Practical Foundations for Programming Languages

SECOND EDITION

Robert Harper
Carnegie Mellon University

Copyright © 2016 by Robert Harper.

All Rights Reserved.

This is an abbreviated version of a book published by Cambridge University Press
(http://www.cambridge.org). This draft is made available for the personal use of a
single individual. The reader may make one copy for personal use. No unauthorized
distribution of any kind is allowed. No alterations are permitted.

http://www.cambridge.org

Preface to the Second Edition

Writing the second edition to a text book incurs the same risk as building the second version of a
software system. It is difficult to make substantive improvements, while avoiding the temptation
to overburden and undermine the foundation on which one is building. With the hope of avoiding
the second system effect, I have sought to make corrections, revisions, expansions, and deletions
that improve the coherence of the development, remove some topics that distract from the main
themes, add new topics that were omitted from the first edition, and include exercises for almost
every chapter.

The revision removes a number of typographical errors, corrects a few material errors (espe-
cially the formulation of the parallel abstract machine and of concurrency in Algol), and improves
the writing throughout. Some chapters have been deleted (general pattern matching and polar-
ization, restricted forms of polymorphism), some have been completely rewritten (the chapter
on higher kinds), some have beensubstantially revised (general and parametric inductive defi-
nitions, concurrent and distributed Algol), several have been reorganized (to better distinguish
partial from total type theories), and a new chapter has been added (on type refinements). Titular
attributions on several chapters have been removed, not to diminish credit, but to avoid confusion
between the present and the original formulations of several topics. A new system of (pronounce-
able!) language names has been introduced throughout. The exercises generally seek to expand
on the ideas in the main text, and their solutions often involve significant technical ideas that merit
study. Routine exercises of the kind one might include in a homework assignment are deliberately
few.

My purpose in writing this book is to establish a comprehensive framework for formulating
and analyzing a broad range of ideas in programming languages. If language design and pro-
gramming methodology are to advance from a trade-craft to a rigorous discipline, it is essential
that we first get the definitions right. Then, and only then, can there be meaningful analysis and
consolidation of ideas. My hope is that I have helped to build such a foundation.

I'am grateful to Stephen Brookes, Evan Cavallo, Karl Crary, Jon Sterling, James R. Wilcox, and
Todd Wilson for their help in critiquing drafts of this edition and for their suggestions for revision.
I thank my department head, Frank Pfenning, for his support of my work on the completion of
this edition. Thanks also to my editors, Ada Brunstein and Lauren Cowles, for their guidance and
assistance. And thanks to Evan Cavallo and Andrew Shulaev for corrections to the draft.

Neither the author nor the publisher make any warranty, express or implied, that the defi-
nitions, theorems, and proofs contained in this volume are free of error, or are consistent with

any particular standard of merchantability, or that they will meet requirements for any particular
application. They should not be relied on for solving a problem whose incorrect solution could
result in injury to a person or loss of property. If you do use this material in such a manner, it is at
your own risk. The author and publisher disclaim all liability for direct or consequential damage
resulting from its use.

Pittsburgh
July, 2015

Contents

Preface to the Second Edition

Preface to the First Edition

I Judgments and Rules

1 Abstract Syntax

1.1
1.2
1.3

Abstract SyntaxTrees & ..o L L oo e
Abstract Binding Trees . . <. . . . oo Lo L oL
Notes e

2 Inductive Definitions

2.1
22
2.3
24
2.5
2.6
2.7

Judgments . . oL T
Inference RUIES . . & . . . 0 e o e
Derivations . . . o . . e e e e e e e e e e e e
RuleInduction o o o o A e e e e
Iterated and Simultaneous Inductive Definitions
Defining Functionsby Rules o o oL
Notes . . o o e e e

3 Hypothetical’and General Judgments

3.1

3.2
3.3
3.4
3.5

Hypothetical Judgments o
3.1.1 “Derivability
312 Admissibility
Hypothetical Inductive Definitions
General Judgments L
Generic Inductive Definitions L L o L oL
Notes e e

iii

10

13
13
14
15
16
18
19
20

viii

4

8

CONTENTS

I Statics and Dynamics 33
Statics 35
41 Syntax 35
42 TypeSystem e e 36
4.3 Structural Properties o o e e 37
44 Notes e e 39
Dynamics 41
51 TransitionSystems A0 L o e 41
52 Structural Dynamics oo O 42
53 Contextual Dynamics Ao ol 44
5.4 Equational Dynamics 00 oo e o T 46
55 Notes e e 48
Type Safety 51
6.1 Preservation L0 e e 52
6.2 Progress 4 e e e 52
6.3 Run-TimeErrors.0 . 0 o 53
6.4 Notes e e 55
Evaluation Dynamics 57
71 Evaluation Dynami€so . . oL Lo 57
7.2 Relating Structural and Evaluation Dynamics 58
7.3 TypeSafety, Revisited o 59
74 CostDynamics e 60
75 Notes LT e 61
III Total Functions 63
Function Definitions and Values 65
8.1 First-Order Functions 65
8.2 Higher-Order Functions 67
8.3 Evaluation Dynamics and Definitional Equality 69
8.4 DynamicScope 70
85 Notes . . . e 71
System T of Higher-Order Recursion 73
9.1 Statics e 73
9.2 DynamicCs i e 74
9.3 Definability 76
9.4 Undefinability 77
9.5 Notes e e 79

CONTENTS

IV Finite Data Types

10 Product Types
10.1 Nullary and B

inary Products L o oo e

10.2 Finite Products e e e

10.3 Primitive Mut
10.4 Notes

11 Sum Types
11.1 Nullary and B
11.2 Finite Sums

ual Recursion

nary Sums

11.3 Applicationsof Sum Types. L LA
11.3.1 Voidand Unit o s e e e e
11.32 Booleans s
11.3.3 Enumerations 4. L .
1134 Options o o e

11.4 Notes

V Types and Propositions

12 Constructive Logic

12.1 Constructive Semantics . . .4 . o o o v v o n e e e e e e e e e
12.2 Constructive Logic0 . i o o
12.2.1 Provability . . . oL L
12.2.2 Proof Terms 4 o e e e e e e e e

12.3 Proof Dynami

(G A T T T T T T T

12.4 PropositionsasTypes o . . .o

12.5 Notes . . .4

13 Classical Logic

13.1 Classical Logic o o 0
13:1.1 Provability and Refutability,

13.1.2 Proofs
13.2 Deriving Elim
13.3 Proof Dynami

and Refutations
ination Forms.4 e
CS o e e e e e e

13.4 Law of the ExcludedMiddle
13.5 The Double-Negation Translation

13.6 Notes

VI" Infinite Data Types

14 Generic Programming

14.1 Introduction

ix

81

83
83
85
86
87

89
89
91
92
92
92
93
94
95

97

929
100
100
101
103
104
105
105

109
110
110
112
114
115
117
118
119

121

123

15

14.2 Polynomial Type Operators
14.3 Positive Type Operators
144 Notes

Inductive and Coinductive Types

15.1 Motivating Examples
152 Statics e

1521 Typeso o

15.2.2 Expressions
153 Dynamics
15.4 Solving Type Equations
155 Notes A

VII Variable Types

16

17

18

VIII Partiality and Recursive Types

19 System PCF of Recursive Functions
19.1 Statics

System F of Polymorphic Types

16.1 Polymorphic Abstraction.
16.2 Polymorphic Definability 0.
16.2.1 ProductsandSums
16.2.2 Natural Numbers
16.3 Parametricity Overview
164 Notes o oo i

Abstract Types

17.1 Existential Types = L. ...
17.1.1 Staticso
1712 Dynamicso oo
1708 Safety . . . o0 oo

17.2 Data Abstraction”

17.3_Definability of Existential Types

17.4 Representation Independence

175 Noteso oo oo o

Higher Kinds

18.1 Constructorsand Kinds
18.2 Constructor Equality
18.3 Expressionsand Types
184 Notes. . .o

CONTENTS

CONTENTS

20

192 Dynamics o
19.3 Definability
19.4 Finite and Infinite Data Structures
19.5 Totality and Partiality L
19.6 Notes e e e e e e e e e e e e

System FPC of Recursive Types

20.1 Solving Type Equations
20.2 Inductive and Coinductive Types i
20.3 Self-Reference e A e
204 TheOriginofState 0.
20.5 Notes o o o e e e e s e e

IX Dynamic Types

21

22

23

24

The Untyped A-Calculus

21.1 TheA-Calculus e e
21.2 Definability LA e
21.3 Scott’'sTheorem L e e
21.4 Untyped Means Uni-Typed 0o o i
215 Noteso e

Dynamic Typing

22.1 Dynamically Typed PCE 0o o0 o
22.2 Variations and EXtensions it o e e e e e
22.3 Critique of Dynamic Typing o
224 NOtES . . o o e e e e e e e

Hybrid Typing

23.1 AHybrid Language. . . o,4 oo
23.2 Dynamicas Static Typing4 o
23.3 Optimization of DynamicTyping
23.4 Static Versus Dynamic Typing oo
235 Notes

Subtyping

Structural Subtyping

241 Subsumption.
242 Varieties of Subtyping
243 Variance e
244 Dynamicsand Safety
245 INOtes

xi

170
171
173
174
175

177
178
179
180
182
183

185

187
187
188
190
192
193

195
196
199
201
202

205
205
207
208
210
211

xii

25 Behavioral Typing

251 Staticso o
25.2 Boolean Blindness
25.3 Refinement Safety
254 Notes

XI Dynamic Dispatch

26 Classes and Methods

26.1 The Dispatch Matrix
26.2 Class-Based Organization
26.3 Method-Based Organization
26.4 Self-Reference
265 Notes4

27

XII Control Flow

28 Control Stacks

28.1 MachineDefinition

282 Safety oL

28.3 Correctness of the Stack Machine
28.3.1 Completeness
28.3.2 Soundness

284 Notes

29

30

Inheritance

27.1 Class and Method Extension
27.2 Class-Based Inheritance
27.3 Method-Based Inheritance
274 Notes4

Exceptions
29.1 Failures

29.2 Exceptions
29.3 Exception Values
294 Notes

Continuations
30.1 Owverview
30.2 Continuation Dynamics
30.3 Coroutines from Continuations
304 Notes

CONTENTS

CONTENTS

XIII Symbolic Data

31 Symbols

31.1

31.2

31.3

Symbol Declaration
31.1.1 Scoped Dynamics e
31.1.2 Scope-Free Dynamics 4. .
Symbol References L il e
31.2.1 Statics o i e e e e e e e e e e e e e e
3122 Dynamics A
3123 Safety e
NoOtes e e e e e e e e

32 Fluid Binding

32.1
32.2
32.3
32.4
32.5
32.6

Statics e A e e e e
Dynamics e o
TypeSafety U L
Some Subtleties A e e e e e e
Fluid References i e s e e
Notes e e e e

33 Dynamic Classification

33.1

33.2
33.3
334

33.5

DynamicClasses4 .. o oo oo
33.1.1 Statics e e e
33.1.2 Dynamics . . .o oo e e
33.1.3 Safety. . . .4 .
ClassReferences <. oo oo
Definability of DynamicClasses
Applications of Dynamic Classification
33.4.1 ClassifyingSecrets
33.42 ExceptionValues o
NoiCSumuul WA - e e

XIV. Mutable State

34. Modernized Algol

34.1

34.2
34.3
344

BasicCommands e e e e
34.1.1 Statics < e e e e e e e e e e
3412 Dynamics e
3413 Safety.
Some Programming Idioms o o
Typed Commands and Typed Assignables
NOtes o e

xiii

283

285
286
286
287
288
288
289
289
290

293
293
294
295
296
297
299

301
301
301
302
303
303
304
305
305
306
307

xiv

35 Assignable References
35.1 Capabilities
35.2 Scoped Assignables
35.3 Free Assignables
354 Safety L.
35.5 Benign Effects
356 Notes

36

XV Parallelism

37 Nested Parallelism

37.1 Binary Fork-Join
37.2 Cost Dynamics

37.3 Multiple Fork-Join
37.4 Bounded Implementations
37.5 Scheduling
376 Notes o L.

38

XVI Concutrency and Distribution

39 Process Calculus
39.1 Actions and Events
39.2 Interaction
39.3 Replication

Lazy Evaluation

36.1 PCF By-Need
36.2 Safety of PCF By-Need
36.3 FPC By-Need
36.4 Suspension Types
365 Notes

Futures and Speculations

38.1 Futures

38.1.1 Statics
38.1.2 Sequential Dynamics
38:2 Speculations
38.2.1 Statics
38.2.2 Sequential Dynamics
38.3 Parallel Dynamics
38.4 Pipelining With Futures
385 Noteso .o

CONTENTS

CONTENTS XV

39.4 Allocating Channels 378
395 Communication e e e e e e e e e e e 380
39.6 ChannelPassing 383
39.7 Universality 385
39.8 Notes o o e e e e e e e e e e e e 386
40 Concurrent Algol 389
40.1 Concurrent Algol L e 390
40.2 Broadcast Communication e 392
40.3 Selective Communication i e e e e 394
40.4 Free Assignablesas Processes4&... 0. 396
405 Notes o o o e e e e e 398
41 Distributed Algol 399
41.1 Statics o e e e e e A 399
41.2 Dynamics oo s e il 402
413 Safety e 404
41.4 Notes v o e e e e e e e e e e e 404
XVII Modularity 407
42 Modularity and Linking 409
421 Simple Unitsand Einking 0. o o 409
42.2 Initialization and Effects . . 0. e e 410
42.3 Notes o A e e e e 412
43 Singleton Kinds and Subkinding 413
431 OVEIVIEW . .. v v i e e e e e e e e 414
432 Singletons 414
433 DependentKinds 416
43.4 Higher Singletons 419
43.5 NOtES o e e e e e 421
44 Type Abstractions and Type Classes 423
441 Type Abstraction 424
442 TypeClasses oot 425
443 AModule Language 428
44.4 First-and Second-Class o i e e e e 432

445 NOteS o e e e e 433

xvi CONTENTS
45 Hierarchy and Parameterization 435
451 Hierarchy 435
452 Abstraction. e 438
45.3 Hierarchy and Abstraction L o e 440
454 Applicative Functors o L oo 442
455 Notes e 443
XVIII Equational Reasoning 445
46 Equality for System T 447
46.1 Observational Equivalence oL a0 00 L 447
46.2 Logical Equivalence 0. L e 450
46.3 Logical and Observational Equivalence Coincide &0 452
46.4 Some Lawsof Equality 0o oL L io L 454
46.4.1 GeneralLaws v 0L L o 454

46.4.2 EqualityLawso 0o e 455

4643 InductionLaw L e 455

46.5 Notes e e 456
47 Equality for System PCF 457
47.1 Observational Equivalence v . 00 0oL 457
472 Logical Equivalence o 458
47.3 Logical andObservational Equivalence Coincide 458
474 Compactiess o i 461
475 Lazy Natural Numbers.. 464
476 Notes o &0 e 465
48 Parametricity 467
48.1 Overview o o e 467
48.2 Observational Equivalence o oL 468
48.3 Logical Equivalencel. 469
48.4 Parametricity Properties oL L oo 474
48.5 Representation Independence, Revisited 477
48.6 Notes e 478
49 Process Equivalence 479
49.1 ProcessCalculus. L 479
49.2 Strong Equivalence 481
493 Weak Equivalence 484

494 NOES o o e e e e 485

CONTENTS xvii

XIX Appendices

A Answers to the Exercises

B Background on Finite Sets

Q
&

Part 1

Judgments and Rules

Chapter 1

Abstract Syntax

Programming languages express computations in a form comprehensible to both people and ma-
chines. The syntax of a language specifies how various sorts of phrases (expressions, commands,
declarations, and so forth) may be combined to form programs. But what are these phrases? What
is a program made of?

