PFPL Supplement: The Structure of an Interpreter®

Robert Harper
Fall, 2020

1 Introduction

To gain an understanding of a programming language concept it is often useful—even essential—
to implement it. But what does an implementation look like? For the purposes of this class
an implementation of a language is an interactive interpreter consisting of these components (see
Figure 1):

1. A parser that translates concrete syntax—the representation of programs as strings—into
abstract syntax—the representation of programs as abstract binding trees. If a string cannot
be parsed, it is rejected as a syntazx error, and otherwise translates the string into an abstract
syntax tree.

2. An elaborator that validates a piece of abstract syntax according to the statics of the language,
which is given by a collection of typing rules. Often the elaborator also translates the raw
abstract syntax into an elaborated abstract syntax tree.

3. An ezxecutor that takes a piece of elaborated abstract syntax and executes it according to the
dynamics of the language. In this class the implementation of the executor hews close to the
rules of the dynamics, in particular by using substitution to implement binding. More efficient
implementations translate the language into a lower-level form by a series of transformations,
called phases, whose composition forms a compiler.

4. A formatter that translates a final state to a string suitable for output.

The interactive interpreter reads input from a keyboard or file, passes it to the parser, elaborator,
and executor, then prints the results (erroneous or successful) before repeating.

Within this general framework there is considerable room for variation in both the elaboration
and the execution phases. For very simple languages elaboration amounts to very little; the parser
can generate elaborated abstract syntax directly, with no need of further work. But in most cases
such a direct formulation is not possible. One issue is scope resolution, the determination of the
binding and scope of variables, which is essential to representing programs as abt’s. In simple cases
the parser can make this determination itself, but often information about the types of identifiers
is needed to determine their scope. A good example of such a situation is the SML open construct,
which incorporates all of the variables declared in a structure S, which is determined by the signature

*Copyright (© Robert Harper. All Rights Reserved.



f

parse erec ormat .
abt > state —— string

lab
ast -2

string

Figure 1: Structure of an Interpreter

(type) of S, which is not known during parsing, but only during type checking. Another trouble
spot is the definition of derived forms, conveniences for the programmer that are not built into the
language as primitive constructs. Sometimes derived forms can be expanded by the parser, but more
often type information is required, and the expansion process has to be deferred to elaboration. But
the biggest reason for distinguishing raw from elaborated syntax is type inference, the process of
determining type information that is implied from the context in which it occurs. That is a job for
the elaborator, which knows about types, and not the parser, which does not.

Similarly, there is room for variation in the execution phase, with efficiency being the most
important motivation. For proof-of-concept purposes it is usually possible to implement the dy-
namics more or less literally, using capture-avoiding substitution for variables, and by performing
case analysis on the abstract syntax of the program. Such an implementation is often easy to get
up-and-running, but can be unbearably slow to use for any but the smallest examples. For example,
the dynamics of a language is usually given in terms of substitution, but to implement this directly
introduces considerable overhead. One way to make it more efficient is to maintain the substitution
itself as a lookup table that is accessed on demand. But doing so runs afoul of higher-order concepts,
such as returning functions from within other functions. To implement this properly requires the
use of closures, which associate an environment to a function that determines the bindings of its
free variables, and that is achieved by a translation called closure conversion.

Peculiarly, it is commonly thought that interpreters and compilers are somehow in opposition
to one another, with interpreters being interactive, and necessarily inefficient, and compilers being
non-interactive, but efficient. This is total nonsense! There is no fundamental difference between an
interpreter and a compiler. Rather, a compiler, which works by transformation, is just one strategy
for implementing an interpreter. There is no bright-line distinction between the two concepts, and
neither is inherently tied to being interactive or non-interactive.

The pipeline depicted in Figure 1 is implemented using (lazy) streams by composing stream
transducers. At a high level the type of the pipeline is

string stream — string stream

which, given an input source, produces the formatted output arising from that input. The nature of
the input varies with the language, but is typically a series of programs that are executed, producing
a series of results. Notice that the pipeline is not at all dependent on the nature of the input; it
can be a file that has been prepared in advance, or may be an interaction loop such as the one
provided by the ML implementation. An interpreter is activated by applying the pipeline to an
input source to obtain a stream of outputs. Nothing happens at the moment of application, other
than to “open” the input in an appropriate sense, and connecting it to the pipeline. To activate the
interpreter, simply request a result from the output stream, and send it to the appropriate sink,
a file or a screen. The demand for a result gives rise to a demand for an answer from execution,
which gives rise to a demand for a well-typed program, which gives rise to a demand for an abstract
binding tree, which gives rise to a demand for an abstract syntax tree, which gives rise to a demand
for tokens, which gives rise to a demand for something to evaluate!



