
PFPL Supplement: PCF By-Name∗

Robert Harper

Fall 2021

1 Introduction

The by-name formulation of PCF, notated PCFn, specifies that variables range over (potentially
unevaluated) computations, and that the successor operation be evaluated lazily. Correspondingly,
applications are evaluated “by name” in the sense that arguments are passed in unevaluated form.
When enriched with products, sums, and recursive types, the same principles apply, so that pairs,
injections, and folds are values irrespective of the evaluation status of their constituent expressions.

The interest in PCF stems from its allegedly “mathematical” nature in that, for example, func-
tions are applied by substitution, and projections from pairs evaluate to the selected component,
irrespective of its evaluation status. However, the correspondence with mathematics works only for
the negative connectives (functions, products), and does not apply to their positive counterparts.
In particular the type nat of PCFn is not the type of natural numbers, for it contains the fixed
point of successor, a “point at infinity” that the natural numbers lack. There is no recourse. Even if
successor were eager, it would still be the case the the fixed point of the identity, commonly called
“bottom,” is a value of every type. The situation with PCFv is exactly dual: the positive types are
mathematically well-behaved, but the negatives are not. The tie-breaker is that PCFv is equipped
with a type of unevaluated computations, accounting for laziness, but there is no corresponding
representation of eagerness within PCFn.

The comparison between the two on “mathematical” grounds thus fails. That can only be
expected, because in mathematical contexts there are no “undefined” or “looping” or “infinite” ex-
pressions, precisely the ones that give rise to the discrepancy between by-name and by-value. A
more appropriate comparison is based on efficiency. PCFn and its extensions are often described
as “lazy languages,” with the implication that they do as little work as possible to achieve a result.
In particular if a computation is never used, it is never evaluated, saving work. Superficially, this
seems like an advantage, but as the above arguments show, it is a semantic liability. Leaving that
aside, PCFn is not as lazy as possible: if a computation is replicated, it is re-evaluated each time
it is used, wasting effort. To avoid this, lazy languages make use of a by need dynamics that avoids
such repetitions using memoization, a form of mutable storage. Memoization trades space for time;
the storage overhead is substantial, and can be crippling, but without it, PCFn is all but useless.

The purpose of this supplement is to define the by-need dynamics of PCFn without recourse
to state, which needlessly complicates matters. The trick is to use non-determinism to “guess”
(infallibly!) whether a computation will ever be needed to determine the final answer of a program.

∗© 2023 Robert Harper. All Rights Reserved.

1

Doing so separates the concept from its implementation using state, as detailed in Chapter 36 of
PFPL.

2 PCFn By-Need

It is convenient to extend PCFn with the expression let(e1 ; x . e2), which binds the variable x
within e2 to the expression e1. The dynamics of ifz and app is re-defined in terms of let as follows:

ifz-s

ifz[ρ](s(e) ; e0 ; x . e1) 7−−→ let(e ; x . e1)

beta

ap(λ[τ2](x . e) ; e2) 7−−→ let(e2 ; x . e)

The extension with sum types would be handled similarly to the conditional.
With this alteration in place the by-need dynamics of PCFn can be given using two transition

rules for let’s:

let-subst

let(e1 ; x . e2) 7−−→ {e1/x}e2

let-step
e1 7−−→ e′1

let(e1 ; x . e2) 7−−→ let(e′1 ; x . e2)

Both rules apply to a given let, which means that the dynamics is non-deterministic1: for a given
expression e there can be several expressions e′ such that e 7−−→ e′. Nevertheless, every expression
e of observable answer type has at most one value v such that e 7−−→∗ v. To see this, observe
that uses of let-step may be eliminated in preference to let-subst by replicating the transitions
on e1 wherever it may occur in e2, without changing the outcome. Doing so removes the non-
determinism, ensuring that all routes to a value from a given expression have the same result. Even
if an expression has a value, by any of several routes, it may also lead to divergence. For example,
the expression let(fix[τ](x.x) ;x.z) has a divergent transition sequence in which Rule let-step
is chosen repeatedly, to the exclusion of let-subst, which would immediately terminate with the
value z. Were the value of x required in the body of the let, divergence would be inevitable, but
because it is not, it is merely possible.