The informal concept of syntax involves several distinct concepts. The surface, or concrete, syn-
tax is concerned with how phrases are entered and displayed on a computer. The surface syntax
is usually thought of as given by strings of characters from some alphabet (say, ASCII or Uni-
code). The structural, or abstract, syntax is concerned with the structure of phrases, specifically
how they are composed from other phrases. At this level a phrase is a tree, called an abstract
syntax tree, whose nodes are operators that combine several phrases to form another phrase. The
binding structure of syntax is concerned with the introduction and use of identifiers: how they are
declared, and how declared identifiers can be used. At this level phrases are abstract binding trees,
which enrich abstract syntax trees with the concepts of binding and scope.

We will not concern ourselves in this book with concrete syntax, but will instead consider
pieces of syntax to be finite trees augmented with a means of expressing the binding and scope
of identifiers within a syntax tree. To prepare the ground for the rest of the book, we define in
this chapter what is a “piece of syntax” in two stages. First, we define abstract syntax trees, or
asts, which capture the hierarchical structure of a piece of syntax, while avoiding commitment
to their concrete representation as a string. Second, we augment abstract syntax trees with the
means of specifying the binding (declaration) and scope (range of significance) of an identifier.
Such enriched forms of abstract syntax are called abstract binding trees, or abts for short.

Several functions and relations on abts are defined that give precise meaning to the informal
ideas of binding and scope of identifiers. The concepts are infamously difficult to define properly,
and are the mother lode of bugs for language implementors. Consequently, precise definitions are
essential, but they are also fairly technical and take some getting used to. It is probably best to skim
this chapter on first reading to get the main ideas, and return to it for clarification as necessary.

4 1.1 Abstract Syntax Trees

1.1 Abstract Syntax Trees

An abstract syntax tree, or ast for short, is an ordered tree whose leaves are variables, and whose in-
terior nodes are operators whose arquments are its children. Asts are classified into a variety of sorts
corresponding to different forms of syntax. A variable stands for an unspecified, or generic, piece
of syntax of a specified sort. Asts can be combined by an operator, which has an arity specifying
the sort of the operator and the number and sorts of its arguments. An operator of sort s and arity
S1,-..,5; combines n > 0 asts of sort sy, ..., sy, respectively, into a compound ast of sort s.

The concept of a variable is central, and therefore deserves special emphasis. A variable is
an unknown object drawn from some domain. The unknown can become known by substitution
of a particular object for all occurrences of a variable in a formula, thereby specializing a general
formula to a particular instance. For example, in school algebra variables range over real numbers,
and we may form polynomials, such as x? +2 x + 1, that can be specialized by substitution of, say,
7 for x to obtain 72 + (2 x 7) + 1, which can be simplified according to the laws of arithmetic to
obtain 64, which is (7 + 1)2.

Abstract syntax trees are classified by sorts that divide asts into syntactic categories. For exam-
ple, familiar programming languages often have a syntactic distinction between expressions and
commands; these are two sorts of abstract syntax trees. Variables in abstract syntax trees range
over sorts in the sense that only asts of the specified sort of the variable can be plugged in for
that variable. Thus it would make no sense to replace an expression variable by a command, nor
a command variable by an expression, the two being different sorts of things. But the core idea
carries over from school mathematics, namely that a variable is an unknown, or a place-holder, whose
meaning is given by substitution.

As an example, consider a language of arithmetic expressions built from numbers, addition,
and multiplication. The abstract syntax of such a language consists of a single sort Exp generated
by these operators:

1. An operator num| 1 | of sort Exp for each n € IN;
2. Two operators, plus and times, of sort Exp, each with two arguments of sort Exp.
The expression 2 + (3 X x), which involves a variable, x, would be represented by the ast
plus(num[2]; times(num|[3];x))

of sort Exp, under the assumption that x is also of this sort. Because, say, num[4], is an ast of sort
Exp, we may plug it in for x in the above ast to obtain the ast

plus(num[2]; times(num|[3];num[4])),

which is written informally as 2 + (3 x 4). We may, of course, plug in more complex asts of sort
Exp for x to obtain other asts as result.

The tree structure of asts provides a very useful principle of reasoning, called structural induc-
tion. Suppose that we wish to prove that some property P(a) holds of all asts a of a given sort.
To show this it is enough to consider all the ways in which a can be generated, and show that the
property holds in each case under the assumption that it holds for its constituent asts (if any). So,
in the case of the sort Exp just described, we must show

1.1 Abstract Syntax Trees 5

1. The property holds for any variable x of sort Exp: prove that P(x).
2. The property holds for any number, num| 7 |: for every n € IN, prove that P (num[#n]).

3. Assuming that the property holds for a; and a,, prove that it holds for plus(a; ;ay) and
times(ay;ap): if P(a;) and P(ay), then P(plus(ag;ap)) and P(times(a;;az)).

Because these cases exhaust all possibilities for the formation of 4, we are assured that P (a) holds
for any ast a of sort Exp.

It is common to apply the principle of structural induction in a form that takes account of the
interpretation of variables as place-holders for asts of the appropriate sort. Informally, it is often
useful to prove a property of an ast involving variables in a form thatis conditional on the property
holding for the variables. Doing so anticipates that the variables will be replaced with asts that
ought to have the property assumed for them, so that the result of the replacement will have the
property as well. This amounts to applying the principle of structural induction to properties P (a)
of the form “if a involves variables x1, ..., x;, and Q holds of each x;, then Q holds of a”, so that
a proof of P(a) for all asts a by structural induction is just a proof that Q(a) holds for all asts a
under the assumption that Q holds for its variables. When there are no variables, there are no
assumptions, and the proof of P is a proof that Q holds for all closed asts. On the other hand if x is
a variable in a, and we replace it by an ast b for which Q holds, then O will hold for the result of
replacing x by b in a.

For the sake of precision, we now give precise definitions of these concepts. Let S be a finite set
of sorts. For a given set S of sorts, an arity has the form (sy, .. ., sn)s, which specifies the sort s € S
of an operator taking n > 0 arguments, each of sorts; € S. Let O = { O, } be an arity-indexed
family of disjoint sets of operators O, of arity «. If 0 is an operator of arity (s1,...,s,)s, we say that
o has sort s and has n arguments of sorts 51, . .., 5.

Fix a set S of sorts and an arity-indexed family O of sets of operators of each arity. Let X =
{ X }ses be a sort-indexed family of disjoint finite sets X of variables x of sort s. When X is clear
from context, we say that a variable x is of sort s if x € &;, and we say that x is fresh for X, or just
fresh when X is understood, if x ¢ X; for any sort s. If x is fresh for A and s is a sort, then X, x is
the family of sets of variables obtained by adding x to &s. The notation is ambiguous in that the
sort s is not explicitly stated, but determined from context.

The family A[X]| = { A[X]; }scs of abstract syntax trees, or asts, of sort s is the smallest family
satisfying the following conditions:

1. A variable of sort s is an ast of sort s: if x € A, then x € A[X]s.

2. Operators combine asts: if o is an operator of arity (s1,...,s,)s, and if a1 € A[X]Sl, e,
an € A[X]s,, theno(ay;...;a,) € A[X]s.

It follows from this definition that the principle of structural induction can be used to prove that
some property P holds of every ast. To show P (a) holds for every a € A[X], it is enough to show:

1. If x € A, then Ps(x).
2. If o has arity (s1,...,5,)s and Ps, (a1) and ... and Ps, (a,), then Ps(o(ay;...;a,)).

6 1.2 Abstract Binding Trees

For example, it is easy to prove by structural induction that A[X] C A[Y] whenever X C).
Variables are given meaning by substitution. If a € A[X, x|y, and b € A[X],, then {b/x}a €

A[X]g is the result of substituting b for every occurrence of x in a. The ast a is called the target,

and x is called the subject, of the substitution. Substitution is defined by the following equations:

1. {b/x}x =band {b/x}y =yif x #y.
2. {b/x}o(ay;...;a,) =o({b/x}ay;...;{b/x}ay).
For example, we may check that
{num[2]/x}plus(x;num[3]) = plus(num[2];num[3]).
We may prove by structural induction that substitution on asts is well-defined.

Theorem 1.1. If a € A[X, x|, then for every b € A[X] there exists a unique ¢ € A[X] such that
{b/x}a=c

Proof. By structural induction on 4. If 2 = x, then ¢ = b by definition, otherwise if 1 = y # x,
then ¢ = y, also by definition. Otherwise, @ = o(41 ;...;4d,), and we have by induction unique
c1,...,cpsuchthat{b/x}ay =cyand... {b/x}a, =cy,andsocisc =0(cy;...;cn), by definition
of substitution. O

1.2 Abstract Binding Trees

Abstract binding trees, or abts, enrich asts with the means to introduce new variables and symbols,
called a binding, with a specified range of significance, called its scope. The scope of a binding is an
abt within which the bound identifier can be used, either as a place-holder (in the case of a variable
declaration) or as the index of some operator (in the case of a symbol declaration). Thus the set
of active identifiers can be larger within a subtree of an abt than it is within the surrounding tree.
Moreover, different subtrees may introduce identifiers with disjoint scopes. The crucial principle is
that any use of an identifier should be understood as a reference, or abstract pointer, to its binding.
One consequence is that the choice of identifiers is immaterial, so long as we can always associate
a unique binding with each use of an identifier.

As a motivating example, consider the expression let x be a1 in ap, which introduces a variable
x for use within the expression a; to stand for the expression a;. The variable x is bound by the
let expression for use within a; any use of x within a; refers to a different variable that happens
to have the same name. For example, in the expression let xbe7 inx 4 x occurrences of x in
the addition refer to the variable introduced by the let. On the other hand in the expression
let xbex * xinx + x, occurrences of x within the multiplication refer to a different variable than
those occurring within the addition. The latter occurrences refer to the binding introduced by the
let, whereas the former refer to some outer binding not displayed here.

The names of bound variables are immaterial insofar as they determine the same binding.
So, for example, let x be x * x inx + x could just as well have been written let ybex * xiny + v,
without changing its meaning. In the former case the variable x is bound within the addition, and

1.2 Abstract Binding Trees 7

in the latter it is the variable y, but the “pointer structure” remains the same. On the other hand the
expression let xbey * y inx + x has a different meaning to these two expressions, because now
the variable y within the multiplication refers to a different surrounding variable. Renaming of
bound variables is constrained to the extent that it must not alter the reference structure of the
expression. For example, the expression

letxbe2inletybe3dinx +x
has a different meaning than the expression
letybe2inletybe3iny +y,

because the y in the expression y + y in the second case refers to the inner declaration, not the
outer one as before.

The concept of an ast can be enriched to account for binding and scope of a variable. These
enriched asts are called abstract binding trees, or abts for short. Abts generalize asts by allowing an
operator to bind any finite number (possibly zero) of variables in each argument. An argument
to an operator is called an abstractor, and has the form xi,...,x; . a. The sequence of variables
X1,..., X are bound within the abt a. (When k is zero, we elide the distinction between .a and
a itself.) Written in the form of an abt, the expression let x be 41 ina, has the form let(a;; x.
ay), which more clearly specifies that the variable x is bound within a3, and not within a;. We
often write X to stand for a finite sequence x, ..., x, of distinct variables, and write X . a to mean
X1,.e., X . 4.

To account for binding, operators are assigned generalized arities of the form (vy, ..., v,)s, which
specifies operators of sort s with n arguments of valence vy, ..., v,. In general a valence v has the
form s, ..., sk.s, which specifies the sort of an argument as well as the number and sorts of the
variables bound within it.-We say that a sequence ¥ of variables is of sort s to mean that the two
sequences have the same length k and that the variable x; is of sort s; foreach 1 <7 < k.

Thus, to specify that the operator let has arity (Exp, Exp.Exp)Exp indicates that it is of sort
Exp whose first argument is of sort Exp and binds no variables, and whose second argument
is also of sort Exp, within which is bound one variable of sort Exp. The informal expression
let xbe2 + 2inx X x may then be written as the abt

let(plus(num[2];num[2]); x.times(x;x))

in which the operator let has two arguments, the first of which is an expression, and the second
of which is an abstractor that binds one expression variable.

Fix a set S of sorts, and a family O of disjoint sets of operators indexed by their generalized
arities. For a given family of disjoint sets of variables X, the family of abstract binding trees, or abts
B[X] is defined similarly to A[X], except that X is not fixed throughout the definition, but rather
changes as we enter the scopes of abstractors.

This simple idea is surprisingly hard to make precise. A first attempt at the definition is as the
least family of sets closed under the following conditions:

1. If x € &;, then x € B[X]s.

8 1.2 Abstract Binding Trees

2. For each operator o of arity (51.51,...,54.54)s, if a1 € B[X,X1]s,, ..., and a, € B[X,%,]s,,
theno(Xy.a1;...;X,.a,) € B[X]s.

The bound variables are adjoined to the set of active variables within each argument, with the sort
of each variable determined by the valence of the operator.

This definition is almost correct, but fails to properly account for renaming of bound variables.
An abt of the form let(aj;x.let(ap;x.a3)) is ill-formed according to this definition, because
the first binding adds x to X', which implies that the second cannot also add x to X, x, because it is
not fresh for X, x. The solution is to ensure that each of the arguments is well-formed regardless of
the choice of bound variable names, which is achieved using fresh renamings, which are bijections
between sequences of variables. Specifically, a fresh renaming (relative to &) of a finite sequence
of variables ¥ is a bijection p : ¥ <+ X’ between X and ¥, where ¥’ is fresh for X'. We write p(a) for
the result of replacing each occurrence of x; in a by p(x;), its fresh counterpart.

This is achieved by altering the second clause of the definition of abts using fresh renamings as
follows:

For each operator o of arity (51.s1,...,54.54)s, if for each 1 < i < n and each fresh
renaming p; : X; <> X/, we have p;(a;) € B[X,¥], then o(X1 .a1;...;Xy.a,) € B[X].

The renaming, p;(a;), of each a; ensures that collisions cannot occur, and that the abt is valid for
almost all renamings of any bound variables that occur within it.

The principle of structural induction extends to abts, and is called structural induction modulo
fresh renaming. It states that to show that P[X](a) holds for every a € B[X], it is enough to show
the following:

1. if x € X, then P[X]s(x).