2 Parsing

The concrete syntax of a language is a set of finite sequences, or strings, of characters drawn from
some fixed alphabet, such as ASCII or Unicode. A grammar for a language determines which strings
of characters are sufficiently well-formed as to be considered by the later phases of processing. The
grammar is given in two parts, specifying first the lexical structure of the language, and then the
hierarchical structure of its lexical form.

The lexical structure of a language consists of tokens that define the atomic components of a
piece of syntax. These components consist of identifiers, consisting of a sequence of letters and
other characters; numerals, in some notational system; and symbols, including “reserved words” and
arithmetic and logical operators. The process of translating character strings into token strings is
called lexing. The lexer consolidates individual characters into tokens, and rejects characters that
are not part of the language. Its behavior is governed by a reqular grammar that defines the tokens
of the language in terms of the characters you type.

The hierarchical structure of a language is given by an abstract syntax tree whose nodes are
operators and whose children are abstract syntax trees regarded as arguments to these operators.
The process of translating from a sequence of tokens into an abstract syntax tree is called parsing.
The parser is governed by a context-free grammar, which specifies the valid phrases of the language
using a recursive (self-referential) notation to allow for nesting.

It is of course possible to write lexers and parsers by hand, but in practice it is more convenient
to use a lexer generator and a parser generator which create lexers and parsers from grammars. In
this class all lexers and parsers are generated by the cmlex and cmyacc tools, which were designed
and implemented by Prof. Karl Crary here at Carnegie Mellon.? In general the lexers and parsers
generated by these tools will be given to you, so familiarity with their use is not essential. However,
it is essential that you learn to read the specifications that are used to generate them, because these
define what are the valid inputs to the interpreter.

3 Elaboration

One of the trickiest things to get right in a programming language is the deceptively simple, yet
subtle and powerful, concept of binding and scope, and the associated notions of a-equivalence and
(capture-avoiding) substitution. These concepts are discussed in detail in Harper (2016), but it is
helpful to situate those ideas in the context of an interpreter pipeline.

Abstract syntax trees expose the hierarchical structure of programs. For example, the addition
operator combines two expressions to form a third, and is naturally represented as an addition
node with its two children being its arguments. Using trees eliminates the ambiguities of concrete
syntax, such as the associativity of binary operators. These matters are all resolved by the parser,
eliminating them from consideration in the rest of an implementation.

Ast’s do not, however, account for the scope (range of significance) of an identifier. For example,
in the let expression let x be e; in es, the variable x is bound by the let to the expression e;
for use within e2. The variable name has no significance in any context in which the let occurs; it
is, rather, a private matter for the let expression itself. But an ast representation of the let would

!See Part I of Harper (2016) for a general account of abstract syntax; in ML code abstract syntax trees are given
by datatype declarations.
2These tools, and their documentation, are available at http://www.cs.cmu.edu/~crary/cmtool.



signature VAR = sig

type var

val var : string — var

val name : var — string

val eqvar : var X var — bool
end

signature EXP = sig
structure Var : VAR

type exp

datatype view =
Var of var

| Num of int

| Plus of exp X exp

| Times of exp X exp

| Let of exp X Var.var X exp

val hide : view — exp

val expose : exp — view

val aequiv : exp X exp — bool

val freevars : exp — Var.var Set.set

val subst : exp X Var.var — exp — exp
end

Figure 2: A Wizard Signature for Arithmetic Expressions

have the form let(eq,x,e2), with three children, the second of which is the bound variable name.
But nothing about the ast representation determines the scope of x, or explains how variables may
be renamed so as to avoid capture during substitution. For this one needs abstract binding trees, or
abt’s, which enrich ast’s with exactly this missing information. Thus, the abt representation of the
let given above would be let(e;,x.e2), with two children, the second of which is an abstractor
that binds = for use within es. The concept of free and bound identifiers, the renaming of bound
identifiers, and capture-avoiding substitution are all defined for abt’s so as to respect the binding
and scope of identifiers.?

