
PFPL Supplement: Relating Transition and Cost Dynamics for
Parallel PCF∗

Robert Harper

Fall, 2018

1 Introduction

A cost dynamics for a language requires validation: what makes the cost assignments sensible? One
form of validation is a Brent-type theorem, which provides a concrete bound on the cost in terms
of an abstract machine model. The bounds are stated in terms of one or more parameters—such as
the number of processing elements—of the machine model. The proof amounts to the description
of a scheduler for the specified platform that achieves those bounds.

Another form of validation is to relate a cost dynamics to a transition dynamics for the same
language. The assigned cost should determine the number of transitions required to achieve the
value of an expression, if it has one. For a sequential SOS the correspondence validates the work
measure of a cost graph, and for a parallel SOS the correspondence validates the span measure of
a cost graph.

The purpose of this note is to state and prove these correspondences for the modal formulation
of PCF enriched with parallelism, as described in Harper (2018).

2 Cost and Transition Dynamics

For convenient reference the cost dynamics of parallel PCF is given in Figure 1. The parallel transi-
tion dynamics is given in Figure 2. The sequential transition dynamics may be derived from Harper
(2019), giving a left-to-right interpretation of the parallel bind construct. When it is necessary to
distinguish them, the parallel transition judgment is written e 7−−→

par
e′ and the sequential analogue

is written e 7−−→
seq

e′.

Instead of defining a separate sequential transition dynamics for parallel PCF, it may be con-
sidered to be defined implicitly by the parallel transition dynamics under the interpretation of the
lazy product type τ1 & τ2 as if it were the eager product type τ1 comp ⊗ τ2 comp of two suspended
computations. This interpretation forces a sequential (either left-to-right or right-to-left) evaluation
order of the components of a pair, so that the length of the transition sequence corresponds to the
work, rather than the span, of a computation.

∗Copyright © Robert Harper. All Rights Reserved.

1

ret(v) ⇓1 v (1a)

e0 ⇓c v

ifz[τ](z ; e0 ; x . e1) ⇓1⊕c v (1b)

{e/x}e1 ⇓c v

ifz[τ](s(e) ; e0 ; x . e1) ⇓1⊕c v (1c)

{fun[τ2 ; τ](f . x . e), v2/f, x}e ⇓c v

ap(fun[τ2 ; τ](f . x . e) ; v2) ⇓1⊕c v (1d)

e ⇓c v {v/x}e2 ⇓c2 v2

bnd(comp(e) ; x . e2) ⇓1⊕c⊕c2 v2 (1e)

e1 ⇓c1 v1 e2 ⇓c2 v2 {v1 ⊗ v2/x}e ⇓c v

parbnd(e1 & e2 ; x . e) ⇓(c1⊗c2)⊕1⊕c v (1f)

{v1, v2/x1, x2}e ⇓c v

split(v1 ⊗ v2 ; x1, x2 . e) ⇓1⊕c v (1g)

Figure 1: Cost Dynamics

3 Validating the Cost Dynamics

Theorem 3.1. If e ⇓c v, then e 7−−→
par

n v, where n = dp(c), and e 7−−→
seq

n v, where n = wk(c).

Proof. By rule induction on cost dynamics. The validation of the depth is justified by piecing
together derivations in the parallel or sequential dynamics, respectively.

Consider rule (1f), so that parbnd(e1 & e2 ; x . e3) ⇓c v3, where

1. e1 ⇓c1 v1,

2. e2 ⇓c2 v2,

3. {v1 ⊗ v2/x}e3 ⇓c3 v3, and

4. c = (c1 ⊗ c2)⊕ 1⊕ c3.

By induction

1. e1 7−−→par
n1 v1 with n1 = dp(c1).

2. e2 7−−→par
n2 v2 with n2 = dp(c2).

3. e3 7−−→par
n3 v3 with n3 = dp(c3).

2

e initial (2a)

v val
ret(v) final (2b)

ifz[z](e0 ; x ; e1 . 7−−→)e0 (2c)

ap(fun[τ2 ; τ](f . x . e) ; v2) 7−−→ {fun[τ2 ; τ](f . x . e), v2/f, x}e (2d)

e1 7−−→ e′1

bnd(comp(e1) ; x . e2) 7−−→ bnd(comp(e′1) ; x . e2) (2e)

bnd(comp(ret(v1)) ; x . e2) 7−−→ {v1/x}e2 (2f)

e1 7−−→ e′1 e2 7−−→ e′2

parbnd(e1 & e2 ; x . e) 7−−→ parbnd(e′1 & e′2 ; x . e) (2g)

e1 7−−→ e′1

parbnd(e1 & ret(v2) ; x . e) 7−−→ parbnd(e′1 & ret(v2) ; x . e) (2h)

e2 7−−→ e′2

parbnd(ret(v1) & e2 ; x . e) 7−−→ parbnd(ret(v1) & e′2 ; x . e) (2i)

parbnd(ret(v1) & ret(v2) ; x . e) 7−−→ {v1 ⊗ v2/x}e (2j)

split(v1 ⊗ v2 ; x1, x2 . e) 7−−→ {v1, v2/x1, x2}e (2k)