2. For every o of arity (51.51,...,5,.5,)s, if foreach 1 < i < n, P[X, X]5,(0i(a;)) holds for every
it X <> X, with ¥ ¢ X, then P[X]s(0(X1 .a1;...;X,.a,)).

The second condition ensures that the inductive hypothesis holds for all fresh choices of bound
variable names, and not just the ones actually given in the abt.

As an example let us define the judgment x € a, where a € B[X, x], to mean that x occurs free
in a. Informally, this means that x is bound somewhere outside of a, rather than within a itself.
If x is bound within 4, then those occurrences of x are different from those occurring outside the
binding. The following definition ensures that this is the case:

1. x € x.

2. x€0(Xy.a1;...;%,.a,)if there exists 1 < i < n such that for every fresh renaming p : X; <>
Z; we have x € p(a;).

The first condition states that x is free in x, but not free in y for any variable y other than x. The
second condition states that if x is free in some argument, independently of the choice of bound
variable names in that argument, then it is free in the overall abt.

The relation a =, b of a-equivalence (so-called for historical reasons), means that a and b are

identical up to the choice of bound variable names. The a-equivalence relation is the strongest
congruence containing the following two conditions:

1.2 Abstract Binding Trees 9

1. x =4 x.

.2

2. 0(%.a1;... ;X an) =¢ 0(X].ay;...; X, ay) if forevery 1 < i < n, p;(a;) =4 p}(a}) for all
fresh renamings p; : ¥; <> Z; and p} : X} < Z;.

The idea is that we rename X; and X consistently, avoiding confusion, and check that a; and a] are
a-equivalent. If 4 =, b, then a and b are a-variants of each other.

Some care is required in the definition of substitution of an abt b of sort s for free occurrences of
a variable x of sort s in some abt a of some sort, written {b/x}a. Substitution is partially defined
by the following conditions:

1. {b/x}x =b,and {b/x}y =yifx #y.

2. {b/x}o(X1.a1;...;%:.a,) = o(X1.4};...;X,.a,), where, for each 1 < i < n, we require
that X; ¢ b, and we set a} = {b/x}a; if x ¢ ¥;, and a} = a; otherwise.

The definition of {b/x}a is quite delicate, and merits careful consideration.

One trouble spot for substitution is to notice that if x is bound by an abstractor within a, then
x does not occur free within the abstractor, and hence is unchanged by substitution. For example,
{b/x}let(ay;x.ay) = let({b/x}ay;x.ay), there being no free occurrences of x in x . ay. Another
trouble spot is the capture of a free variable of b during substitution. For example, if y € b, and
x # y, then {b/x}1let(a;;y.ayp) is undefined, rather than being let({b/x}ai;y.{b/x}ay), as
one might at first suspect. For example, provided that x # y, {y/x}1let(num[0];y.plus(x;y))
is undefined, not let(num[0];y.plus(y;y)), which confuses two different variables named y.

Although capture avoidance is an essential characteristic of substitution, it is, in a sense, merely
a technical nuisance. If the names of bound variables have no significance, then capture can always
be avoided by first renaming the bound variables in a to avoid any free variables in b. In the forego-
ing example if we rename the bound variable y to i to obtain a’ £ let(num[0];y’.plus(x;y’)),
then {b/x}a’ is defined, and is equal to let(num[0]; 1y’ .plus(b;y’)). The price for avoiding cap-
ture in this way is that substitution is only determined up to a-equivalence, and so we may no
longer think of substitution as a function, but only as a proper relation.

To restore the functional character of substitution, it is sufficient to adopt the identification con-
vention, which is stated as follows:

Abstract binding trees are always identified up to a-equivalence.

Thatis, x-equivalent abts are regarded as identical. Substitution can be extended to a-equivalence
classes of abts to avoid capture by choosing representatives of the equivalence classes of b and a
in such a way that substitution is defined, then forming the equivalence class of the result. Any
two choices of representatives for which substitution is defined gives a-equivalent results, so that
substitution becomes a well-defined total function. We will adopt the identification convention for abts
throughout this book.

It will often be necessary to consider languages whose abstract syntax cannot be specified by
a fixed set of operators, but rather requires that the available operators be sensitive to the context
in which they occur. For our purposes it will suffice to consider a set of symbolic parameters, or
symbols, that index families of operators so that as the set of symbols varies, so does the set of

10 1.3 Notes

operators. An indexed operator o is a family of operators indexed by symbols u, so that o[«] is
an operator when u is an available symbol. If I/ is a finite set of symbols, then B|{if ; X] is the
sort-indexed family of abts that are generated by operators and variables as before, admitting all
indexed operator instances by symbols u € U{. Whereas a variable is a place-holder that stands for
an unknown abt of its sort, a symbol does not stand for anything, and is not, itself, an abt. The only
significance of symbol is whether it is the same as or differs from another symbol; the operator
instances o[u | and o[u’] are the same exactly when u is 1/, and are the same symbol.

The set of symbols is extended by introducing a new, or fresh, symbol within a scope using
the abstractor u . a, which binds the symbol u within the abt 4. An abstracted symbol is “new”
in the same sense as for an abstracted variable: the name of the bound symbol can be varied at
will provided that no conflicts arise. This renaming property ensures that an abstracted symbol
is distinct from all others in scope. The only difference between symbols and variables is that the
only operation on symbols is renaming; there is no notion of substitution for a symbol.

Finally, a word about notation: to help improve the readability we often “group” and “stage”
the arguments to an operator, using round brackets and braces to show grouping, and generally
regarding stages to progress from right to left.'All arguments in a group are considered to occur at
the same stage, though their order is significant, and successive groups are considered to occur in
sequential stages. Staging and grouping is often a helpful mnemonic device, but has no fundamen-
tal significance. For example, the abt o[ay ;a3 |(a3 ; x . ay) is the same as the abto(ay;a5;a3;x .4y),
as would be any other order-preserving grouping or staging of its arguments.

1.3 Notes

The concept of abstract syntax has its origins in the pioneering work of Church, Turing, and Godel,
who first considered writing programs that act on representations of programs. Originally pro-
grams were represented by natural numbers, using encodings, now called Godel-numberings, based
on the prime factorization theorem. Any standard text on mathematical logic, such as Kleene
(1952), has a thorough account of such representations. The Lisp language (McCarthy, 1965; Allen,
1978) introduced a much more practical and direct representation of syntax as symbolic expressions.
These ideas were developed further in the language ML (Gordon et al., 1979), which featured
a_type system capable of expressing abstract syntax trees. The AUTOMATH project (Nederpelt
et al., 1994) introduced the idea of using Church’s A notation (Church, 1941) to account for the
binding and scope of variables. These ideas were developed further in LF (Harper et al., 1993).

The concept of abstract binding trees presented here was inspired by the system of notation
developed in the NuPRL Project, which is described in Constable (1986) and from Martin-Lof’s
system of arities, which is described in Nordstrom et al. (1990). Their enrichment with symbol
binders is influenced by Pitts and Stark (1993).

Exercises

1.1. Prove by structural induction on abstract syntax trees thatif X C Y, then A[X] C A[Y].

1.3 Notes 11

1.2.

1.3.

1.4.

Prove by structural induction modulo renaming on abstract binding trees that if X C),
then B[X] C B[Y)].

Show that if a =, a’ and b =, b’ and both {b/x}a and {b'/x}a’ are defined, then {b/x}a =,
{b'/x}a.

Bound variables can be seen as the formal analogs of pronouns in natural languages. The
binding occurrence of a variable at an abstractor fixes a “fresh” pronoun for use within its
body that refers unambiguously to that variable (in contrast to English, in which the referent
of a pronoun can often be ambiguous). This observation suggests an alternative representa-
tion of abts, called abstract binding graphs, or abg’s for short, as directed graphs constructed as
follows:

(a) Free variables are atomic nodes with no outgoing edges.

(b) Operators with n arguments are n-ary nodes, with one outgoing edge directed at each
of their children.

(c) Abstractors are nodes with one edge directed to the scope of the abstracted variable.

(d) Bound variables are back edges directed at the abstractor that introduced it.

Notice that asts, thought of as abts with no abstractors, are acyclic directed graphs (more
precisely, variadic trees), whereas general abts can be cyclic. Draw a few examples of abg’s
corresponding to the example abts given in this chapter. Give a precise definition of the
sort-indexed family G[X] of abstract binding graphs. What representation would you use
for bound variables (back edges)?

Chapter 2

Inductive Definitions

Inductive definitions are an indispensable tool in the study of programming languages. In this
chapter we will develop the basic framework of inductive definitions, and give some examples of
their use. An inductive definition consists of a setof rules for deriving judgments, or assertions, of a
variety of forms. Judgments are statements about one or more abstract binding trees of some sort.
The rules specify necessary and sufficient conditions for the validity of a judgment, and hence
fully determine its meaning.

2.1 Judgments

We start with the notion of a judgment, or assertion, about an abstract binding tree. We shall make
use of many forms of judgment, including examples such as these:

7 nat n is a natural number
n+n =n n is the sum of 77 and n,
T type T is a type

e:T expression ¢ has type T
el v expression e has value v

A judgment states that one or more abstract binding trees have a property or stand in some
relation to one another. The property or relation itself is called a judgment form, and the judgment
that an object or objects have that property or stand in that relation is said to be an instance of
that judgment form. A judgment form is also called a predicate, and the objects constituting an
instance are its subjects. We write a J or J a, for the judgment asserting that J holds of the abt
a. Correspondingly, we sometimes notate the judgment form J by — J, or J —, using a dash to
indicate the absence of an argument to J. When it is not important to stress the subject of the
judgment, we write | to stand for an unspecified judgment, that is, an instance of some judgment
form. For particular judgment forms, we freely use prefix, infix, or mix-fix notation, as illustrated
by the above examples, in order to enhance readability.

14 2.2 Inference Rules

2.2 Inference Rules

An inductive definition of a judgment form consists of a collection of rules of the form

i - Jk
J

in which | and [y, ..., J; are all judgments of the form being defined. The judgments above the
horizontal line are called the premises of the rule, and the judgment below the line is called its
conclusion. If a rule has no premises (that is, when k is zero), the rule is called an axiom; otherwise
it is called a proper rule.

An inference rule can be read as stating that the premises are sufficient for the conclusion: to
show J, it is enough to show i, ..., Jx. When k is zero, a rule states that its conclusion holds
unconditionally. Bear in mind that there may be, in general, many rules with the same conclusion,
each specifying sufficient conditions for the conclusion. Consequently, if the conclusion of a rule
holds, then it is not necessary that the premises hold, for it might have been derived by another
rule.

For example, the following rules form an inductive definition of the judgment form — nat:

2.1

(2.2a)
zero nat
a nat

succ(a) nat (2.2b)

These rules specify thata nat holds whenever either 4 is zero, or a is succ(b) where b nat for some
b. Taking these rules to be exhaustive, it follows that a nat iff a is a natural number.
Similarly, the following rules constitute an inductive definition of the judgment form — tree:

(2.3a)
empty tree

aq tree ap tree

node(ay ; ay) tree (2.3b)
These rules specify that a tree holds if either a is empty, or a is node(a; ; a2), where a; tree and
ay tree. Taking these to be exhaustive, these rules state that 4 is a binary tree, which is to say it is
either empty, or a node consisting of two children, each of which is also a binary tree.

The judgment form a is b expressing the equality of two abts a and b such that a nat and b nat
is inductively defined by the following rules:

- (2.4a)
Zero is zero

aisb
succ(a)issucc(b)

(2.4b)

2.3 Derivations 15

In each of the preceding examples we have made use of a notational convention for specifying
an infinite family of rules by a finite number of patterns, or rule schemes. For example, rule (2.2b)
is a rule scheme that determines one rule, called an instance of the rule scheme, for each choice of
object a in the rule. We will rely on context to determine whether a rule is stated for a specific object
a or is instead intended as a rule scheme specifying a rule for each choice of objects in the rule.

A collection of rules is considered to define the strongest judgment form that is closed under, or
respects, those rules. To be closed under the rules simply means that the rules are sufficient to show
the validity of a judgment: | holds if there is a way to obtain it using the given rules. To be the
strongest judgment form closed under the rules means that the rules are also necessary: | holds only
if there is a way to obtain it by applying the rules. The sufficiency of the rules means that we may
show that | holds by deriving it by composing rules. Their necessity means that we may reason
about it using rule induction.

2.3 Derivations

To show that an inductively defined judgment holds, it is enough to exhibit a derivation of it. A
derivation of a judgment is a finite composition of rules, starting with axioms and ending with
that judgment. It can be thought of as a tree in which each node is a rule whose children are
derivations of its premises. We sometimes say that a derivation of | is evidence for the validity of
an inductively defined judgment J.

We usually depict derivations as trees with the conclusion at the bottom, and with the children
of a node corresponding to a rule appearing above it as evidence for the premises of that rule.
Thus, if

ik
J

is an inference rule and /4, ..., {/j are derivations of its premises, then

Vi - Vi

is-a derivation of its conclusion. In particular, if k = 0, then the node has no children.
For example, this is a derivation of succ(succ(succ(zero))) nat:

zero nat
succ(zero) nat (2.5)

succ(succ(zero)) nat

succ(succ(succ(zero))) nat '

16 2.4 Rule Induction

Similarly, here is a derivation of node(node(empty ; empty) ; empty) tree:

empty tree empty tree

o 2.6)
node(empty; empty) tree empty tree

node(node(empty ; empty) ; empty) tree .

To show that an inductively defined judgment is derivable we need only find a derivation
for it. There are two main methods for finding derivations, called forward chaining, or bottom-
up construction, and backward chaining, or top-down construction. Forward chaining starts with the
axioms and works forward towards the desired conclusion, whereas backward chaining starts
with the desired conclusion and works backwards towards the axioms.

More precisely, forward chaining search maintains a set of derivable judgments, and continu-
ally extends this set by adding to it the conclusion of any rule all of whose premises are in that
set. Initially, the set is empty; the process terminates when the desired judgment occurs in the
set. Assuming that all rules are considered at every stage, forward chaining will eventually find
a derivation of any derivable judgment, but it is impossible (in general) to decide algorithmically
when to stop extending the set and conclude that the desired judgment is not derivable. We may
go on and on adding more judgments to the derivable set without ever achieving the intended
goal. It is a matter of understanding the global properties of the rules to determine that a given
judgment is not derivable.

Forward chaining is undirected in the sense that it does not take account of the end goal when
deciding how to proceed at each step. In contrast, backward chaining is goal-directed. Back-
ward chaining search maintains a queue of current goals, judgments whose derivations are to be
sought. Initially, this set consists solely of the judgment we wish to derive. At each stage, we
remove a judgment from the queue, and consider all rules whose conclusion is that judgment.
For each such rule, we add the premises of that rule to the back of the queue, and continue. If
there is more than one such rule, this process must be repeated, with the same starting queue, for
each candidate rule. The process terminates whenever the queue is empty, all goals having been
achieved; any pending consideration of candidate rules along the way can be discarded. As with
forward chaining, backward chaining will eventually find a derivation of any derivable judgment,
but there is, in general, no algorithmic method for determining in general whether the current
goal is derivable. If it is not, we may futilely add more and more judgments to the goal set, never
reaching a point at which all goals have been satisfied.