In programming terms these concepts are codified as an abstract type defined by the wizard sig-
nature,* which provides operations for creating abt’s from abstractors, for exposing the root struc-
ture of an abt using pattern-matching, for checking two abt’s for a-equivalence, and for performing
capture-avoiding substitution. A simplified formulation of the wizard signature for a language of
arithmetic expressions is given in Figure 2.

The variable signature, VAR, defines an abstract type of variables that are created from strings,
and thus have a name, and that may be compared for equality.” The EXP signature defines an

3As ever, see Harper (2016) for a full account of ast’s and abt’s.
4The origin of the name is obscure, but remains the local vernacular.
°In practice they may also be linearly ordered, to facilitate search.



abstract type exp of expressions in terms of a structure Var implementing variables. This signature
also defines a data type view that, please note, is not recursive. The types view and exp are related
by the operations hide and expose. The operation aequiv is the test for a-equivalence of two
expressions, the operation freevars computes the set of free variables in an expression, and the
operation subst defines capture-avoiding substitution of an expression for a free variable in another
expression.

Assume that Exp is a structure implementing EXP.% An expression is created by a layered series
of hides. For example, the exp corresponding to 1 + 1 is created as follows:

val one : exp = Exp.hide (Exp.Num 1)
val pll : exp = Exp.hide (Exp.Plus (one, one))

Continuing, a let expression, which binds a variable, is created as follows:

val x : exp = Exp.hide (Exp.Var.var "x")
val pxx : exp = Exp.hide (Exp.Plus (x, x))
val letx : exp = Exp.hide (Exp.Let (pl1, (x, pxx)))

The purpose of hiding is to ensure that the test for a-equivalence may be implemented in constant
time, and allows substitution to enforce capture-avoidance, at the expense of renaming of bound
variables.

The operation expose reveals the top-level structure of a given exp as a view. This allows
programming using one-level pattern matching, the overwhelmingly common case.” For example,
continuing from above,

val (e as Exp.Let(el,y,e2)) = Exp.expose letx
val true = Exp.eq pll el

val false = Exp.eq y x

val false = Exp.eq pxx e2

val letx’ Exp.hide e

val true = Exp.eq letx letx’

None of the matches will fail when executed, even though they are not exhaustive! First, it is safe
to decompose letx as indicated because it is defined to have that form. The expression el is indeed
pll as defined earlier. But it is assured that the expression y, which is a hidden variable, is not
the expression x, the variable used to create letx in the first place! This is the price of renaming
bound variables implicitly: whenever a bound variable is expose’d, it is renamed systematically to
ensure that it is different from any other free variable, which is to say that it is fresh. Thus, the
comparison of e2 with pxx fails, because the latter has a free variable, and the freshly exposed y is
guaranteed to be different from it. However, if e is once again hidden, the result is a-equivalent to
letx! This, in an nutshell, is the essence of the wizard signature.

The second major role for elaboration is to enforce the context-sensitive constraints on the forma-
tion of programs specified by the statics of a language. The statics is invariably given declaratively
as an inductive definition of typing judgments of the form I' - e : 7, where 7 is a type, e is an
expression, and ' is a context assigning types to the free variables that may occur within e. The

5The implementation of the wizard signature is an important homework problem for this class.
"One can augment with interface with deeper views if needed in a particular circumstance.



rules are said to be declarative because they simply state what is the case, that is, under what
circumstances the typing judgment can be correctly asserted. They do not, in themselves, define
how to implement them.

First off, what would it even mean to implement a statics? Let us assume for the moment that
we are given the types typ, exp, and ctx representing the components of the judgment in some
manner. An implementation of the statics would be a function

val wf : ctx X exp X typ — bool

that checks whether or not the judgment comprised of its arguments is derivable in the statics.
For very simple languages, and when the only purpose is to check well-formedness, the function
wf may be implemented by simply checking which, if any, rule applies to the given expression, and
recursively checking the premises of that rule. When exp is a variable, it is necessary to compare the
type assigned to it by the context to the type given to wf as its third argument. Doing so requires
two things. First, a context must permit lookup of the type assigned to a free variable, if any:

val find : ctx X Var.var — typ option

This is an important point of contact with the wizard, which defines the type Var.var of free
variables, and determines how to compare them for equality.® Correspondingly, the implementation
of wf for Let requires that contexts support an extension operation:

val extend : ctx X Var.var X typ — ctx

This is another point of contact with the wizard: because free variables are always distinct from one
another, extending the context can never result in a conflict in which the same variable is assigned
two different types!

