumerating its
members (d1 or pl). Since the intent is to focus on the mem-
bers of the set, any aggregation would be inexpressive.

a2. The set is defined by equality conditions on attributes of its
members @2). Any aggregation should be done at least by
the attributes defining the set. This rule ensures that the set
will not be expressed as part of an aggregate and thus be uni-
dentifiable as a separate graphical object(s). Recall how cargo
aggregation just by cargo typein section 2 was inexpressive.

a3. The set is defined intensionally (d2) by non-equality condi-
tions (e.g., "al the cargo that arrives before March 6"). A
non-equality condition can be substituted with an equality
condition on a derived Boolean attribute, which is true for al
members that satisfy the non-equality condition and false



otherwise. In the example above, the cargo set can be rede-
fined by the equality condition arrives-beforeMarch-6 is
true.

ad. The set is defined as a subset by conditions on some of its
summary attributes @3). Since the subset will be searched
within the scope of the superset, both should have the same
level of aggregation.

a5. A common predicate is asserted for al members of the set
(p2). Any aggregation should be done at least by the predi-
cated attribute. Thiswill guarantee that the summary attribute
derived using COMMON- VAL UE will be defined for each mem-
ber of the scope (see c2 below).

a6. Predication about the summary attribute of a set (p3) does not
impose any constraints on the level of aggregation except
when the summary operator is COMMON- VAL UE, which should
be treated like asserting a common predicate for all members
of the set (case a5).

The scope should contain all data objects at the selected level of
aggregation that satisfy the conditions imposed on the discourse
entity and is subject to the effectiveness criteria for scope selection
(el-e3) from section 4. Task synthesisis aso similar to the case of
primitive entities. The only difference is that the selected level of
aggregation may result in using attributes in the tasks that are dif-
ferent from the attributes used in the goal. Those changes are
summarized below:

cl. A discourse entity is defined intensionally and expressed by
agoregetes. The SEARCH tasks should use the summary d-
tributes derived from the definition attributes by operator
COMVON- VAL UE (those attributes are guaranteed to be well
defined because rule a2 requires that all definition attributes
are aggregation attributes as well).

c2. A common predicate is asserted about all members of an
entity expressed by an aggregate. The LOOKUP or COMPARE
task should use the summary attribute derived from the predi-
cated attribute by operator COMMON- VAL UE (this summary at-
tribute iswell defined due to rule ab).

c3. A summary attribute is predicated about a discourse entity
expressed by its members. The summary attribute should be
expressed by a COMPUTE task composed of the summary op-
erator and an ATTRI BUTE task for the base attribute of the
members. This mapping exploits formula (1) in section Data
Aggregates.

c4. A summary attribute is predicated about a discourse entity
expressed by a partition. The summary attribute should be
expressed by a COMPUTE task composed of the summary op-
erator and an ATTRI BUTE task for the summary attribute of
the subaggregates. This mapping exploits formula (2) in sec-
tion Data Aggregates.

5.3. Examples

Goal 3, shown below, predicates summary attribute total-quantity
of entity LATE- CARGO defined intensionally by equality conditions
on atributes status and destination. In Figures 6, 7, and 8, LATE-

CARGO is depicted at three different levels of aggregation. In Fig-
ure 6 (realizing task 3.1), it is expressed by one aggregate shown
graphically as a bar. The aggregation is by the two attributes
defining LATE- CARGO (rule a2). The scope consists of al late
cargo aggregated by destination. Attribute destination was
transformed into summary attribute dest-c (rule c1). Figure 7 (task
3.2) depicts LATE- CARGO by a partition of three subaggregates
expressed by three vertical bars. The aggregation is by the two
defining attributes, status and destination, and by the partitioning
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utes, status and destination, and by the partitioning attribute, arri-
va-date (rule a2). The use of arrival-date is justified in the next
section on aggregation. To compute the total quantity, one has to
perceptually sum the heights of the three bars. In Figure 8 (task
3.3), LATE- CARGO is expressed by individual cargo orders (base-
line rule). There are no SEARCH tasks in 3.2 and 3.3 because none
of the defining attributes varies. The total quantity of LATE- CARGO
is expressed by COMPUTE tasks (TOTAL) over thetotal quantitiesin
the partition of the set (task 3.2, rule c4) and over the quantities of
the members (task 3.3, rule c3), respectively.