2.4 Rule Induction

Because an inductive definition specifies the strongest judgment form closed under a collection of
rules, we may reason about them by rule induction. The principle of rule induction states that to
show that a property a P holds whenever a J is derivable, it is enough to show that P is closed
under, or respects, the rules defining the judgment form J. More precisely, the property P respects

the rule
ay J ... aj J

al

2.4 Rule Induction 17

if P(a) holds whenever P(ay),...,P(ax) do. The assumptions P(ay),..., P(ax) are called the
inductive hypotheses, and P (a) is called the inductive conclusion of the inference.

The principle of rule induction is simply the expression of the definition of an inductively
defined judgment form as the strongest judgment form closed under the rules comprising the def-
inition. Thus, the judgment form defined by a set of rules is both (a) closed under those rules,
and (b) sufficient for any other property also closed under those rules. The former means that a
derivation is evidence for the validity of a judgment; the latter means that we may reason about
an inductively defined judgment form by rule induction.

When specialized to rules (2.2), the principle of rule induction states that to show P(a) when-
ever a nat, it is enough to show:

1. P(zero).
2. for every a, if P(a), then P (succ(a)).

The sufficiency of these conditions is the familiar principle of mathematical induction.
Similarly, rule induction for rules (2.3) states that to show P(a) whenever a tree, itis enough to
show

1. P(empty).
2. for every ay and ap, if P(a1), and if P(ay), then P(node(a;;az)).

The sufficiency of these conditions is called the principle of tree induction.

We may also show by rule induction that the predecessor of a natural number is also a natural
number. Although this may seem self-evident, the point of the example is to show how to derive
this from first principles.

Lemma 2.1. If succ(a) nat, then a nat.

Proof. Define P(a) to mean that if # = succ(b), then b nat. It suffices to show that P is closed
under rules (2.2).

Rule (2.2a) Vacuous, because zero is not of the form succ(—).

Rule (2:2b) The premise of the rule ensures that b nat when a = succ(b).

Using rule induction we may show that equality, as defined by rules (2.4) is reflexive.
Lemma 2.2. Ifa nat, thenais a.
Proof. By rule induction on rules (2.2):
Rule (2.2a) Applying rule (2.4a) we obtain zero is zero.

Rule (2.2b) Assume that a is a. It follows that succ(a) is succ(a) by an application of rule (2.4b).

18 2.5 Iterated and Simultaneous Inductive Definitions

O
Similarly, we may show that the successor operation is injective.
Lemma 2.3. If succ(ay)issucc(ay), then ay is ay.
Proof. Similar to the proof of Lemma 2.1. O

2.5 Iterated and Simultaneous Inductive Definitions

Inductive definitions are often iterated, meaning that one inductive definition builds on top of
another. In an iterated inductive definition the premises of a rule

i Jk
J

may be instances of either a previously defined judgment form, or the judgment form being de-
fined. For example, the following rules define the judgment form — list, which states that a is a list
of natural numbers:

(2.7a)
nil list
anat b list

cons(a;b) list (2.7b)

The first premise of rule (2.7b) is an instance of the judgment form a nat, which was defined
previously, whereas the premise b list is an instance of the judgment form being defined by these
rules.

Frequently two or more judgments are defined at once by a simultaneous inductive definition.
A simultaneous inductive definition consists of a set of rules for deriving instances of several
different judgment forms, any of which may appear as the premise of any rule. Because the rules
defining each judgment form may involve any of the others, none of the judgment forms can be
taken to be defined prior to the others: Instead we must understand that all of the judgment forms
are being defined at once by the entire collection of rules. The judgment forms defined by these
rules are, as before, the strongest judgment forms that are closed under the rules. Therefore the
principle of proof by rule induction continues to apply, albeit in a form that requires us to prove a
property of each of the defined judgment forms simultaneously.

For example, consider the following rules, which constitute a simultaneous inductive defini-
tion of the judgments a even, stating that a4 is an even natural number, and a odd, stating that a is
an odd natural number:

(2.8a)
zero even
b odd
succ(b) even (2.85)
a even
(2.8¢)

succ(a) odd

2.6 Defining Functions by Rules 19

The principle of rule induction for these rules states that to show simultaneously that P (a)
whenever a even and Q(b) whenever b odd, it is enough to show the following:

1. P(zero);
2. if Q(b), then P(succ(b));
3. if P(a), then Q(succ(a)).

As an example, we may use simultaneous rule induction to prove that (1) if 2 even, then either
ais zero or a is succ(b) with b odd, and (2) if 2 odd, then a is succ(b) with b even. We define P (a)
to hold iff a is zero or a is succ(b) for some b with b odd, and define Q(b) to hold iff b is succ(a)
for some a with a even. The desired result follows by rule induction, because we can prove the
following facts:

1. P(zero), which holds because zero is zero.

2. If Q(b), then succ(b) is succ(b') for some b’ with Q(b’). Take b’ to be b and apply the
inductive assumption.

3. If P(a), then succ(a) is succ(a’) for some a’ with P(a’). Take a’ to be a and apply the
inductive assumption.

2.6 Defining Functions by Rules

A common use of inductive definitions is to define a function by giving an inductive definition of
its graph relating inputs to outputs, and then showing that the relation uniquely determines the
outputs for given inputs. For example, we may define the addition function on natural numbers
as the relation sum(a ; b ; ¢), with the intended meaning that c is the sum of 2 and b, as follows:

b nat
sum(zero;b;b) (2.92)
sum(a;b;c) (2.9b)

sum(succ(a);b;succ(c))

The rules define a ternary (three-place) relation sum(a ; b ; ¢) among natural numbers 4, b, and c.
We may show that ¢ is determined by a and b in this relation.

Theorem 2.4. For every a nat and b nat, there exists a unique c nat such that sum(a;b;c).
Proof. The proof decomposes into two parts:

1. (Existence) If a nat and b nat, then there exists ¢ nat such that sum(a;b;c).

2. (Uniqueness) If sum(a;b;c), and sum(a;b;c’'), thencisc'.

For existence, let P(a) be the proposition if b nat then there exists ¢ nat such that sum(a;b;c). We
prove that if @ nat then P(a) by rule induction on rules (2.2). We have two cases to consider:

20 2.7 Notes

Rule (2.2a) We are to show P(zero). Assuming b nat and taking c to be b, we obtain sum(zero ;
b;c) by rule (2.9a).

Rule (2.2b) Assuming P(a), we are to show P(succ(a)). That is, we assume that if b nat then
there exists ¢ such that sum(a; b;c), and are to show that if b’ nat, then there exists ¢’ such that
sum(succ(a);b';c’). To this end, suppose that b’ nat. Then by induction there exists ¢ such
thatsum(a;b’;c). Taking ¢’ to be succ(¢), and applying rule (2.9b), we obtain sum(succ(a);
b';c’), as required.

For uniqueness, we prove that if sum(a;b;cy), then if sum(a ;b ;¢p), then cq is ¢ by rule induction
based on rules (2.9).

Rule (2.9a) We have a is zero and c; is b. By an inner induction on the same rules, we may show
that if sum(zero; b;cy), then ¢y is b. By Lemma 2.2 we obtain b is b.

Rule (2.9b) We have that a is succ(a’) and ¢; is succ(c]), where sum(a’;b;¢}). By an inner
induction on the same rules, we may show that if sum(a;b;cp), then cyis succ(c}) where
sum(a’; b;c}). By the outer inductive hypothesis ¢} is ¢} and so ¢y is c).

O

2.7 Notes

Aczel (1977) provides a_thorough account of the theory of inductive definitions on which the
present account is based. A significant difference is that we consider inductive definitions of
judgments over abts as defined in Chapter 1, rather than with natural numbers. The emphasis
on judgments is inspired by Martin-Lof’s logic of judgments (Martin-Lof, 1983, 1987).

Exercises

2.1. Give an inductive definition of the judgment max(m ; n; p), where m nat, n nat, and p nat,
with the meaning that p is the larger of m and n. Prove that every m and n are related to a
unique p by this judgment.

2.2. Consider the following rules, which define the judgment hgt(¢; 1) stating that the binary tree
t has height n.

(2.10a)

hgt(empty ; zero)

hgt(t1;n1) hgt(tz;n2) max(ng;ny;n)
hgt(node(t1;ty);succ(n))

(2.10b)

Prove that the judgment hgt defines a function from trees to natural numbers.

2.7 Notes 21

2.3.

24.

2.5.

2.6.

Given an inductive definition of ordered variadic trees whose nodes have a finite, but variable,
number of children with a specified left-to-right ordering among them. Your solution should
consist of a simultaneous definition of two judgments, t tree, stating that ¢ is a variadic tree,
and f forest, stating that f is a “forest” (finite sequence) of variadic trees.

Give an inductive definition of the height of a variadic tree of the kind defined in Exercise 2.3.
Your definition should make use of an auxiliary judgment defining the height of a forest of
variadic trees, and will be defined simultaneously with the height of a variadic tree. Show
that the two judgments so defined each define a function.

Give an inductive definition of the binary natural numbers, which are either zero, twice a
binary number, or one more than twice a binary number. The size of such a representation is
logarithmic, rather than linear, in the natural number it represents.

Give an inductive definition of addition of binary natural numbers as defined in Exercise 2.5.
Hint: Proceed by analyzing both arguments to the addition, and make use of an auxiliary
function to compute the successor of a binary number. Hint: Alternatively, define both the
sum and the sum-plus-one of two binary numbers mutually recursively.

Chapter 3

Hypothetical and General Judgments

A hypothetical judgment expresses an entailment between one or more hypotheses and a conclusion.
We will consider two notions of entailment, called derivability and admissibility. Both express a
form of entailment, but they differ in that derivability is stable under extension with new rules,
admissibility is not. A general judgment expresses the universality, or genericity, of a judgment.
There are two forms of general judgment, the generic and the parametric. The generic judgment
expresses generality with respect to all substitution instances for variables in a judgment. The
parametric judgment expresses generality with respect to renamings of symbols.

3.1 Hypothetical Judgments

The hypothetical judgment codifies the rules for expressing the validity of a conclusion conditional
on the validity of one or more hypotheses. There are two forms of hypothetical judgment that
differ according to the sense in which the conclusion is conditional on the hypotheses. One is
stable under extension with more rules, and the other is not.

3.1.1 Derivability

For a given set R of rules, we define the derivability judgment, written [y, ..., Jy Fr K, where each
J; and K are basic judgments, to mean that we may derive K from the expansion RU{ J1, ..., Ji } of
the rules R with the axioms

We treat the hypotheses, or antecedents, of the judgment, J1,. .., Jx as “temporary axioms”, and de-
rive the conclusion, or consequent, by composing rules in R. Thus, evidence for a hypothetical
judgment consists of a derivation of the conclusion from the hypotheses using the rules in R.

We use capital Greek letters, usually I or A, to stand for a finite set of basic judgments, and
write R UT for the expansion of R with an axiom corresponding to each judgment in I'. The

24 3.1 Hypothetical Judgments

judgment I' - K means that K is derivable from rules R UT, and the judgment -z I' means that
Fx] for each J in I'. An equivalent way of defining J4,..., [, Fr J is to say that the rule

Ji oo n
J

is derivable from R, which means that there is a derivation of | composed of the rules in R aug-
mented by treating |y, ..., J; as axioms.

(3.1)

For example, consider the derivability judgment
a nat -,y succ(succ(a)) nat (3.2)

relative to rules (2.2). This judgment is valid for any choice of object a4, as shown by the derivation

a nat
succ(a) nat (3.3)
succ(succ(a)) nat

which composes rules (2.2), starting with 4 nat as an axiom, and ending with succ(succ(a)) nat.
Equivalently, the validity of (3.2) may also be expressed by stating that the rule

a nat
succ(succ(a)) nat

(3.4)

is derivable from rules (2.2).

It follows directly from the definition of derivability that it is stable under extension with new
rules.

Theorem 3.1 (Stability). If ' g], then I' Frurs J.

Proof. Any derivation of J from R UT is also a derivation from (R UR') UT, because any rule in
R isalsoarulein RUR'. O

Derivability enjoys a number of structural properties that follow from its definition, indepen-
dently of the rules R in question.

Reflexivity Every judgment is a consequence of itself: I', | - J. Each hypothesis justifies itself as
conclusion.

Weakening IfI' =%], thenI', K - J. Entailment is not influenced by un-exercised options.

Transitivity If I, K - Jand I’ ¢ K, then T’ % J. If we replace an axiom by a derivation of it,
the result is a derivation of its consequent without that hypothesis.

Reflexivity follows directly from the meaning of derivability. Weakening follows directly from the
definition of derivability. Transitivity is proved by rule induction on the first premise.

3.1 Hypothetical Judgments 25

3.1.2 Admissibility

Admissibility, written T’ =5], is a weaker form of hypothetical judgment stating that -z T implies
Fx J. That is, the conclusion | is derivable from rules R when the assumptions I are all derivable
from rules R. In particular if any of the hypotheses are not derivable relative to R, then the
judgment is vacuously true. An equivalent way to define the judgment [y, ...,], [=r] is to state
that the rule

i n

] (3.5)

is admissible relative to the rules in R. Given any derivations of [1, ..., J; using the rulesin R, we
may build a derivation of | using the rules in R.
For example, the admissibility judgment

succ(a) even |=(,5) a odd (3.6)

is valid, because any derivation of succ(a) even from rules (2.8) must contain a sub-derivation of
a odd from the same rules, which justifies the conclusion. This fact can be proved by induction on
rules (2.8). That judgment (3.6) is valid may also be expressed by saying that the rule

succ(a) even

7 odd (3.7)

is admissible relative to rules (2.8).

In contrast to derivability the admissibility judgment is not stable under extension to the rules.
For example, if we enrich rules (2.8) with the axiom

, (3.8)

succ(zero) even

then rule (3.6) is inadmissible, because there is no composition of rules deriving zero odd. Admis-
sibility is as sensitive to which rules are absent from an inductive definition as it is to which rules
are present in it.

The structural properties of derivability ensure that derivability is stronger than admissibility.
Theorem 3.2. IfT 5], thenT =5 J.

Proof. Repeated application of the transitivity of derivability shows thatif I' F¢ J and =% T, then
R J O

To see that the converse fails, note that
succ(zero) even I, g) zero odd,

because there is no derivation of the right-hand side when the left-hand side is added as an axiom
to rules (2.8). Yet the corresponding admissibility judgment

succ(zero) even =, g) zero odd

26 3.2 Hypothetical Inductive Definitions

is valid, because the hypothesis is false: there is no derivation of succ(zero) even from rules (2.8).
Even so, the derivability

succ(zero) even -, g) succ(succ(zero)) odd

is valid, because we may derive the right-hand side from the left-hand side by composing rules (2.8).