4 Execution

In Harper (2016) the dynamics of a language is defined by a transition system consisting of states,
s, among which are the initial and final states, and a transition relation, s — s', between states

defining the steps of execution. A transition system may be seen as an abstract machine whose
states are those of the transition system, and whose transitions correspond to the instruction steps
of the machine.

For any state s there may be zero, one, or many states s’ such that s — s’. By convention if a

state is final, then it will admit no transitions to another state. A transition system is deterministic
iff for every state s there is at most one state s’ such that s — s; otherwise it is non-deterministic.

A given initial state may or may not transition in any finite number of steps to a final state. For
example, states representing divergent computations need never reach a final state. If a transition
is deterministic, then each initial state may reach at most one final state, the outcome of that
computation. It is important to understand that this property may or may not hold true for non-
deterministic transition systems. The mere possiblity of there being many “next states” from a given
state does not imply that that state leads to multiple outcomes. That is, it can be that there is at
most one outcome, even though there are many transition sequences leading to it.

8There is where a linear ordering of variables would come into play, to allow for more efficient search.



signature TS = sig
type state

val initial : state — bool

val final : state — bool

val step : state — state option
end

Figure 3: State Transition System

In ML a transition system is a structure with the signature TS given in Figure 3. Importantly,
the signature TS does not define an abstraction; rather, describes a class of structures that provide
the indicated components. What constitutes a state, and therefore how to create one and how to
examine one, is left unspecified. For example, for the expression language defined above, a state
is a closed expression (that is, one with no free variables). All states are initial, final states are
numerals, and transition defines to a left-to-right evaluation strategy for closed expressions; it is
deterministic.

Implementing a deterministic language consists of defining a function

val run : state — state option

that, given an initial state s, returns the final state s, if it exists, such that s —* s'. If s —* &’ /—

with s’ not final, then the execution fails.’

For non-deterministic languages, it is first of all necessary to ask, what does it even means to
execute a state that can transition to many distinct states? Such programs may, in general, have
multiple outcomes—there is no definite final state with a definite answer, rather there can be many.
The solution to this problem is to maintain a set of all possible states that can be reached from a
single initial state, and to consider the computation to be complete when some state in that set is
final, it then representing an an outcome of the overall computation. Notice that more than one
state can be final, and that some states may never reach a final state.

The languages that are considered in this course (and more generally) are finitely non-deterministic
in that each state can transition to only finitely many next states.!® A state transition system with
finite non-determinism may be implemented by considering a derived transition system whose states
are finite sets of states of the given transition system. In this context the component states are
called threads, or tasks, and the finite sets of threads are called thread pools. Each step of the derived
transition system consists of choosing a state on which to make progress, updating the thread pool
accordingly, bearing in mind that the chosen state may transition to finitely many states that are
then added to the thread pool.

Thus, to be more specific, a thread pool, S, is a finite set { sq, ..., S,—1 }, where n > 0, of states
of the given transition system. A thread pool is initial when it consists of a single initial state of
the underlying transition system, and is final when (at least) one of its constituent states is final.

9For simplicity the result is an option, but in practice the no-result case would provide an indication of the reason
for the failure so as to permit meaningful error messages.

0There are perfectly sensible languages that would violate this requirement: consider, for example, a primitive
operation that transitions to an arbitrary natural number.



Transition between thread pools is defined as follows. Suppose that s € S and s is not a final state.
Then by definition
Sr— S\ {stU{s | s— s}

That is, the state s is replaced by all states s’ to which s may transition. Notice that the thread pool
S may transition to finitely many different thread pools according to how s is chosen. A scheduler
is a function that, for a non-empty thread pool S, chooses, if possible, a non-final state s € S.
The purpose of a scheduler is to render the derived transition system deterministic. Although a
scheduler is, by this definition, required to choose a non-final state if one is available, this does not
imply that every non-final state will be scheduled to execute! (As an exercise, define a scheduler
that does not have this property. One that does is said to be fair; fair schedulers are harder to
come by than one might at first expect.)

References

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press,
Cambridge, England, Second edition, 2016.