Goal 3:
MAI N PREDI CATE: (total-quant LATE- CARGO ~200)
LATE- CARGO: all late cargo to M am

Task 3.1:
1. SEQUENCE
1.1. SEARCH for M AM - CARGO i n { CARGO BY- DEST}
by (= (dest-c M AM - CARGO) M anmi)
1.2. LOOKUP (total-quant M AM - CARGO) ~200

Task 3.2
1. LOOKUP
(TOTAL {(total -quant M AM - CARGO- BY- DATE) })
~200
Task 3.3:
1. LOOKUP

(TOTAL {(quantity M AM - CARGO)}) ~200

Goal 4 asserts an ordering relation between the dates of al mem-
bers of AT- CAP- USE (stands for "port usage at capacity level")
and the arrival dates of LATE- CARGO. Figure 9 realizes this god
by supporting task 4.1. Entities AT- CAP- USE and CAP are ex-
pressed by the members of the sets (baseline rule). LATE- CARGO
is expressed by aggregates by the two defining attributes status
and destination (rule a2) and the predicating attribute arrival date



(since it applies to each element of the set, rule a5). Thus, the
expression of LATE- CARGO combines two different constraints.
Task 4.1 demonstrates the use of CONJOI NT when an entity is
searched by two attributes (date and amount). Notice also the sub-
stitution of attribute arrival-date by summary attribute arriva-date
¢ in the COMPARE task according to rule c2.

Goal 4:
MAI N PREDI CATE: (< at-cap-date | ate-date)
at-cap-date: the date of at-cap-use
(AT- CAP-USE, CAP): all pairs of port-usage
and port capacity of Mam such that the
port usage and the port capacity conponents
of each pair have equal dates and anounts
| ate-date: the arrival date of LATE- CARGO
LATE- CARGO: all late cargo to M am

Task 4.1:
1. SEQUENCE
1.1. CONJOI NT
1.1.1. SEARCH for {(at-cap-use, cap)}
in ({m am -uses}, {mam -caps}) by
(= (date at-cap-use) (date cap))
SEARCH for {(at-cap-use, cap)}
in ({m am -uses}, {m am-caps}) by
(= (anpunt at-cap-use) (anmount cap))
1.2. COWMPARE
(< (date {at-cap-use})
(arrival -date-c {late-cargo-by-date}))

6. GOAL AND TASK AGGREGATION

Early in the paper we showed how the realization of several goals
in one graphic might reduce the overhead and increase the coher-
ence of the presentation. Now we define three types of relations
between goals that make their joint realization more effective than
their realization in different graphics. The three aggregation rules
based on those relations explain, at the task level, how Figure 9
was designed to achieve not only goal 4 but also goals 1, 2 and 3.

Goa 2 differs from goa 1 only by the dates of the capacity and
usage entities (date 4 instead of 3). We regard goals 1 and 2 as
homogeneous in the sense that they have isomorphic structures. If
we select a scope that is expressive for both goals (e.g., scope s3,
but not sl or s2), they would be mapped to the same types of tasks
and readlized by the same graphical techniques. The common
graphic will be more effective than a separate one for each goa
because the interpretation overhead will be shared by the two
goals.

Goa 4 isrelated to goals 1 and 2 viathe definition of entities AT-
CAP- USE and CAP. These two entities are identified as a set of
pairs by the condition that their amounts are equal, which is &
serted about entitiesM AM - CAP- 3 and M AM - USE- 3 ingod 1
and their counterparts in the isomorphic goal 2. We call this type
of relation between communicative goals chained identification.
Goals A and B are related by chained identification over entities e
and & if & isidentified in B by a condition that is asserted about
e in A. The advantage of aggregating goals with chained identifi-
cation over g, and & is that the SEARCH task for e, derived from
the chained condition in B is already satisfied by the tasks on e;.
Therefore, instead of creating a SEARCH task for &, a dependency
must be established of any subtasks that use e, on the set of tasks
that use ;. Such a dependency is conveyed to the graphic designer
by a SEQUENCE operator.

Goals 3 and 4 use the same definition of entity LATE- CARGO. We
call this type of relation common identification. Goals Aand B are
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Figure 9. Daily capacity and usage for Miami and
late cargo to Miami aggregated by date
related by common identification over entities e, and & if e, and
e, are identified by the same condition in A and B, respectively.
The common identification enables a common search task for e
and e, and establishes dependencies of any other tasks derived
from A and B that use e; and e, on the common search task.