Evidence for admissibility can be thought of as a mathematical function transforming deriva-
tions Vy, ..., V, of the hypotheses into a derivation V of the consequent. Therefore, the admissi-
bility judgment enjoys the same structural properties as derivability, and hence is a form of hypo-
thetical judgment:

Reflexivity If | is derivable from the original rules, then | is derivable from the original rules:

JER T

Weakening If | is derivable from the original rules assuming that each of the judgments in I" are
derivable from these rules, then | must also be derivable assuming that I' and K are derivable
from the original rules: if I' =%], then T, K 5 J.

Transitivity If I, K =g Jand I =% K, then T =% J. If the judgments in T are derivable, so is K,
by assumption, and hence so are the judgments in I, K, and hence so is J.

Theorem 3.3. The admissibility judgment T =] enjoys the structural properties of entailment.

Proof. Follows immediately from the definition of admissibility as stating that if the hypotheses
are derivable relative to R, then so is the conclusion. O

If a rule r is admissible with respect to a rule set R, then - , | is equivalent to -z J. For if
Fx J, then obviously Fr ,], by simply disregarding r. Conversely, if % ,], then we may replace
any use of 7.by its expansion in terms of the rules in R. It follows by rule induction on R, r that
every derivation from the expanded set of rules R, r can be transformed into a derivation from R
alone. Consequently, if we wish to prove a property of the judgments derivable from R, 7, when
r is admissible with respect to R, it suffices show that the property is closed under rules R alone,
because its admissibility states that the consequences of rule r are implicit in those of rules R.

3.2 Hypothetical Inductive Definitions

It is useful to enrich the concept of an inductive definition to allow rules with derivability judg-
ments as premises and conclusions. Doing so lets us introduce local hypotheses that apply only
in the derivation of a particular premise, and also allows us to constrain inferences based on the
global hypotheses in effect at the point where the rule is applied.

A hypothetical inductive definition consists of a set of hypothetical rules of the following form:

TTiFJy ... TTuk Ty

i (3.9)

3.2 Hypothetical Inductive Definitions 27

The hypotheses I' are the global hypotheses of the rule, and the hypotheses I'; are the local hypotheses
of the ith premise of the rule. Informally, this rule states that] is a derivable consequence of I' when
each J; is a derivable consequence of I, augmented with the hypotheses I';. Thus, one way to show
that | is derivable from T is to show, in turn, that each J; is derivable from I'T;. The derivation
of each premise involves a “context switch” in which we extend the global hypotheses with the
local hypotheses of that premise, establishing a new set of global hypotheses for use within that
derivation.

We require that all rules in a hypothetical inductive definition be uniform in the sense that they
are applicable in all global contexts. Uniformity ensures that a rule can be presented in implicit, or
local form,

LEL o Tub
J

in which the global context has been suppressed with the understanding that the rule applies for
any choice of global hypotheses.

(3.10)

A hypothetical inductive definition is to be regarded as an ordinary inductive definition of a
formal derivability judgment I = | consisting of a finite set of basic judgments I" and a basicjudgment
J. A set of hypothetical rules R defines the strongest formal derivability judgment that is structural
and closed under uniform rules R. Structurality means that the formal derivability judgment must
be closed under the following rules:

(3.11a)
LJE]
THJ
T (3.11b)
THFK T,KE]
e (3.11c)

These rules ensure that formal derivability behaves like a hypothetical judgment. We writeI" - |
to mean that I' | isiderivable from rules R.

The principle of hypothetical rule induction is just the principle of rule induction applied to the
formal hypothetical judgment. So to show that P(I' - J) whenT k%], it is enough to show that P
is closed under the rules of R and under the structural rules.! Thus, for each rule of the form (3.9),
whether structural or in R, we must show that

if PTTyF J1)and ... and P(I'T, - J,), then P(T F J).

But this is just a restatement of the principle of rule induction given in Chapter 2, specialized to
the formal derivability judgment I' - J.

In practice we usually dispense with the structural rules by the method described in Sec-
tion 3.1.2. By proving that the structural rules are admissible any proof by rule induction may
restrict attention to the rules in R alone. If all rules of a hypothetical inductive definition are uni-
form, the structural rules (3.11b) and (3.11c) are clearly admissible. Usually, rule (3.11a) must be
postulated explicitly as a rule, rather than shown to be admissible on the basis of the other rules.

IWriting P(T I J) is a mild abuse of notation in which the turnstile is used to separate the two arguments to P for the
sake of readability.

28 3.3 General Judgments

3.3 General Judgments

General judgments codify the rules for handling variables in a judgment. As in mathematics in
general, a variable is treated as an unknown ranging over a specified set of objects. A generic judg-
ment states that a judgment holds for any choice of objects replacing designated variables in the
judgment. Another form of general judgment codifies the handling of symbolic parameters. A
parametric judgment expresses generality over any choice of fresh renamings of designated sym-
bols of a judgment. To keep track of the active variables and symbols in a derivation, we write
r }—%"X] to say that] is derivable from I' according to rules R, with objects consisting of abts over
symbols I/ and variables X'

The concept of uniformity of a rule must be extended to require that rules be closed under re-
naming and substitution for variables and closed under renaming for parameters. More precisely, if R
is a set of rules containing a free variable x of sort s then it must also contain all possible substitu-
tion instances of abts a of sort s for x, including those that contain other free variables. Similarly,
if R contains rules with a parameter u, then it must contain all instances of that rule obtained by
renaming u of a sort to any u’ of the same sort. Uniformity rules out stating a rule for a variable,
without also stating it all instances of that variable. It also rules out stating a rule for a parameter
without stating it for all possible renamings of that parameter.

Generic derivability judgment is defined by

Y[Trg] iff TR,

where Y N X = @. Evidence for generic derivability consists of a generic derivation V involving the
variables X'). So long as the rules are uniform, the choice of V does not matter, in a sense to be
explained shortly.

For example, the generic derivation v,

X nat
succ(x) nat

succ(succ(x)) nat '
isievidence for the judgment
x | x nat I—(/";AZ) succ(succ(x)) nat

provided x ¢ X'. Any other choice of x would work just as well, as long as all rules are uniform.
The generic derivability judgment enjoys the following structural properties governing the be-
havior of variables, provided that R is uniform.

Proliferation If Y | T I—;‘é J,then Y,y |T I—% IB
Renaming If),y | T I—;‘é J,then Y,y | [y < y/|T I—;‘é [y« y|]foranyy’ ¢ X).

Substitution If Y,y | T % Janda € B[X Y], then Y | {a/y}T =% {a/y}].

3.4 Generic Inductive Definitions 29

Proliferation is guaranteed by the interpretation of rule schemes as ranging over all expansions.of
the universe. Renaming is built into the meaning of the generic judgment. It is left implicit in the
principle of substitution that the substituting abt is of the same sort as the substituted variable.

Parametric derivability is defined analogously to generic derivability, albeit by generalizing
over symbols, rather than variables. Parametric derivability is defined by

VIYITHEY | it Y| THEEYY T,

where VNU = @. Evidence for parametric derivability consists of a derivation V involving the
symbols V. Uniformity of R ensures that any choice of parameter names is as good as any other;
derivability is stable under renaming.

3.4 Generic Inductive Definitions

A generic inductive definition admits generic hypothetical judgments in the premises of rules, with
the effect of augmenting the variables, as well as the rules, within those premises. A generic rule

has the form
yy1|rr1|—h yyn|rrn|—]n ‘
YVI|TH]
The variables) are the global variables of the inference, and, for each 1 < i < n, the variables)); are

the local variables of the ith premise. In most cases a rule is stated for all choices of global variables
and global hypotheses. Such rules can be given in implicit form,

y1|r1|_h yn'rnl_]n'
J

A generic inductive definition is just an ordinary inductive definition of a family of formal
generic judgments of the form) | I' = J. Formal generic judgments are identified up to renaming
of variables, so that the latter judgment is treated as identical to the judgment)’ | 5(T') F p(J) for
any renaming p :-) < V' If R is a collection of generic rules, we write Y | I' Fz | to mean that
the formal generic judgment) | T I] is derivable from rules R.

(3.12)

(3.13)

When specialized to a set of generic rules, the principle of rule induction states that to show
P(Y |IT'E])whenY |T kg], itis enough to show that P is closed under the rules R. Specifically,
for each rule in R of the form (3.12), we must show that

EPYYV1[TTiEN) oo PO Vn [TTyF Ju) then P(Y [T F).

By the identification convention (stated in Chapter 1) the property P must respect renamings of
the variables in a formal generic judgment.

To ensure that the formal generic judgment behaves like a generic judgment, we must always
ensure that the following structural rules are admissible:

- 3.14
YIT,jF] (G14)

30 3.5 Notes

ey Ao
VILT]
YI|ITH]
73}/}(Tr) (3.14¢)
Vx| [x X T E [x+x']] (3.14d)
YV,x|[TH] .
YITH] YILJH] (3.14¢)
y|r+J '
V,x|TH] acBY (3.149)

V|{a/x}TF{a/x}]

The admissibility of rule (3.14a) is, in practice, ensured by explicitly including it. The admissibility
of rules (3.14b) and (3.14c) is assured if each of the generic rules is uniform, because we may
assimilate the added variable x to the globalvariables, and the added hypothesis |, to the global
hypotheses. The admissibility of rule (3.14d) is ensured by the identification convention for the
formal generic judgment. Rule (3.14f) must be verified explicitly for each inductive definition.

The concept of a generic inductive definition extends to parametric judgments as well. Briefly,
rules are defined on formal parametric judgments of the form V || Y | T -], with symbols V, as
well as variables,). Such formal judgments are identified up to renaming of its variables and its
symbols to ensure that the meaning is independent of the choice of variable and symbol names.

3.5 Notes

The concepts of entailment and generality are fundamental to logic and programming languages.
The formulation given here builds on Martin-Lof (1983, 1987) and Avron (1991). Hypothetical and
general reasoning are consolidated into a single concept in the AUTOMATH languages (Nederpelt
etal., 1994) and in the LF Logical Framework (Harper et al., 1993). These systems allow arbitrarily
nested combinations of hypothetical and general judgments, whereas the present account con-
siders only general hypothetical judgments over basic judgment forms. On the other hand we
consider here symbols, as well as variables, which are not present in these previous accounts.
Parametric judgments are required for specifying languages that admit the dynamic creation of
“new” objects (see Chapter 34).

Exercises

3.1. Combinators are inductively defined by the rule set C given as follows:

(3.15a)

s comb

3.5 Notes 31

3.2.

3.3.

3.4.

(3.15b)

k comb

a1 comb ap comb

ap(ay;a) comb (3.15¢)

Give an inductive definition of the length of a combinator defined as the number of occur-
rences of S and K within it.

The general judgment
X1,.-.,%n | X1 comb,...,x, comb ¢ A comb

states that A is a combinator that may involve the variables xy,...,x,. Prove that if x |
x comb k¢ a; comb and a7 comb, then {a1/x}a, comb by induction on the derivation of the
first hypothesis of the implication.

Conversion, or equivalence, of combinators is expressed by the judgment A = B defined by
the rule set € extending C as follows:?

a comb (3.16a)
a=4a
a) =m
noa (3.16b)
ap=a, ap; =4z
%2 (3.16¢)
m=a; G =a
ic_ (3.16d)
a1 a2 = ay a,
a; comb a; comb
A (3.16e)
a; comb <a; comb a3 comb (3.16f)

sayagaz = (ajaz) (az4a3)

The no-doubt mysterious motivation for the last two equations will become clearer in a mo-
ment. For now, show that
x| x comb Feye skkx = x.

Show that if x | x comb ¢ a comb, then there is a combinator a’, written [x| a and called
bracket abstraction, such that
x | x combbeue d’ x = a.

Consequently, by Exercise 3.2, if 4’/ comb, then

([x]a)a" = {d"/x}a.

2The combinator ap(ay ;ay) is written a; a, for short, left-associatively when used in succession.

32

3.5.

3.6.

3.5 Notes

Hint: Inductively define the judgment
x | x comb I absy aisa’,

where x | x comb - a comb. Then argue that it defines 4’ as a binary function of x and
a. The motivation for the conversion axioms governing k and s should become clear while
developing the proof of the desired equivalence.

Prove that bracket abstraction, as defined in Exercise 3.4, is non-compositional by exhibiting a
and b such that a comb and

xy | x comby comb F¢.b comb

such that {a/y}([x]b) # [x] ({a/y}b). Hint: Consider the case that b is y.

Suggest a modification to the definition of bracket abstraction that is compositional by show-
ing under the same conditions given above that

{a/yi(x]1b) = [x] ({a/y}b).

Consider the set B[X] of abts generated by the operators ap, with arity (Exp, Exp)Exp, and
A, with arity (Exp.Exp)Exp, and possibly involving variables in X, all of which are of sort
Exp. Give an inductive definition of the judgment b closed, which specifies that b has no free
occurrences of the variables in X. Hint: it is essential to give an inductive definition of the
hypothetical, general judgment

X1,...,%y | X1 closed, ..., x, closed - b closed

in order to account for the binding of a variable by the A operator. The hypothesis that a
variable is closed seems self-contradictory in that a variable obviously occurs free in itself.
Explain why this is not the case by examining carefully the meaning of the hypothetical and
general judgments.

Part 11

Statics and Dynamics

Chapter 4

Statics

Most programming languages exhibit a phase distinction between the static and dynamic phases of
processing. The static phase consists of parsing and type checking to ensure that the program is
well-formed; the dynamic phase consists of execution of well-formed programs. A language is
said to be safe exactly when well-formed programs are well-behaved when executed.

The static phase is specified by a statics comprising a set of rules for deriving typing judgments
stating that an expression is well-formed of a certain type. Types mediate the interaction between
the constituent parts of a program by “predicting” some aspects of the execution behavior of the
parts so that we may ensure they fit together properly at run-time. Type safety tells us that these
predictions are correct; if not, the statics is considered to be improperly defined, and the language
is deemed unsafe for execution.

In this chapter we present the statics of a simple expression language, E, as an illustration of
the method that we will employ throughout this book.

4.1° Syntax

When defining a language we shall be primarily concerned with its abstract syntax, specified by a
collection of operators and their arities. The abstract syntax provides a systematic, unambiguous
account of the hierarchical and binding structure of the language, and is considered the official
presentation of the language. However, for the sake of clarity, it is also useful to specify minimal
concrete syntax conventions, without going through the trouble to set up a fully precise grammar
for it.

We will accomplish both of these purposes with a syntax chart, whose meaning is best illus-

36 4.2 Type System

trated by example. The following chart summarizes the abstract and concrete syntax of E.

Typ T == num num numbers
str str strings

Exp e == «x X variable
num| 7 | n numeral
str[s] 5" literal
plus(e;;en) e1+en addition
times(ey;e2) epxep multiplication
cat(ey;e) e1” e concatenation
len(e) le| length

let(e;;x.ep) letxbeeyine, definition

This chart defines two sorts, Typ, ranged over by 7, and Exp, ranged over by e. The chart de-
fines a set of operators and their arities. For example, it specifies that the operator 1let has arity
(Exp, Exp.Exp)Exp, which specifies that it has two arguments of sort Exp, and binds a variable of
sort Exp in the second argument.

