
PFPL Supplement: Derived Forms for Modernized Algol∗

Robert Harper

Fall, 2020

1 Introduction

The imperative language MA is formulated to expose its semantic structure, rather than to facilitate
programming. It is helpful to define derived forms that are reminiscent of familiar imperative
languages, such as the C language and its derivatives. There is, of course, no end to the possible
derived forms corresponding to imperative language constructs.

2 Derived Forms

Blocks Blocks of commands are defined as follows:

ret e ≜ ret(e)

{x← m1 ;m2} ≜ bnd(cmd(m1) ; x . m2)

{x1 ← m1 ; . . . ; xk ← mk ; ret e} ≜ {x1 ← m1 ; . . . {xk ← mk ; ret e}}

dom ≜ {x← m ; retx}

ret ≜ ret(⟨⟩)
{m1 ;m2} ≜ {_← cmd(m1) ;m2}

{m1 ; . . . ;mk} ≜ {_← m1 ; . . ._← mk ; ret ⟨⟩}

It is common to intermix named with unnamed bindings in a block, with the understanding
that the unnamed forms, when intermixed with the named forms, are to be regarded as binding
an anonymous variable.

Assignables Multiple declarations are defined as follows:

dcl a1 := e1 . . . ak := ek inm ≜ dcl(e1 ; a1 dcl(ek ; ak . m))

∗© 2020 Robert Harper. All Rights Reserved.

1

Commands for getting and setting assignables are defined as follows:

get a ≜ get[a]

set a := e ≜ set[a](e)

++a ≜ {x← get a ; set a := x+ 1}
--a ≜ {x← get a ; set a := x− 1}
a++ ≜ {x← get a ; {set a := x+ 1 ; retx}}
a-- ≜ {x← get a ; {set a := x− 1 ; retx}}

Conditional Branch The conditional command, which branches on whether an assignable is zero,
is defined as follows:

ifzmthenm0 elsex→ m1 ≜ {y ← m ; do (ifz(y ; cmd(m1) ; x . cmd(m2)))}
ifzmthenm0 elsem1 ≜ ifzmthenm0 else_→ m1

Notice that the conditional expression returns an encapsulated command, which must be
activated by the do. A conditional based on a boolean test would be easily definable along
similar lines.

Procedures (Recursive) procedures and procedure calls are defined as follows:

τ1 ⇒ τ2 ≜ τ1 ⇀ cmd(τ2)

proc p(x : τ1) ∼·· τ2 ism ≜ fun[τ1 ; cmd(τ2)](p . x . cmd(m))

call e (e1) ≜ do (ap(e ; e1))

call e ≜ call e (⟨⟩)

Higher-order recursive procedures—with a call-by-name semantics—were introduced in Algol
60! To preserve the stack discipline of storage management, procedures may take procedures
(or encapsulated commands) as arguments, but they may not return either of them as result.
(This is expressed by the mobility restriction in MA.)

Loops The while command, governed by whether an assignable is zero, is defined as follows:

whilem1 dox→ m2 ≜ callw, where

w ≜ procw(_ : unit) ∼·· unit is ifzm1 thenretelsex→ {m2 ; callw}
whilem1 dom2 ≜ whilem1 do_→ m2

There is no end to the varieties of looping constructs that are also definable in MA.

3 Examples

An imperative version of the good old factorial function may be defined by the following procedure:

fact ≜ proc fact(n : nat) ∼·· nat is dcl ans := 1 ; i := n in body

body ≜ {whileget idon→ {set ans×= n ; i--} ; {a← get ans ; ret a}}

2

wherein we have used the “arithmetic assignment” command

set a×= e ≜ {x← get a ; set a := e× x},

which multiplies the contents of an assignable a by an amount given by e.
References may be defined as capabilities to get and set an assignable.

τ ref ≜ (τ cmd)× (τ ⇒ τ)

newref ≜ proc_(x : τ) ∼·· τ ref is dcl a := x in ret ⟨get, set⟩, where

get ≜ cmd(get a)

set ≜ proc_(x : τ) ∼·· τ is set a := x

getref ≜ proc_(r : τ ref) ∼·· τ is do r · l
setref ≜ proc_(⟨r, x⟩ : τ ref× τ) ∼·· τ is docall r · r (x)

Capabilities, like references, are fully compatible with the stack discipline, because the defined type
τ ref is not mobile, because no procedure types are mobile. Thus, a capablity is confined to the
scope of the assignable to which it provides access; it can neither be returned from that scope, nor
stored into another assignable.

References

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press,
Cambridge, England, Second edition, 2016.

3