The tasks for goals with chained or common identification over
some entities can be aggregated only if those entities are expressed
by the same objects and share the same scope (such as tasks 3.2
and 4.1 but not 3.1 and 4.1 or 3.3 and 4.1). This rulejustifiesthe
choice of data aggregation by arrival date for expressing LATE-

CARGO in tasks 3.2 even though arrival dateis not used in goal 3.

Aggregation based on the homogeneity of gods 1 and 2, the
chained identification relation of goals 1, 2 and 4, and the common
identification relation of goals 3 and 4 conflates the tasks derived
from them into a common set of tasks operating on a common
scope. The graphic designer then generates Figure 9 as the best
way to support the common tasks for all four goals.

The common tasks produce common graphic representations of
the entities over which the goals are related. This is analogous to
aggregation in natura language generation. For example, the sm-
tences "Mary has blue eyes' and "John has blue eyes" can beag
gregated into one sentence "Mary and John have blue eyes," where
the shared concept of blue eyesis realized by a single noun phrase.
Likewise, an entity used in two different goals and expressed by
the same data object can be realized by a single graphical object.
By expressing relations from multiple goals, such graphical d-
jects make the presentation more economical and coherent.

7. PRIOR WORK

Prior work on automated graphic design focused on the selection
of graphical techniques. Mackinlay’s semina work [7] set the
foundation for computational synthesis of graphic presentations.
He formulated the expressiveness and effectiveness criteria for
graphical languages using properties of the data and properties of
the human perceptual system. A graphical language is expressive
with respect to a given set of factsif it encodes all those facts and
only those facts. The effectiveness criterion, on the other hand, is
rooted in the human ability to perceive some visual predicates
better than others. It allows the comparison of different languages
that express the same information, with respect to the efficiency of
the interpretation of graphics by humans. Mackinlay’ s approach to
graphic generation is based on the idea of composing graphical
languages. In particular, he proposed three types of composition
(double axes, single axis, and mark composition) and the condi-



tions for using them. He demonstrated those concepts in an auto-
mated presentation tool called APT.

Casner [3], Roth and Mattis [12], and Beshers and Feiner [2]
pointed out the importance of user's tasks for selecting graphical
techniques. These approaches posit composition of a set of task
primitives, such as information search, lookup, comparison, and
scan, that people engage in to accomplish more complex data ex-
ploration procedures. Their systems search for simple graphical
techniques that transform primitives from complex cognitive op-
erations to simple perceptual ones. Zhou and Feiner [14] used a
different flavor of visua tasks, which abstract graphica tech-
niques, rather than the exploratory behavior of the user.

Maybury [8] does realize some communicative goals in maps, but
does not consider using the wide variety and complexity of graph-
ics we are interested in. The limited set of graphical presmtations
in effect eliminates the need for automated design, making it pos-
sible to map communicative goals directly to graphics.

While this paper does not address the narrow problem of selecting
graphical techniques, it advances the state-of-art of automated
graphic design by proposing a model and rules for mapping com-
municative goals to conceptual tasks. This model reduces the
problem of graphic realization of communicative plans to the
problem of graphic design for tasks.

8. CONCLUSION

We proposed mapping communicative goals to conceptua tasks
and three types of aggregation that lead to more effective graphics.
This knowledge is essential for charting the search space that con-
nects communicative planning with task-based graphic design and
allows us to build systems that communicate information in graph-
ics.

The mapping and aggregation rules presented in this paper are
used in AutoBrief [5], a system that automatically summarizes
transportation schedules in text in graphics?. In fact, AutoBiref
designed the graphic in Figure 9 as part of the multimedia (text
and graphics) explanation of a shortfall.

Unlike tasks in data exploration, the ones produced from commu-
nicative goals specify the results of the tasks. This enables the
graphic designer to use attention-drawing devices such as high-
lighting a grapheme to attract user’s attention to the relevant as-
pect of the graphic. For example, circling the two overlapping
marks in Figure 9 would focus the user to the dates when the port
isused at capacity level.

Our future work will address the computational aspects of generat -
ing graphics in context (i.e., how previously generated graphics
may affect the design choices in subsequent presentations). Prior
graphics set the context by the communicative goals they have
achieved, possibly by some non-planned effects, by the data that
have expressed the different discourse entities, and by the graphi-
cal techniques that have realized the tasks derived from the com-
municative goals. Each of these aspects will potentialy influence
the realization of new communicative goalsin graphics.

2 Some presentations generated by AutoBrief are available at
http://www.cs.cmu.edu/~sage/ab-tour/start.html.
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