4.2 Type System

The role of a type system is to impose constraints on the formations of phrases that are sensitive to
the context in which they occur. For example, whether the expression plus(x;num|n]) is sensible
depends on whether the variable x is restricted to have type num in the surrounding context of
the expression. This example is, in fact, illustrative of the general case, in that the only informa-
tion required about the context of an expression is the type of the variables within whose scope
the expression lies: Consequently, the statics of E consists of an inductive definition of generic
hypothetical judgments of the form
X|Thke:T,

where X is a finite set of variables, and I' is a typing context consisting of hypotheses of the form
x : T, one for each x € . We rely on typographical conventions to determine the set of variables,
using the letters x and y to stand for them. We write ¢ xI' to say that there is no assumption in T’
of the form x : T for any type 7, in which case we say that the variable x is fresh for I".

The rules defining the statics of E are as follows:

i (4.1a)
e e (4.1b)
I't num[n]: num (41c)
e
I'ep:num I Fep:num (4.1e)

't times(ep;ep) : num

4.3 Structural Properties 37

e :str T'hke:str

4.1f

Tk cat(er;ep): str a0
I'Fe:str

't len(e): num o

IF'Fep:g Toximbe:n (4.1h)

I'Flet(e;;x.e0):m

In rule (4.1h) we tacitly assume that the variable x is not already declared in I'. This condition
may always be met by choosing a suitable representative of the a-equivalence class of the let
expression.

It is easy to check that every expression has at most one type by induction on typing, whichis
rule induction applied to rules (4.1).

Lemma 4.1 (Unicity of Typing). For every typing context I and expression e, there exists at most one T
suchthatT' e : T.

Proof. By rule induction on rules (4.1), making use of the fact that variables have at most one type
in any typing context. O

The typing rules are syntax-directed in the sense that there is exactly one rule for each form
of expression. Consequently it is easy to give necessary conditions for typing an expression that
invert the sufficient conditions expressed by the corresponding typing rule.

Lemma 4.2 (Inversion for Typing). Suppose that I - e : . If e = plus(ej;ey), then T = num,
I'F ey :num, and I - e : num, and similarly for the other constructs of the language.

Proof. These may all be proved by induction on the derivation of the typingjudgmentI' Fe: 7. O

In richer languages such inversion principles are more difficult to state and to prove.

4.3 Structural Properties

The statics enjoys the structural properties of the generic hypothetical judgment.
Lemma 4.3 (Weakening). IfT' - ¢’ : ©/,thenT,x : T+ € : T for any ¢ xI and any type .

Proof. By induction on the derivation of T' I ¢’ : 7/. We will give one case here, for rule (4.1h). We
have that ¢’ = let(e;;z.ey), where by the conventions on variables we may assume z is chosen
such that ¢ zI' and z # x. By induction we have

1.Lx:tke T,
2. Tx:t,z:qFe: T,

from which the result follows by rule (4.1h). O

38 4.3 Structural Properties

Lemma 4.4 (Substitution). IfT,x: Tt e :tT'andTFe: 7, thenT + {e/x}e’ : 7.

Proof. By induction on the derivation of I', x : T - ¢’ : /. We again consider only rule (4.1h). As
in the preceding case, ¢/ = let(e;;z.ep), where z is chosen so that z # x and ¢ zI'. We have by
induction and Lemma 4.3 that

1. T {e/x}er: 7,
2.T,z:mq H{e/x}ep: 7.
By the choice of z we have
{e/x}1let(e1;z.ep) = let({e/x}er;z.{e/x}er).
It follows by rule (4.1h) that ' - {e/x}1let(e1;z.ey) : T, as desired. O

From a programming point of view, Lemma 4.3 allows us to use an expression in any context
that binds its free variables: if e is well-typed in a context I', then we may “import” it into any
context that includes the assumptions I'. In other words introducing new variables beyond those
required by an expression e does not invalidate e itself; it remains well-formed, with the same
type.! More importantly, Lemma 4.4 expresses the important concepts of modularity and linking.
We may think of the expressions e and e’ as two components of a larger system in which ¢’ is a client
of the implementation e. The client declares a variable specifying the type of the implementation,
and is type checked knowing only this information. The implementation must be of the specified
type to satisfy the assumptions of the client. If so, then we may link them to form the composite
system {e/x}e’. This implementation may itself be the client of another component, represented
by a variable y that is replaced by that component during linking. When all such variables have
been implemented, the result is a closed expression that is ready for execution (evaluation).

The converse of Lemma 4.4 is called decomposition. It states that any (large) expression can be
decomposed into a client and implementor by introducing a variable to mediate their interaction.

Lemma 4.5 (Decomposition). If T - {e/x}e’ : T/, then for every type T such that T & e : T, we have
Ix:tkeé: 7.

Proof. The typing of {¢/x}e" depends only on the type of e wherever it occurs, if at all. O

Lemma 4.5 tells us that any sub-expression can be isolated as a separate module of a larger
system. This property is especially useful when the variable x occurs more than once in ¢/, because
then one copy of e suffices for all occurrences of x in ¢’

The statics of E given by rules (4.1) exemplifies a recurrent pattern. The constructs of a language
are classified into one of two forms, the introduction and the elimination. The introduction forms
for a type determine the values, or canonical forms, of that type. The elimination forms determine
how to manipulate the values of a type to form a computation of another (possibly the same) type.

IThis point may seem so obvious that it is not worthy of mention, but, surprisingly, there are useful type systems
that lack this property. Because they do not necessarily validate the structural principle of weakening, they are called
substructural type systems.

4.4 Notes 39

In the language E the introduction forms for the type num are the numerals, and those for the type
str are the literals. The elimination forms for the type num are addition and multiplication, and
those for the type str are concatenation and length.

The importance of this classification will become clear once we have defined the dynamics
of the language in Chapter 5. Then we will see that the elimination forms are inverse to the in-
troduction forms in that they “take apart” what the introduction forms have “put together.” The
coherence of the statics and dynamics of a language expresses the concept of type safety, the subject
of Chapter 6.

4.4 Notes

The concept of the statics of a programming language was historically slow to develop, perhaps be-
cause the earliest languages had relatively few features and only very weak type systems. Statics in
the sense considered here was introduced in the definition of the Standard ML programming lan-
guage (Milner et al., 1997), building on earlier work by Church and others on the typed A-calculus
(Barendregt, 1992). The concept of introduction and elimination, and the associated inversion prin-
ciple, was introduced by Gentzen in his pioneering work on natural deduction (Gentzen, 1969).
These principles were applied to the structure of programming languages by Martin-Lof (1984,
1980).

Exercises

4.1. It is sometimes useful to give the typing judgment I’ - e : T an “operational” reading that
specifies more precisely the flow of information required to derive a typing judgment (or
determine that itis not derivable). The analytic mode corresponds to the context, expression,
and type being given, with the goal to determine whether the typing judgment is derivable.
The synthetic mode corresponds to the context and expression being given, with the goal
to find the unique type 7, if any, possessed by the expression in that context. These two
readings can be made explicit as judgments of the form e | 7, corresponding to the analytic
mode, and ¢ 1 T, corresponding to the synthetic mode.

Give a simultaneous inductive definition of these two judgments according to the following
guidelines:
(a) Variables are introduced in synthetic form.

(b) If we can synthesize a unique type for an expression, then we can analyze it with respect
to a given type by checking type equality.

(c) Definitions need care, because the type of the defined expression is not given, even
when the type of the result is given.

There is room for variation; the point of the exercise is to explore the possibilities.

40 4.4 Notes

4.2. One way to limit the range of possibilities in the solution to Exercise 4.1 is to restrict and
extend the syntax of the language so that every expression is either synthetic or analytic
according to the following suggestions:

(a) Variables are analytic.
(b) Introduction forms are analytic, elimination forms are synthetic.

() An analytic expression can be made synthetic by introducing a type cast of the form
cast[T](e) specifying that e must check against the specified type 7, which is synthe-
sized for the whole expression.

(d) The defining expression of a definition must be synthetic, but the scope of the definition
can be either synthetic or analytic.

Reformulate your solution to Exercise 4.1 to take account of these guidelines.

Chapter 5

Dynamics

The dynamics of a language describes how programs are executed. The most important way to de-
fine the dynamics of a language is by the method of structural dynamics, which defines a transition
system that inductively specifies the step-by-step process of executing a program. Another method
for presenting dynamics, called contextual dynamics, is a variation of structural dynamics in which
the transition rules are specified in a slightly different way. An equational dynamics presents the dy-
namics of a language by a collection of rules defining when one program is definitionally equivalent
to another.

5.1 Transition Systems

A transition system is specified by the following four forms of judgment:
1. s state, asserting that s is a state of the transition system.
2. s final, where s state, asserting that s is a final state.
3. s initial, where s state, asserting that s is an initial state.

4. s —» s/, where s state and s’ state, asserting that state s may transition to state s’.

In practice we always arrange things so that no transition is possible from a final state: if s final,
then there is no s’ state such that s — s’. A state from which no transition is possible is stuck.

Whereas all final states are, by convention, stuck, there may be stuck states in a transition system
that are not final. A transition system is deterministic iff for every state s there exists at most one
state s’ such that s — s/, otherwise it is non-deterministic.

A'transition sequence is a sequence of states sy, . . ., s, such that sy initial, and s; — s; 1 for every
0 < i < n. A transition sequence is maximal iff there is no s such that s, — s, and it is complete

iff it is maximal and s, final. Thus every complete transition sequence is maximal, but maximal
sequences are not necessarily complete.

42 5.2 Structural Dynamics

The iteration of transition judgment s —* s’ is inductively defined by the following rules:

s—*s (5.1a)
s— s st
— (5.1b)

When applied to the definition of iterated transition, the principle of rule induction states that
to show that P(s,s’) holds when s —* ¢/, it is enough to show these two properties of P:

1. P(s,s).
2. ifs— s’ and P(s/,s"), then P(s,s").

The first requirement is to show that P is reflexive. The second is to show that P is closed under
head expansion, or closed under inverse evaluation. Using this principle, it is easy to prove that —* is

reflexive and transitive.
The n-times iterated transition judgment s —" s, where n > 0, is inductively defined by the

following rules.

s—0s (5.2a)

n oI

s—s s s

—N (5.2b)

Theorem 5.1. For all states s and s', s —* s iff s —sk s’ for some k > 0.

Proof. From left to right, by induction on the definition of multi-step transition. From right to left,
by mathematical induction.on k > 0. O

5.2 Structural Dynamics

A structural dynamics for the language E is given by a transition system whose states are closed
expressions. All states are initial. The final states are the (closed) values, which represent the com-
pleted computations. The judgment e val, which states that e is a value, is inductively defined by
the following rules:

num| 7 | val (5.3a)
str[s] val (5.3b)

The transition judgment e — ¢’ between states is inductively defined by the following rules:

ny+ny=n
plus(num[7 |;num[n;]) — num|n |

(5.4a)

5.2 Structural Dynamics 43

e1 — e}
5.4b
plus(ej;ex) — plus(e];ep) (5.45)
epval ey — ¢
5.4c
plus(ej;ep) — plus(e;;eh) g
s$1°8p) = 5§
cat(str[s;];str[sy]) — str[s] (5:4d)
e1 — ¢}
5.4e
cat(ej;ep) — cat(e];er) (%)
epval ey — ¢
5.4f
cat(eq;ep) — cat(eg;e)) (5.46)
e1 — €}
54
let(e;x.ep) — let(ef;x.e2) (4g)
[e1 val]
(5.4h)

let(ey;x.ep) — {ey/x}er

We have omitted rules for multiplication and computing the length of a string, which follow a
similar pattern. Rules (5.4a), (5.4d), and (5.4h) are instruction transitions, because they correspond
to the primitive steps of evaluation. The remaining rules are search transitions that determine the
order of execution of instructions.

The bracketed rule, rule (5.4g), and bracketed premise on rule (5.4h), are included for a by-
value interpretation of let, and omitted for a by-name interpretation. The by-value interpretation
evaluates an expression before binding it to the defined variable, whereas the by-name interpreta-
tion binds it in unevaluated form. The by-value interpretation saves work if the defined variable
is used more than once, but wastes work if it is not used at all. Conversely, the by-name inter-
pretation saves work if the defined variable is not used, and wastes work if it is used more than
once.

A derivation sequence in a structural dynamics has a two-dimensional structure, with the
number of steps in the sequence being its “width” and the derivation tree for each step being
its “height.” For example, consider the following evaluation sequence.

let(plus(num[1];num[2]);x.plus(plus(x;nun[3]);num[4]))
let(num[3];x.plus(plus(x;nun[3]);num[4]))
plus(plus(num[3];num|[3]);num[4])
plus(num[6];num[4])

—
—
—
+— num[10]

44 5.3 Contextual Dynamics

Each step in this sequence of transitions is justified by a derivation according to rules(5.4). For
example, the third transition in the preceding example is justified by the following derivation:

plus(num[3];num[3]) — num|6] (5.42)

plus(plus(num[3];num{3]);num[4]) — plus(num[6];num{4]) (5.4b)

The other steps are similarly justified by composing rules.
The principle of rule induction for the structural dynamics of E states that to show P (e — ¢’)
when e — ¢/, it is enough to show that P is closed under rules (5.4). For example, we may show

by rule induction that the structural dynamics of E is determinate, which means that an expres-
sion may transition to at most one other expression. The proof requires a simple lemma relating
transition to values.

Lemma 5.2 (Finality of Values). For no expression e do we have both e val and e — ¢’ for some ¢’

Proof. By rule induction on rules (5.3) and (5.4). O

Lemma 5.3 (Determinacy). If e — ¢’ and e — ¢, then ¢ and e’ are a-equivalent.

Proof. By rule induction on the premises e — ¢’ and e — ¢”, carried out either simultaneously

or in either order. The primitive operators, such as addition, are assumed to have a unique value
when applied to values. O

Rules (5.4) exemplify the inversion principle of language design, which states that the elimina-
tion forms are inverse to the introduction forms of a language. The search rules determine the
principal arguments of each elimination form, and the instruction rules specify how to evaluate
an elimination form when all of its principal arguments are in introduction form. For example,
rules (5.4) specify that both arguments of addition are principal, and specify how to evaluate an
addition once its principal arguments are evaluated to numerals. The inversion principle is cen-
tral to ensuring that a programming language is properly defined, the exact statement of which is
given in Chapter 6.

5.3 Contextual Dynamics

A variant of structural dynamics, called contextual dynamics, is sometimes useful. There is no
fundamental difference between contextual and structural dynamics, rather one of style. The main
idea is to isolate instruction steps as a special form of judgment, called instruction transition, and
to formalize the process of locating the next instruction using a device called an evaluation context.
The judgment e val, defining whether an expression is a value, remains unchanged.

5.3 Contextual Dynamics 45

The instruction transition judgment e; — e; for E is defined by the following rules, together
with similar rules for multiplication of numbers and the length of a string.

