
PFPL Supplement: Equality of T and F∗

Robert Harper

October, 2020

1 Introduction

When considering languages such as Systems T and F, and their extensions with products, sums,
inductive, and coinductive types, it is both natural and justifiable to use equational reasoning
similar to standard mathematical practice. After all, these languages were introduced to explore
the computational meaning of formal proofs in logical systems, and so ought to behave like all
other mathematical objects. This supplement expounds some basic principles of equality for these
languages.

2 Typed Equality

The most basic principle of equality is that it governs expressions of the same type, and its meaning
is determined by their type. The judgment e

.
= e′ ∈ τ is defined for closed expressions e and e′ of

type τ to mean

There exist v and v′ such that e 7−−→∗ v val, e′ 7−−→∗ v′ val, and v and v′ are equal in the
sense determined by their type, τ .

Thus, equality specifies that two expressions co-behave according to their type in that the values of
expressions are all that matter in determining their equality. It is not at all obvious—but can be
proved for specific languages—that typed equality is reflexive, let alone an equivalence relation or a
congruence.1 The notation e ∈ τ means that e

.
= e ∈ τ , which states that e behaves in accordance

with its type. Sometimes it is more convenient to write e
.
=τ e′ for equality of e and e′ at type τ .

Assuming addition and multiplication are defined in the usual way (by recursion on either or both
arguments), then obvious equations such as 2 + 2

.
= 4 ∈ nat, 2× 2

.
= 4 ∈ nat, 4 .

= 2 + 2 ∈ nat,
and 1 + 3

.
= 2 + 2 ∈ nat, would hold, simply by virtue of calculation, and the fact that 4 ∈ nat.2

Typed equality of open terms, written Γ ⊢ e
.
= e′ ∈ τ , is defined for Γ ⊢ e : τ and Γ ⊢ e′ : τ

in terms of closed equality by substitution. For simplicity let us consider the case of one variable,
x : σ ⊢ e

.
= e′ ∈ τ ; the generalization to many is straightforward. It might be thought that the

definition should be
∗© 2020 Robert Harper. All Rights Reserved.
1One might argue that it should not be called “equality” until it is proved that this is so. There is merit to that

argument, but in all cases it will turn out to be true, so it is not important to split this particular hair.
2This obvious fact will turn out to be true, once the values of type nat have been defined.

1

If e1 ∈ σ, then {e1/x}e
.
= {e1/x}e′ ∈ τ .

That is, an equation between open terms holds whenever all of its substitution instances hold.
However, a stronger condition is required:

If e1
.
= e′1 ∈ σ, then {e1/x}e

.
= {e′1/x}e′ ∈ τ .

The former condition follows from the latter, using reflexivity of equality at each type.
Surprisingly, reflexivity is not immediate, or even very obvious, for languages with higher-order

functions or inductive types! Intuitively, reflexivity states that expressions behave at run-time
according to their compile-time type. This ought to be true for any sensible language, but it does
require proof.

Theorem 2.1 (Fundamental Theorem). 1. If Γ ⊢ e : τ , then Γ ⊢ e
.
= e ∈ τ .

2. If Γ ⊢ e ≡ e′ : τ , then Γ ⊢ e
.
= e′ ∈ τ .

This theorem holds for System T and its extensions with products, sums, inductive, and coin-
ductive types.

Equations involving variables, such as x : nat ⊢ x+ x
.
= 2× x ∈ nat, are not merely a matter

of calculation, but must be proved by induction on x. Specifically,

1. 0 + 0
.
= 2× 0 ∈ nat. This is a matter of calculation, no variables are involved.

2. Assuming that n+ n
.
= 2× n ∈ nat, show that n+ 1 + n+ 1

.
= 2× n+ 1 ∈ nat. This is

proved by simplification and appeal to the inductive assumption.

Typed equality of values is defined as follows:

1. ⟨⟩ ∈ unit.

2. There is no value v such that v ∈ void.

3. ⟨e1, e2⟩
.
= ⟨e′1, e′2⟩ ∈ τ1 × τ2 iff e1 · l

.
= e′1 · l ∈ τ1 and e1 · r

.
= e2 · r ∈ τ2.

4. l · e1
.
= l · e′1 ∈ τ1 + τ2 iff e1

.
= e′1 ∈ τ1, and r · e2

.
= r · e′2 ∈ τ1 + τ2 iff e2

.
= e′2 ∈ τ2.

5. λ (x : τ1) e2
.
= λ (x : τ1) e

′
2 ∈ τ1 → τ2 iff e1

.
= e′1 ∈ τ1 implies {e1/x}e2

.
= {e′1/x}e′ ∈ τ2.

6. _ .
= _ ∈ nat is the strongest binary relation between values such that if e .

= e′ ∈ unit+ nat,
then fold(e)

.
= fold(e′) ∈ nat.

7. _ .
= _ ∈ conat is the weakest binary relation between values such that if v .

= v′ ∈ conat,
then unfold(v)

.
= unfold(v′) ∈ unit+ conat.