Figure 2: Parallel Transition Dynamics

3

Assume that n1 is no larger than n2; the other case is handled analogously. Applying the rules of
parallel transition,

parbnd(e1 & e2 ; x . e3) 7−−→par
n1 parbnd(ret(v1) & e′2 ; x . e3) (for some e′2)

7−−→
par

n2−n1 parbnd(ret(v1) & ret(v2) ; x . e3)

7−−→
par

1 {v1 ⊗ v2/x}e3

7−−→
par

n3 v3.

The length of this sequence is exactly the depth, dp(c) = max(n1, n2) + 1 + n3.
The validation of the work is similar, albeit using the sequential dynamics. In that case the

transition sequence has length n1 + n2 + 1 + n3, which is wk(c).

Lemma 3.2 (Cost Head Expansion). 1. If e 7−−→
par

e′ and e′ ⇓c′ v, then e ⇓c v for some c such

that dp(c) = dp(c′) + 1 and wk(c) = wk(c′) + k for some k > 0.

2. If e 7−−→
seq

e′ and e′ ⇓c′ v, then e ⇓c v for some c such that wk(c) = wk(c′) + 1.

Proof. Consider the parallel case; the sequential is handled similarly. Proceed by induction on the
derivation of the initial transition.

For example, if the initial transition is by rule (2g), then e = parbnd(e1 & e2 ; x . e3), e′ =
parbnd(e′1&e′2 ;x.e3), with e1 7−−→par

e′1 and e2 7−−→par
e′2. By assumption parbnd(e′1 & e′2 ; x . e3) ⇓c′ v

for some cost graph c′. By inversion c′ = (c′1 ⊗ c′2)⊕ 1⊕ c3, where

1. e′1 ⇓c′1 v1 for some v1,

2. e′2 ⇓c′2 v2 for some v2, and

3. {v1 ⊗ v2/x}e3 ⇓c3 v.

By induction

1. e1 ⇓c1 v1 with dp(c1) = dp(c′1) + 1, and

2. e2 ⇓c2 v2 with dp(c2) = dp(c′2) + 1.

Consequently, by rule (1f), e ⇓c v, where c = (c1 ⊗ c2)⊕ 1⊕ c3. Calculate as follows:

dp(c) = max(dp(c1), dp(c2)) + dp(c3) + 1

= max(dp(c′1) + 1, dp(c′2) + 1) + dp(c3) + 1

= max(dp(c′1), dp(c
′
2)) + 1 + dp(c3) + 1

= dp(c′) + 1.

Corollary 3.3. For any e and v, e 7−−→
par

∗ ret(v) iff e 7−−→
seq

∗ ret(v).

4

Proof. It follows from Lemma 3.2 that if e 7−−→∗ ret(v) sequentially or in parallel, then e ⇓c v for
some cost c. The converse is Theorem 3.1.

Theorem 3.4. If e 7−−→
par

d ret(v) and e 7−−→
seq

w ret(v), then there exists c such that e ⇓c v with

dp(c) = d+ 1 and wk(c) = w + k for some k > 0.

Proof. Either d = w = 0 or d = d′+1 and w = w′+1. In the former case take c = 1, whose work and
depth are 1, and apply rule (1a). In the latter e 7−−→

par
e′ 7−−→

par
d′ ret(v), and e 7−−→

seq
e′ 7−−→

seq
w′

ret(v).

By induction there exists c′ such that e ⇓c′ v with dp(c′) = d′ + 1 and wk(c′) = w′ + k′, and the
result follows by Lemma 3.2.

References

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press,
Cambridge, England, Second edition, 2016.

Robert Harper. Types and parallelism. Supplement to Harper (2016), Fall 2018. URL https:
//www.cs.cmu.edu/~rwh/pfpl/supplements/par.pdf.

Robert Harper. PCF-By-Value. Supplement to Harper (2016), Fall 2019. URL https://www.cs.
cmu.edu/~rwh/pfpl/supplements/pcfv.pdf.

5