L (5.50)
plus(num[m|;num[n]) — num|p] 28]
s"t=u
cat(str[s];str[t]) — str[u] (5.5b)
let(ey;x.e2) — {e1/x}e (5.5¢)

The judgment £ ectx determines the location of the next instruction to execute in a larger ex-
pression. The position of the next instruction step is specified by a “hole”, written o, into which
the next instruction is placed, as we shall detail shortly. (The rules for multiplication and length
are omitted for concision, as they are handled similarly.)

0 ectx (5.6a)

&y ectx

plus(&y;ep) ectx (5.6b)

e1 val & ectx

5.6¢c
plus(e;; &) ectx (56¢)
The first rule for evaluation contexts specifies that the next instruction may occur “here”, at the
occurrence of the hole. The remaining rules correspond one-for-one to the search rules of the
structural dynamics. For example, rule (5.6¢) states that in an expression plus(e; ;ep), if the first
argument, e1, is a value, then the next instruction step, if any, lies at or within the second argument,
€.

An evaluation context is a template that is instantiated by replacing the hole with an instruction
to be executed. The judgment ¢’ = £{e} states that the expression ¢’ is the result of filling the hole
in the evaluation context £ with the expression e. It is inductively defined by the following rules:

e = o{e} (5.7a)

ey = Er{e}
plus(e;;e;) = plus(&y ;e){e}
e1val ey = &Ee}
plus(e;; ey) = plus(er; &){e}
There is one rule for each form of evaluation context. Filling the hole with ¢ results in e; otherwise

we proceed inductively over the structure of the evaluation context.
Finally, the contextual dynamics for E is defined by a single rule:

(5.7b)

(5.7¢)

e=CE{eg} eo—e) ¢ =E{e}
er— ¢

(5.8)

46 5.4 Equational Dynamics

Thus, a transition from e to ¢’ consists of (1) decomposing e into an evaluation context and an
instruction, (2) execution of that instruction, and (3) replacing the instruction by the result of its
execution in the same spot within e to obtain ¢’.

The structural and contextual dynamics define the same transition relation. For the sake of the
proof, let us write e g ¢’ for the transition relation defined by the structural dynamics (rules (5.4)),
str

and e |T> ¢’ for the transition relation defined by the contextual dynamics (rules (5.8)).
Ctx
/ . /
Theorem 5.4. ¢ e if, and only if, e e

Proof. From left to right, proceed by rule induction on rules (5.4). It is enough in each case to
exhibit an evaluation context £ such that e = E{ep}, ¢ = E{e})}, andey — ¢|. For example, for
rule (5.4a), take £ = o, and note that e — ¢’. For rule (5.4b), we have by induction that there exists
an evaluation context & such thate; = & {ep}, e] = E1{e)}, and ey —» €. Take € = plus(&;;ep),
and note that e = plus(& ;ex){ep} and ¢’ = plus(&; ey){e)} with eg — ¢

From right to left, note that if e s ¢/, then there exists an evaluation context £ such that

e = E{ep}, ¢ = E{ey}, and ey — ¢). We prove by induction on rules (5.7) that e e e’. For
example, for rule (5.7a), ¢ is e, ¢} is ¢/, and ¢ — ¢’. Hence e g e’. For rule (5.7b), we have
that £ = plus(&1;ep), e1 = E1{eo}, e] = E1{ey}, and eg b e}. Therefore e is plus(e;;ep), €' is
plus(€] ; ez), and therefore by rule (5.4b), e '3 e.

O

Because the two transition judgments coincide, contextual dynamics can be considered an al-
ternative presentation of a structural dynamics. It has two advantages over structural dynam-
ics, one relatively superficial, one rather less so. The superficial advantage stems from writing
rule (5.8) in the simpler form

ep — €

E{eo} — E{ep}

(5.9)

This formulation is superficially simpler in that it does not make explicit how an expression is
decomposed into an evaluation context and a reducible expression. The deeper advantage of con-
textual dynamics is that all transitions are between complete programs. One need never consider a
transition between expressions of any type other than the observable type, which simplifies certain
arguments, such as the proof of Lemma 47.16.

5.4 Equational Dynamics

Another formulation of the dynamics of a language regards computation as a form of equational
deduction, much in the style of elementary algebra. For example, in algebra we may show that
the polynomials x? 4+ 2x + 1 and (x + 1)? are equivalent by a simple process of calculation and
re-organization using the familiar laws of addition and multiplication. The same laws are enough
to determine the value of any polynomial, given the values of its variables. So, for example, we

5.4 Equational Dynamics 47

may plug in 2 for x in the polynomial x> + 2 x + 1 and calculate that 22 + 2 x 2+ 1 = 9, which is
indeed (2 + 1)?. We thus obtain a model of computation in which the value of a polynomial for a
given value of its variable is determined by substitution and simplification.

Very similar ideas give rise to the concept of definitional, or computational, equivalence of expres-
sions in E, which we write as X | T+ e = ¢’ : T, where I consists of one assumption of the form
x : T for each x € X. We only consider definitional equality of well-typed expressions, so that
when considering the judgment I' - e = ¢’ : T, we tacitly assume that T e : tand T F ¢ : 7.
Here, as usual, we omit explicit mention of the variables X when they can be determined from the
forms of the assumptions I'.

Definitional equality of expressions in E under the by-name interpretation of 1et is inductively
defined by the following rules:

l'te:tT

_ 5.10
IT'Fe=e:1 (5.10a)
r— .
I'te=¢é:1
— . ! — L.
T'te=eé:1 Fﬁe:e 1T (5.100)
TFe=e": 7
I'Feg=e :num T'kFey=¢):num
1= 2 -2 (5.10d)
I'F plus(eg;ey) = plus(e];e,) :num
I'tep=ej:str They=¢):str
1=5 b, W (5.10€)
I'Fcat(er;ep) =cat(e];e)):str
Thei=e :q T,x:mbe=e T
S R . WeRRD (5.10f)
I'Flet(er;x.e0) =1let(e);x.¢5): 0
ny+ny=n
Tk plus(num|[n |;num|[n;]|) = num|[n] : num (5-108)
5178 =s
.10h
[+ cat(str[si];str][sy]) =str[s]:str (5-10h)
T'keg:g Tox:mbe:Dm (5.100)

['Flet(e;;x.e0) ={er/x}er:

Rules (5.10a) through (5.10c) state that definitional equality is an equivalence relation. Rules (5.10d)
through (5.10f) state that it is a congruence relation, which means that it is compatible with all
expression-forming constructs in the language. Rules (5.10g) through (5.10i) specify the meanings
of the primitive constructs of E. We say that rules (5.10) define the strongest congruence closed
under rules (5.10g), (5.10h), and (5.10i).

Rules (5.10) suffice to calculate the value of an expression by a deduction similar to that used
in high school algebra. For example, we may derive the equation

letxbel+2inx+3+4=10:num

48 5.5 Notes

by applying rules (5.10). Here, as in general, there may be many different ways to derive the same
equation, but we need find only one derivation in order to carry out an evaluation.

Definitional equality is rather weak in that many equivalences that we might intuitively think
are true are not derivable from rules (5.10). A prototypical example is the putative equivalence

X1 :num,Xp :num F X7 + X» = X + X7 : num, (5.11)

which, intuitively, expresses the commutativity of addition. Although we shall not prove this here,
this equivalence is not derivable from rules (5.10). And yet we may derive all of its closed instances,

ni + np = ny + nq : num, (5.12)

where 111 nat and n; nat are particular numbers.

The “gap” between a general law, such as Equation (5.11), and all of its instances, given by
Equation (5.12), may be filled by enriching the notion of equivalence to include a principle of proof
by mathematical induction. Such a notion of equivalence is sometimes called semantic equivalence,
because it expresses relationships that hold by virtue of the dynamics of the expressions involved.
(Semantic equivalence is developed rigorously for a related language in Chapter 46.)

Theorem 5.5. For the expression language E, the relation e = €’ : T holds iff there exists ey val such that
e —* egand e’ —* ¢.

Proof. The proof from right to left is direct, because every transition step is a valid equation. The
converse follows from the following, more general, proposition, which is proved by induction on
rules (5.10): if x1 : 7q,..., X : To - e =€’ : T, then when ¢; : T1,6/1 STy, ..., 8yt Ty, €l ¢ Ty, if for each
1 <i < n the expressions e; and eg evaluate to a common value v;, then there exists ey val such that

{e1,...,en/x1,..., xn}e —" ¢

and
/ / /
{e},....e,/x1,..., xn}e —" ep.

5.5 Notes

The use of transition systems to specify the behavior of programs goes back to the early work of
Church and Turing on computability. Turing’s approach emphasized the concept of an abstract
machine consisting of a finite program together with unbounded memory. Computation proceeds
by changing the memory in accordance with the instructions in the program. Much early work on
the operational semantics of programming languages, such as the SECD machine (Landin, 1965),
emphasized machine models. Church’s approach emphasized the language for expressing com-
putations, and defined execution in terms of the programs themselves, rather than in terms of aux-
iliary concepts such as memories or tapes. Plotkin’s elegant formulation of structural operational
semantics (Plotkin, 1981), which we use heavily throughout this book, was inspired by Church’s

5.5 Notes 49

and Landin’s ideas (Plotkin, 2004). Contextual semantics, which was introduced by Felleisen and
Hieb (1992), may be seen as an alternative formulation of structural semantics in which “search
rules” are replaced by “context matching”. Computation viewed as equational deduction goes
back to the early work of Herbrand, Godel, and Church.

Exercises

5.1. Prove thatif s —* s’ and s’ —* s, then s —* 5"

5.2. Complete the proof of Theorem 5.1 along the lines suggested there.
5.3. Complete the proof of Theorem 5.5 along the lines suggested there.

5.4. Prove thatif I'F e = ¢’ : T according to Rules (5.10), thenT Fe: Tand T I ¢’ : T according to
Rules (4.1).

Chapter 6

Type Safety

Most programming languages are safe (or, type safe, or strongly typed). Informally, this means that
certain kinds of mismatches cannot arise during execution. For example, type safety for E states
that it will never arise that a number is added to a string, or that two numbers are concatenated,
neither of which is meaningful.

In general type safety expresses the coherence between the statics and the dynamics. The statics
may be seen as predicting that the value of an expression will have a certain form so that the
dynamics of that expression is well-defined. Consequently, evaluation cannot “get stuck” in a
state for which no transition is possible, corresponding in implementation terms to the absence
of “illegal instruction” errors at execution time. Safety is proved by showing that each step of
transition preserves typability and by showing that typable states are well-defined. Consequently,
evaluation can never “go off into the weeds,” and hence can never encounter an illegal instruction.

Type safety for the language E is stated precisely as follows:

Theorem 6.1 (Type Safety).

1. Ife:tande — €, thene : .

2. Ife: T, then either e val, or there exists ¢’ such that e — ¢'.

The first part, called preservation, says that the steps of evaluation preserve typing; the second,
called progress, ensures that well-typed expressions are either values or can be further evaluated.
Safety is the conjunction of preservation and progress.

We say that an expression e is stuck iff it is not a value, yet there is no ¢’ such thate — ¢’. It

follows from the safety theorem that a stuck state is necessarily ill-typed. Or, putting it the other
way around, that well-typed states do not get stuck.

52 6.1 Preservation

6.1 Preservation

The preservation theorem for E defined in Chapters 4 and 5 is proved by rule induction on the
transition system (rules (5.4)).

Theorem 6.2 (Preservation). Ife: Tand e — ¢, then e’ : 7.

Proof. We will give the proof in two cases, leaving the rest to the reader. Consider rule (5.4b),

e — €]

plus(ej;ex) — plus(e];er) .

Assume that plus(ej;ey) : T. By inversion for typing, we have that T = num, ¢; : num, and ¢, : num.
By induction we have that e} : num, and hence plus(eé];e>) : num. The case for concatenation is
handled similarly.

Now consider rule (5.4h),

let(eg;x.e0) — {e1/x}er '

Assume that let(ej;x.ey) : To. By the inversion lemma 4.2, e; : 7y for some 73 such that x : 74 -
ey : Tp. By the substitution lemma 4.4 {e;/x}ep : 1o, as desired.
It is easy to check that the primitive operations are all type-preserving; for example, if a nat
and b nat and a + b = ¢, then ¢ nat.
O

The proof of preservation is naturally structured as an induction on the transition judgment,
because the argument hinges on examining all possible transitions from a given expression. In
some cases we may manage to carry out a proof by structural induction on ¢, or by an induction on
typing, but experience shows that this often leads to awkward arguments, or, sometimes, cannot
be made to work at all.

6.2 Progress

The progress theorem captures the idea that well-typed programs cannot “get stuck”. The proof
depends crucially on the following lemma, which characterizes the values of each type.

Lemma 6.3 (Canonical Forms). Ife valand e : T, then
1. If T = num, then e = num| n | for some number n.
2. If T = str, then e = stx[s| for some string s.
Proof. By induction on rules (4.1) and (5.3). O

Progress is proved by rule induction on rules (4.1) defining the statics of the language.

6.3 Run-Time Errors 53

Theorem 6.4 (Progress). Ife : T, then either e val, or there exists e’ such that e — ¢’

Proof. The proof proceeds by induction on the typing derivation. We will consider only one case,

for rule (4.1d),
e] :num ey :num

7

plus(e;;ep) : num
where the context is empty because we are considering only closed terms.

By induction we have that either ¢ val, or there exists ¢} such that e; + €}. In the latter
case it follows that plus(ej;ey) — plus(é];ez), as required. In the former we also have by
induction that either e, val, or there exists eé such that e; — 6’2. In the latter case we have that
plus(e;;ep) — plus(e; ;eé), as required. In the former, we have, by the Canonical Forms

Lemma 6.3, ¢y = num[77 | and e; = num[n;], and hence
plus(num[# |;num[n;]|) —> num|nq + 1y .

O

Because the typing rules for expressions are syntax-directed, the progress theorem could equally
well be proved by induction on the structure of e, appealing to the inversion theorem at each step
to characterize the types of the parts of e. But this approach breaks down when the typing rules
are not syntax-directed, that is, when there is more than one rule for a given expression form. Such
rules present no difficulites, so long as the proof proceeds by induction on the typing rules, and
not on the structure of the expression.

Summing up, the combination of preservation and progress together constitute the proof of
safety. The progress theorem ensures that well-typed expressions do not “get stuck” in an ill-
defined state, and the preservation theorem ensures that if a step is taken, the result remains
well-typed (with the same type). Thus the two parts work together to ensure that the statics and
dynamics are coherent, and that no ill-defined states can ever be encountered while evaluating a
well-typed expression.

