
PFPL Supplement: Types and Parallelism∗

Robert Harper

Fall, 2018

1 Introduction
The treatment of fork-join parallelism distinguishes two forms, the static and dynamic, according to whether
the number of parallel tasks is determined at compile time or at run time. The static form, par e1=e2 andx1=
x2 in e, evaluates e1 and e2 in parallel, then substitutes their values into e, their join point. The dynamic
form uses a tabulation mechanism that, given a sequence unevaluated expressions, evaluates all n of them in
parallel, then consolidates their values. The dynamic form may be reduced to the static form by a recursive
process of binary forks of depth logarithmic in the length of the sequence.

Curiously, the dynamic form of parallelism is naturally associated with the type of sequences, but the binary
fork primitive is instead ad hoc. In keeping with the principle that a programming language is determined
by its type structure it would be preferable for the static form to also arise in this way. To see how to do it,
consider the formulation of PCFv given in Harper (2019b), which hinges on the type comp(τ) whose values
are unevaluated computations of type τ . The elimination form for this type sequences the evaluation of an
unevaluated computation by binding its value to a variable within another computation.

What does this have to do with parallelism? To see it requires taking a step back to think about how
parallelism arises in the first place. In a functional setting the key is not to impose parallelism in an
otherwise sequential dynamics, but rather to expose the parallelism that is naturally present. For example,
to evaluate a sum of two expressions it is necessary to obtain the value of both summands, but there is no
restriction on the order in which they themselves are evaluated. Thus, there is a sequential dependency of
the addition on the summands, but there is no sequential dependency between them. Thus, the trick is to
express the essential dependencies, and otherwise permit parallelism. Thus, paradoxically, the essence of
parallelism is sequentiality—get the dependencies right and the parallelism will take care of itself.

Returning to PCFv, the key to avoiding over-sequentialization is to generalize the computation type, which
encapsulates one computation, to a binary form that encapsulates two (or any fixed number) of computations.
The elimination form evaluates both in parallel, then binds their results for use at the join point. In the case
of addition the two computations are the summands, and the join point adds their values.

2 Parallelism, Revisited
The modal framework allows us to manage dependencies, but it is limited to one dependency at a time,
precluding parallelism. What is missing is a way to express the simultaneous dependency of one computation
on several, perhaps unboundedly many, prior computations whose relative evaluation order is unconstrained.
This is provided by the lazy product type, which encapsulates two unevaluated computations. The elimination
form, called parallel bind, correspondingly evaluates both computations and binds a variable to the eager
pair of their values.1

∗Copyright © Robert Harper. All Rights Reserved.
1The binary case may easily be generalized to any n ≥ 0 suspended computations evaluated in parallel.

1

Γ ⊢ v1 : τ1 Γ ⊢ v2 : τ2
Γ ⊢ v1 ⊗ v2 : τ1 ⊗ τ2 (1a)

Γ ⊢ v : τ1 ⊗ τ2 Γ, x1 : τ1, x2 : τ2 ⊢ e ∼·· τ

Γ ⊢ split(v ; x1, x2 . e) ∼·· τ (1b)

Γ ⊢ e1 ∼·· τ1 Γ ⊢ e2 ∼·· τ2
Γ ⊢ e1 & e2 : τ1 & τ2 (2)

Γ ⊢ v : τ1 & τ2 Γ, x : τ1 ⊗ τ2 ⊢ e ∼·· τ

Γ ⊢ parbnd(v ; x . e) ∼·· τ (3)

Figure 1: Statics of Eager and Lazy Products

e1 & e2 val (4a)

e1 ⇓c1 v1 e2 ⇓c2 v2 {v1 ⊗ v2/x}e ⇓c v

parbnd(e1 & e2 ; x . e) ⇓1⊕(c1⊗c2)⊕c v (4b)

e1 val e2 val
e1 ⊗ e2 val (4c)

{v1, v2/x1, x2}e ⇓c v

split(v1 ⊗ v2 ; x1, x2 . e) ⇓1⊕c v (4d)

Figure 2: Cost Dynamics of Eager and Lazy Products

2

Γ ⊢ v : nat Γ, x : nat ⊢ e ∼·· τ

Γ ⊢ seqgen(v ; x . e) : seqgen(τ) (5a)

Γ ⊢ v1 : seqgen(τ) Γ, x : seq(τ) ⊢ e2 ∼·· τ2

Γ ⊢ seqbnd(v1 ; x . e2) ∼·· τ2 (5b)

seqgen(n ; x . e2) val (5c)

{0/x}e ⇓c0 v0 . . . {n− 1/x}e ⇓cn−1 vn−1 {seq[n](v0, . . . , vn−1)/y}e′ ⇓c′ v′

seqbnd(seqgen(n ; x . e) ; y . e′) ⇓(c0⊗...⊗cn−1)⊕c′ v′ (5d)

Figure 3: Statics and Cost Dynamics of Sequence Generators

The statics for lazy and eager product types is given in Figure 1. The corresponding cost dynamics is given
in Figure 2.

There are two types corresponding to the lazy and eager product types, but with dynamically determined
sizes. The analogue of a lazy tuple is a sequence generator, which, when evaluated, determines the width
and the components of a finite sequence. The analogue of an eager pair is a sequence whose length, and the
value of each element, are determined dynamically. The elimination form for the generator type creates a
new sequence for use within the specified scope. The standard sequence operations given in Harper (2016)
are then used to compute with the sequence.

The combined statics and dynamics for generators is given in Figure 3.

Exercise 2.1. Extend the dynamics to account for exceptions using the generalized bnd construct given
in Harper (2019a). Be sure to maintain the same behavior as in the sequential case, so that the leftmost
exception is propagated from a parallel computation, and that all parallel computations are completed, re-
gardless of whether any raise an exception. Correspondingly, be sure that the cost graphs are appropriate in
all cases!

References
Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press, Cambridge,

England, Second edition, 2016.

Robert Harper. Exceptions: Control and data. Supplement to Harper (2016), Fall 2019a. URL https:
//www.cs.cmu.edu/~rwh/pfpl/supplements/exceptions.pdf.

Robert Harper. PCF-By-Value. Supplement to Harper (2016), Fall 2019b. URL https://www.cs.cmu.edu/
~rwh/pfpl/supplements/pcfv.pdf.

3

