
PFPL Supplement: Dynamic Dispatch as an Abstract Type∗

Robert Harper

Fall, 2019

Dynamic dispatch may be seen as an abstract type of objects supporting two methods, creation
of an object of a class, and sending a message to an object to obtain a result. The textbook describes
an example with two classes of complex number, cart and pol, and two methods, dist and quad.

A dynamic dispatch scenario with classes C and methods D specified by instance types τ c for
each c ∈ C, and result types ρd for each d ∈ D, may be organized as implementation of the following
existential type:

τdd ≜ ∃(tobj.⟨new ↪→ ⟨τ c ⇀ tobj⟩c∈C , snd ↪→ ⟨tobj ⇀ρd⟩d∈D⟩). (1)

Given a package, call it x, of this type, a client may open x to gain access to the object creation
and message send operations as follows:

openx as tobj with ⟨new ↪→ new, snd ↪→ snd ⟩ in eclient (2)

Within with expression eclient define

new[c](ec) ≜ new · c(ec) snd[d](e) ≜ snd · d(e)

wherein ec : τ c is instance data appropriate to class c and e : tobj. A new instance of class c is
created by the new operation applied to an argument of type τ c. It creates an abstract object of
type tobj to which one may send a message d to obtain a result of type ρd. Importantly, the types τ c

and ρd are independent of the abstract type tobj; their values are meaningful outside of the object
abstraction. Moreover, the statics of the open expression ensures that the type of the client also be
meaningful apart from tobj so as to ensure that abstraction is not violated.

For example, in the case of the abstract type of complex numbers, write

z ≜ new[cart](⟨x ↪→ x, y ↪→ y⟩)
= new · cart(⟨x ↪→ x, y ↪→ y⟩)

to create a complex number z with rectangular coordinates (x, y). Then write

u ≜ snd[dist](z)

= snd · dist(z)

to compute the squared distance of z from the origin, namely x2 + y2.
∗Copyright © Robert Harper. All Rights Reserved.

1

Two natural implementations of the type τdd arise, one by taking an object to be a tuple of
methods, one for each method d ∈ D, and one taking an object to be an instance datum labeled
with some class c ∈ C. In the former case creating an object requires some work, but sending a
message is simply a projection. In the latter case creating an object is simply an injection, but
sending a message requires a case analysis. More precisely, two packages of type τdd are given by

pack τ I
obj with ⟨new ↪→ eI

new, snd ↪→ eI
snd⟩ as τdd

and
pack τ II

obj with ⟨new ↪→ eII
new, snd ↪→ eII

snd⟩ as τdd

whose components are defined as follows:

τ I
obj ≜ ⟨d ↪→ ρd⟩d∈D
eI
new ≜ ⟨λ (xc : τ c) ⟨d ↪→ eDM · c · d(xc)⟩d∈D⟩c∈C
eI
snd ≜ ⟨λ (x : tobj)x · d⟩d∈D

and

τ II
obj ≜ [c ↪→ τ c]c∈C

eII
new ≜ ⟨λ (xc : τ c) c · xc⟩c∈C
eII
snd ≜ ⟨λ (x : tobj) casex {c · xc ↪→ eDM · c · d(xc) | c ∈ ρd}⟩d∈D.

For example, in the case of the complex numbers an object is either a tuple of type

τ I
obj ≜ ⟨dist ↪→ ρdist, quad ↪→ ρquad⟩,

or an injection of type
τ II
obj ≜ [cart ↪→ τcart, pol ↪→ τpol].

The creation and message sending operations are defined according to the general case given above.
These two representations are “equivalent” in the sense that no client of the dynamic dispatch

abstraction can distinguish between them; the client’s behavior is the same whichever form is used.
The key to proving this is to observe that the typing rule for open ensures that (a) the client
is polymorphic in the abstract type tobj of objects, and (b) the client computes a value of an
extrinsically meaningful type, one that does not involve tobj. Taken together, this means that the
abstract type is interpreted by a binary simulation relation that relates the two implementations.
As long as the new and snd preserve this relation, it is ensured that the client behavior is the same,
regardless of which implementation is chosen.

Thus, the first step is to define a simulation relation between the two implementation types,
τ I
obj and τ II

obj, that expresses when two values of disparate types are “equivalent” insofar as the new

and snd operations are concerned. So, in what sense is a tuple of methods equivalent to an injected
instance value? The question can only be answered by reference to the implementations of the
associated operations. Examining the implementation (I), the methods in the tuple are given by
the code in the dispatch matrix, specialized to the instance data used to create the tuple. Examining
(II), the injection of the instance data is used to select methods from the dispatch matrix appropriate

2

to that instance. This suggests defining the binary relation R between the two implementation types
as follows:

R(eI, eII) iff eI 7−−→∗ ⟨d ↪→ eI
d | d ∈ D⟩, eII 7−−→∗ c · eII

c , and for all d ∈ D, eI
d =ρd eDM · c · d(eII

c).

Because the dynamics is deterministic, and from its definition, the relation R respects evaluation in
that R(eI, eII) iff eI 7−−→∗ e, eII 7−−→∗ e′ and R(e, e′).

This relation is preserved by the new and snd operations. More precisely, interpreting the type
tobj by the relation R,

1. If eI
c =τc e

II
c , then newI · c(eI

c) =tobj newII · c(eII), i.e., R(newI · c(eI
c),newII · c(eII)).

2. If eI =tobj e
II, i.e., R(eI, eII), then sndI · d(eI) =ρd sndII · d(eII)

The variables newI and newII, and similarly annotated versions of snd, indicate the implementations
in question.

Let us consider the verifications required.

1. By definition
newI · c(eI

c) 7−−→∗ eI
new(e

I
c) 7−−→∗ ⟨d ↪→ eDM · c · d(eI

c)⟩d∈D,

and, similarly,
newII · c(eII

c) 7−−→∗ c · eII
c .

For these to be related by R, it suffices to show for all d ∈ D,

eDM · c · d(eI
c) =ρd eDM · c · d(eII

c).

Now, by the parametricity theorem, the (c, d) entry of the dispatch matrix is related to itself
by equality at type τ c → ρd. Because it is assumed that eI

c =τc eII
c , the desired equation

follows directly from the definition of equality at a function type.

2. By definition of the implementation

sndI · d(eI) 7−−→∗ eI
snd · d(eI) 7−−→∗ eI

snd · d(eI)

and

sndII · d(eII) 7−−→∗ eII
snd · d(eII) 7−−→∗ case eII {c · xc ↪→ eDM · c · d(xc) | c ∈ ρd}

Because it is assumed that R(eI, eII), it follows that

eI
snd · d(eI) 7−−→∗ ⟨d ↪→ eI

d | d ∈ D⟩ · d 7−−→ eI
d

and

case eII {c · xc ↪→ eDM · c · d(xc) | c ∈ ρd} 7−−→∗ case c · eII
c {c · xc ↪→ eDM · c · d(xc) | c ∈ ρd} 7−−→ eDM · c · d(eII

c)

and
eI
d =ρd eDM · c · d(eII

c),

which completes the proof.

3

References

Robert Harper. Practical Foundations for Programming Languages. Cambridge University Press,
Cambridge, England, Second edition, 2016.

4