The use of two transition rules for let may be explained as follows. Whenever a let is to
be evaluated, simply “guess” whether or not the value of the bound expression will be required to
determine the final outcome. If not, Rule let-subst is applied, and the expression is never evalu-
ated; otherwise Rule let-step is applied, because it cannot hurt to share the effort of evaluating
the bound expression among its usages, provided that there are any at all. Bear in mind that the
decision of which rule to use cannot be made on whether x occurs free in the body of the let! For
example, the variable x may occur in a conditional branch not taken in a terminating evaluation
sequence. This is why guessing is required, rather than a simple test.

Among the transition sequences leading to a value, the shortest one defines the by-need evalua-
tion. Thus, by definition, the by-need dynamics does the least amount of work among all possible
sequences leading to a value, which is consistent with the term lazy evaluation. In a terminating
by-need sequence the evaluation of a let either applies Rule let-subst without ever stepping e1,
or else it applies Rule let-step repeatedly until e1 is a value, and then applies Rule let-step by

1A widespread barbarism for indeterminate.

2

substituting that value. It is never profitable to step e1 less than fully before substituting, because
either the value of e1 is never needed in the first place, or it is needed at least once, in which case
the remaining steps to a value must be taken. If it occurs more than once, these steps are repeated,
and hence are not part of a by-need evaluation, or, if it occurs exactly once, it makes no difference
whether those steps are taken before or after substitution.

Consequently, in a by-need evaluation a let-bound expression is either fully evaluated before
substitution, or is never evaluated at all. Any other choice leads to a longer transition sequence to a
value than necessary, and hence is not maximally lazy. This, then, justifies the use of memoization
to implement the “guessing” used in a by-need dynamics. A let-bound variable is treated as write-
at-most-once state that is initialized to the unevaluated expression, and updated with its value if
ever it is needed, so that subsequent uses will only ever see its value, and never repeat the work.

As discussed in PFPL Chapter 36, the machinery of by-need evaluation may be used to catch
certain forms of infinite loop using what are called black holes. Certain usages of fix are guaranteed
to diverge, the simplest being fix[τ](x . x), which unrolls to itself, but there are other examples,
such as the function fix[nat → nat](f .ap(f ; z)), which can be considered to “call itself too early”
and must necessarily diverge. One sensible attitude towards such examples is that more subtle forms
of divergence are always possible, so why distinguish these cases from those? Another attitude is
to attempt to catch these cases at run-time, and to abort gracefully, rather than go into an infinite
loop. This can be achieved by replacing the simple unrolling transition for general recursion with
the following rules:

fix-val
e val

fix[τ](x . e) 7−−→ {fix[τ](x . e)/x}e

fix-step
{•/x}e 7−−→ {•/x}e′

fix[τ](x . e) 7−−→ fix[τ](x . e′)

The pseudo-expression • is the aforementioned “black hole” from which no transition is possible.2

Thus, the role of Rule fix-step is to ensure that e is not immediately self-dependent (otherwise the
black hole would stop evaluation with an error) before unrolling. The work done prior to unrolling
is shared among all uses of the fix, reflecting another aspect of laziness that minimizes redundant
effort.

References

Jennifer Hackett and Graham Hutton. Call-by-need is clairvoyant call-by-value. Proc. ACM Pro-
gram. Lang., 3(ICFP), July 2019. doi: 10.1145/3341718. URL https://doi.org/10.1145/
3341718.

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press,
Cambridge, England, Second edition, 2016.

2To avoid ambiguity, strictly speaking there must be a distinct black hole for each fix expression, writing, say,
•x.e for the black hole associated to fix[τ](x . e).

3