Equality of values of product and sum types are easily visualized using traditional “box and pointer”
diagrams. Equality of functions is entirely about input/output behavior, and not about the details
of the code. For example,

λ (x : nat)x+ x
.
= λ (x : nat) 2× x ∈ nat → nat,

even though the code is different on either side. Equality of values of inductive type is the strongest,
or least, relation closed under folding (in this case, inclusion of zero and closure under successor).

2

The restriction to the least relation means that two natural numbers are equal only if they are
“forced” to be equal by these closure conditions. Dually, equality of values of coinductive type is
weakest, or largest, relation consistent with unfolding (in this case, with every value being either
zero or a successor). The requirement to be the largest relation means that two co-natural numbers
are equal unless their equality can be “refuted” by unfolding. (Please see Harper (2020) for more on
equality for these two types.)

3 Parametricity

Parametricity is the extension of typed equality to polymorphic types. As a first cut, one might
postulate that

e1
.
= e2 ∈ ∀(t . τ) iff e1[σ]

.
= e2[σ] ∈ {σ/t}τ ,

which states that two expressions of polymorphic type are equal iff all of their type instances are
equal. But such a definition is circular, because σ could be ∀(t . τ) itself! Thus, the definition of
equality at type ∀(t . t) would be given in terms of equality at type ∀(t . t) itself, because the latter
type is among the σ’s on the right. This phenomenon is a manifestation of what is called Girard’s
Paradox, which is akin to Cantor’s theorem stating that there is no “set of all sets.”

The way around this is to use what are called candidates for equality. Rather than confine
attention to type expressions σ in the definition of polymorphic equality, which leads to circularity,
the definition is made sensible by enlarging the quantification to range over binary relations on types.
The idea is that typed equality interprets types as binary relations, so simply enrich the meaning
of quantification to range over all binary relations,3 and this, surprisingly, avoids the paradox:

e1
.
= e2 ∈ ∀(t . τ) iff for all σ and Rσ, e1[σ]

.
= e2[σ] ∈ τ (rel. [Rσ /t]).

The circularity is broken by defining typed equality for the type variable t to be any binary relation
Rσ on expressions of type σ. Noting that τ can have t free, this is expressed by the parenthetical
stating that t-equality is to be interpreted by Rσ. That is, the definition does not “call itself” as in
the circular form above, but rather refers to a broad range of relations that serve as “pseudo-equality”
at the type t, among which will be equality itself.4

The extension of the Fundamental Theorem to F is a major result,5 with profound consequences.
For example, suppose that e : ∀(t . t → t) is a closed expression of Girard’s F. One choice for e might
be Λ(t)λ (x : t)x, the polymorphic identity function, which has the property that e[σ](e0)

.
= e0 ∈

σ for any type σ and any e0 : σ, because the left-hand side evaluates to the right. A remarkable
consequence of parametricity is that this property is true no matter what e is! Moreover, this can
be proved without even looking at e, just by knowing that its type is ∀(t . t → t). Why? Choose
σ arbitrarily, and let e0 be any expression of type σ. Define e1 Rσ e2 to hold iff e1

.
= e0 ∈ σ and

e2
.
= e0 ∈ σ. By the definition of equality at polymorphic type just given, and the definition of

equality at function types,

if e1 Rσ e2, then e[σ](e0) Rσ e[σ](e2).

3Subject to some mild technical conditions, including respect for evaluation.
4It is important to see how the circularity is evaded using candidates for equality.
5See Chapter 48 of PFPL.

3

Now obviously e0 Rσ e0, so it follows that e[σ](e0) is related to itself by Rσ. But, by the choice of
Rσ, that means that e[σ](e0)

.
= e0 ∈ σ, as claimed.

As an exercise, show that if e : ∀(t . t → t → t), then for all σ, e0 : σ, and e1 : σ, then either
e[σ](x0)(x1)

.
= x0 ∈ σ or e[σ](x0)(x1)

.
= x1 ∈ σ.

Even more surprisingly, the definition of equality at polymorphic type can be broadened still
further, while still maintaining the fundamental theorem.

e1
.
= e2 ∈ ∀(t . τ) iff for all σ1, σ2, and Rσ1,σ2 , e1[σ1]

.
= e2[σ2] ∈ τ (rel. [Rσ1,σ2/t]).

That is, the type quantifier may be interpreted as ranging over heterogeneous binary relations Rσ1,σ2

on (possibly) different types on the left and right side; such relations are often called correspondences,
or simulations.

See PFPL Chapter 17 and Harper (2019) for worked examples of using correspondences to prove
the equivalence of two different implementations of an abstract type.

References

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press,
Cambridge, England, Second edition, 2016.

Robert Harper. Dynamic dispatch as an abstract type. Supplement to Harper (2016), Fall 2019.
URL https://www.cs.cmu.edu/~rwh/pfpl/supplements/ddadt.pdf.

Robert Harper. Natural and co-natural numbers. Supplement to Harper (2016), September 2020.
URL https://www.cs.cmu.edu/~rwh/pfpl/supplements/natconat.pdf.

4