6.3 Run-Time Errors

Suppose that we wish to extend E with, say, a quotient operation that is undefined for a zero
divisor. The natural typing rule for quotients is given by the following rule:

€1 :num ey :num

div(ep;ep) : num '

But the expression div(num[3];num[0]) is well-typed, yet stuck! We have two options to correct
this situation:

1. Enhance the type system, so that no well-typed program may divide by zero.

54 6.3 Run-Time Errors

2. Add dynamic checks, so that division by zero signals an error as the outcome of evaluation.

Either option is, in principle, practical, but the most common approach is the second. The first
requires that the type checker prove that an expression be non-zero before permitting it to be used
in the denominator of a quotient. It is difficult to do this without ruling out too many programs as
ill-formed. We cannot predict statically whether an expression will be non-zero when evaluated,
so the second approach is most often used in practice.

The overall idea is to distinguish checked from wunchecked errors.. An unchecked error is one
that is ruled out by the type system. No run-time checking is performed to ensure that such an
error does not occur, because the type system rules out the possibility of it arising. For example,
the dynamics need not check, when performing an addition, that its two arguments are, in fact,
numbers, as opposed to strings, because the type system ensures that this is the case. On the other
hand the dynamics for quotient must check for a zero divisor, because the type system does not
rule out the possibility.

One approach to modeling checked errors is to give an inductive definition of the judgment
e err stating that the expression e incurs a checked run-time error, such as division by zero. Here
are some representative rules that would be present in a full inductive definition of this judgment:

e1 val

div(‘ep;num[0]) err (6.1a)
ey err b
div(ep;ep) err (6.1b)
e val ey err 610)

div(ep ;ep) err

Rule (6.1a) signals an error condition for division by zero. The other rules propagate this error
upwards: if anevaluated sub-expression is a checked error, then so is the overall expression.

Once theerror judgmentis available, we may also consider an expression, error, which forcibly
induces an error, with the following statics and dynamics:

(6.2a)

I'kerror:t
(6.2b)
error err

The preservation theorem is not affected by checked errors. However, the statement (and proof)
of progress is modified to account for checked errors.

Theorem 6.5 (Progress With Error). If e : T, then either e err, or e val, or there exists ¢’ such that
e— ¢,

Proof. The proof is by induction on typing, and proceeds similarly to the proof given earlier, except
that there are now three cases to consider at each point in the proof. O

6.4 Notes 55

6.4 Notes

The concept of type safety was first formulated by Milner (1978), who invented the slogan “well-
typed programs do not go wrong.” Whereas Milner relied on an explicit notion of “going wrong”
to express the concept of a type error, Wright and Felleisen (1994) observed that we can instead
show that ill-defined states cannot arise in a well-typed program, giving rise to the slogan “well-
typed programs do not get stuck.” However, their formulation relied on an analysis showing
that no stuck state is well-typed. The progress theorem, which relies on the characterization of
canonical forms in the style of Martin-Lof (1980), eliminates this analysis.

Exercises

6.1. Complete the proof of Theorem 6.2 in full detail.
6.2. Complete the proof of Theorem 6.4 in full detail.

6.3. Give several cases of the proof of Theorem 6.5 to illustrate how checked errors are handled
in type safety proofs.

Chapter 9

System T of Higher-Order Recursion

System T, well-known as Godel’s T, is the combination of function types with the type of natural
numbers. In contrast to E, which equips the naturals with some arbitrarily chosen arithmetic
operations, the language T provides a general mechanism, called primitive recursion, from which
these primitives may be defined. Primitive recursion captures the essential inductive character of
the natural numbers, and hence may be seen as an intrinsic termination proof for each program in
the language. Consequently, we may only define fotal functions in the language, those that always
return a value for each argument. In essence every program in T “comes equipped” with a proof
of its termination. Although this may seem like a shield against infinite loops, it is also a weapon
that can be used to show that some programs cannot be written in T. To do so would demand
a master termination proof for every possible program in the language, something that we shall
prove does not exist.

9.1 Statics

The syntax of T is given by the following grammar:

Typ T == nat nat naturals
arr(T ;7)) 71— T function

Exp e u= «x X variable
z z Zero
s(e) s(e) successor
rec[T|(e;ep;x.y.e1) rece{z—ey|s(x)withy —ei}

recursion

Alt](x.e) A(x:T)e abstraction
ap(ej;er) e1(er) application

We write 7 for the expression s(...s(z)), in which the successor is applied n > 0 times to zero.
The expression rec[T](e;ep;x.y.e;) is called the recursor. It represents the e-fold iteration of the

74 9.2 Dynamics

transformation x . y . e; starting from ey. The bound variable x represents the predecessor and the
bound variable y represents the result of the x-fold iteration. The “with” clause in the concrete
syntax for the recursor binds the variable y to the result of the recursive call, as will become clear
shortly.

Sometimes the iterator, iter[T](e;ep;y .e1), is considered as an alternative to the recursor. It
has essentially the same meaning as the recursor, except that only the result of the recursive call is
bound to y in ¢, and no binding is made for the predecessor. Clearly the iterator is a special case
of the recursor, because we can always ignore the predecessor binding. Conversely, the recursor is
definable from the iterator, provided that we have product types (Chapter 10) at our disposal. To
define the recursor from the iterator, we simultaneously compute the predecessor while iterating
the specified computation.

The statics of T is given by the following typing rules:

4 (9.1a)
Ix:tkbx:71
(9.1b)
I'-z:nat
I['-e:nat
I'ks(e):nat (©-1c)
I'etnat I'Fey:T I,x:nat,y:the:t
(9.1d)
I'trec[T|(e;ep;x.y.9) T
Ix:mke:n
Al l(x.e):arr(T; ™) ©.1e)
IT'teytarr(m;7) The:Dm ©.19
I'tap(e;;en): T
As usual, admissibility of the structural rule of substitution is crucially important.
Lemma9.1. IfTFe:tandl,x:the 7, thenT + {e/x}e : T'.
9.2 Dynamics
The closed values of T are defined by the following rules:
(9.2a)
z val
[e val]
l 9.2b
s(e) val ©.20)
(9.20)

AlT](x.e) val

9.2 Dynamics 75

The premise of rule (9.2b) is included for an eager interpretation of successor, and excluded fora
lazy interpretation.
The transition rules for the dynamics of T are as follows:

[e — €]
s(e) — s(e) (9.32)
e1 — ¢}
9.3b
ap(ei;ep) — ap(e];er) (9.3b)
e1val ey r— eé
! (9.3¢)
ap(e1;ex) —> ap(eq;ey)
[e2 val]
ap(A[T](x.e);e)— {ex/x}e (9.3d)
er— e
rec[T](e;eq;x.y.eq) — rec[T](e ;ep;x.y.e1) (9.3e)
rec[T](z;e0;X.y.e1) — € (9.3f)
s(e) val
(9.3g)

rec[T](s(e);e0;x.y.e1) — {e,rec[T]|(e;e0;x.y.e1)/x,y}ter

The bracketed rules and premises are included for an eager successor and call-by-value applica-
tion, and omitted for a lazy successor and call-by-name application. Rules (9.3f) and (9.3g) specify
the behavior of the recursor on z and s(e). In the former case the recursor reduces to ey, and in
the latter case the variable x is bound to the predecessor e and y is bound to the (unevaluated)
recursion on e. If the value of y is not required in the rest of the computation, the recursive call is
not evaluated.

Lemma 9.2 (Canonical Forms). Ife : T and e val, then
1. If T = nat, then either e = z or e = s(€’) for some ¢’.

2. Ift=7 — T, thene =) (x: 7y) ey for some e;.

Theorem 9.3 (Safety). 1. Ife:tande— ¢, thene' : .

2. Ife: T, then either e val or e — ¢’ for some ¢’.

76 9.3 Definability

9.3 Definability

A mathematical function f : N — IN on the natural numbers is definable in T iff there exists an
expression e of type nat — nat such that for every n € N,

ep(n) = f(n) : nat. (9.4)

That is, the numeric function f : N — IN is definable iff there is an expression ¢ of type nat — nat
such that, when applied to the numeral representing the argument n € IN, the application is
definitionally equal to the numeral corresponding to f(n) € IN.

Definitional equality for T, written ' - e = ¢’ : 7, is the strongest congruence containing these

axioms:
INx:mkFe:mn ThHe:m

9.5a

TFap(A[m](x.e2):01) = {er/x}er ©.52)
I'tey:T I',x:nat,y:7Thkej:T

0 ey ! (9.5b)
I'rec[T](z;€0;x.y.0) =€y : T
I'tey: T T,x:nat,y:Thke:T

0 ety ! (9.50)

I'trec[t](s(e);ep;x.y.e1)={erec[t|(e;ep;x.y.e1)/x,yte1: 7
For example, the doubling function, d(n) = 2 x n, is definable in T by the expression ¢; :
nat — nat given by
A(x:nat)recx{z—z|s(u)withv—s(s(v))}.

To check that this defines the doubling function, we proceed by induction on # € IN. For the basis,
it is easy to check that -
e4(0) =0 nat.

For the induction, assume that

es(7) =d(n) : nat.
Then calculate using the rules of definitional equality:
a1 = s(s(ea(7)))
s(s(2xmn))
2x (n+1)

=d(n+1).

As another example, consider the following function, called Ackermann’s function, defined by
the following equations:

A(0,n)=n+1
A(m+1,0) = A(m,1)
Am+1,n+1) = A(m,A(m+1,n)).

9.4 Undefinability 77

The Ackermann function grows very quickly. For example, A(4,2) =~ 293¢ which is often cited

as being larger than the number of atoms in the universe! Yet we can show that the Ackermann
function is total by a lexicographic induction on the pair of arguments (1, 7n). On each recursive
call, either m decreases, or else m remains the same, and # decreases, so inductively the recursive
calls are well-defined, and hence so is A(m, n).

A first-order primitive recursive function is a function of type nat — nat that is defined using the
recursor, but without using any higher order functions. Ackermann’s function is defined so that it
is not first-order primitive recursive, but is higher-order primitive recursive. The key to showing
that it is definable in T is to note that A(m + 1,n) iterates n times the function A(m,—), starting
with A(m,1). As an auxiliary, let us define the higher-order function

it : (nat — nat) — nat — nat — nat
to be the A-abstraction
A(f:nat - nat)A(n:nat)recn{z<—id|s(.)withg<> fog},

where id = A (x:nat) x is the identity, and fog = A (x:nat) f(g(x)) is the composition of f
and g. It is easy to check that

it(f)(m)(m) Ef(”)(ﬁ) : nat,

where the latter expression is the n-fold composition of f starting with 7. We may then define the
Ackermann function
e; : nat — nat — nat

to be the expression
A(m:nat)recm{z—s|s(_)withf < A (n:nat)it(f)(n)(f(1))}.

It is instructive to check that the following equivalences are valid:

ea(0)(7) =s(7) 9.6)
ea(m+1)(0) =e,(m)(1) 9.7)
ea(MFT)(AFT) = ea() (ea(s(7)) (7). 9.8)

That is, the Ackermann function is definable in T.

9.4 Undefinability

It is impossible to define an infinite loop in T.
Theorem 9.4. Ife : T, then there exists v val such thate = v : T.

Proof. See Corollary 46.15. O

78 9.4 Undefinability

Consequently, values of function type in T behave like mathematical functions: ife: 73 — .
and e; : Ty, then e(e;) evaluates to a value of type 17,. Moreover, if e : nat, then there exists a
natural number n such that e = 7 : nat.

Using this, we can show, using a technique called diagonalization, that there are functions on the
natural numbers that are not definable in T. We make use of a technique, called Godel-numbering,
that assigns a unique natural number to each closed expression of T. By assigning a unique num-
ber to each expression, we may manipulate expressions as data values in T so that T is able to
compute with its own programs.'

The essence of Godel-numbering is captured by the following simple construction on abstract
syntax trees. (The generalization to abstract binding trees is slightly more difficult, the main com-
plication being to ensure that all a-equivalent expressions are assigned the same Godel number.)
Recall that a general ast a has the form o(4y, ...,a;), where o is an operator of arity k. Enumer-
ate the operators so that every operator has an indexi € IN, and let m be the index of o in this
enumeration. Define the Godel number "a™ of a to be the number

2m3msn L pk,

where py is the kth prime number (so that po = 2, p1 = 3, and so on), and n;, ..., n; are the
Godel numbers of ay, ..., i, respectively. This procedure assigns a natural number to each ast.
Conversely, given a natural number, n, we may apply the prime factorization theorem to “parse”
n as a unique abstract syntax tree. (If the factorization is not of the right form, which can only be
because the arity of the operator does not match the number of factors, then n does not code any
ast.)

Now, using this representation, we may define a (mathematical) function f,;,;;, : IN = IN — IN
such that, for any e : nat — nat, f,,;,("e")(m) = n iff e(7) = 7 : nat.” The determinacy of the
dynamics, together with Theorem 9.4, ensure that f,,,;, is a well-defined function. It is called the
universal function for T because it specifies the behavior of any expression e of type nat — nat.
Using the universal function, let us define an auxiliary mathematical function, called the diagonal
function 6 : IN ' — IN, by the equation é(m) = fyiy(m)(m). The § function is chosen so that
5("e) = niffe(Tel) = 7 : nat. (The motivation for its definition will become clear in a moment.)

The function f,,,;, is not definable in T. Suppose that it were definable by the expression e,;,;,,
then the diagonal function § would be definable by the expression

€5 = A(m:nat)euniv(mﬂm)'
But in that case we would have the equations

eé(l_cﬁ) Eeuniv(l— —I)(?>

Now let ey be the function expression

A(x:nat)s(es(x)),

IThe same technique lies at the heart of the proof of Godel’s celebrated incompleteness theorem. The undefinability of
certain functions on the natural numbers within T may be seen as a form of incompleteness like that considered by Godel.
2The value of f,;, (k) (1) may be chosen arbitrarily to be zero when k is not the code of any expression e.

9.5 Notes 79

so that we may deduce

en(Ten) = s(es(Ten)

But the termination theorem implies that there exists 1 such that ex(Tes ') = 7, and hence we
have 71 = s(7), which is impossible.

We say that a language L is universal if it is possible to write an interpreter for £ in £ itself.
It is intuitively clear that f,,;; is computable in the sense that we can define it in some sufficiently
powerful programming language. But the preceding argument shows that T is not up to the
task; it is not a universal programming language. Examination of the foregoing proof reveals an
inescapable tradeoff: by insisting that all expressions terminate, we necessarily lose universality—
there are computable functions that are not definable in the language.

9.5 Notes

System T was introduced by Godel in his study of the consistency of arithmetic (Godel, 1980). He
showed how to “compile” proofs in arithmeticinto well-typed terms of system T, and to reduce
the consistency problem for arithmetic to the termination of programs in T. It was perhaps the first
programming language whose design was directly influenced by the verification (of termination)
of its programs.

Exercises

9.1. Prove Lemma 9.2.
9.2. Prove Theorem 9.3.

9.3. Attempt to prove that if e : nat is closed, then there exists n such that e —* 7 under the
eager dynamics. Where does the proof break down?

9.4. Attempt to prove termination for all well-typed closed terms: if e : 7, then there exists ¢’ val
such thate —* ¢’. You are free to appeal to Lemma 9.2 and Theorem 9.3 as necessary. Where
does the attempt break down? Can you think of a stronger inductive hypothesis that might
evade the difficulty?

9.5. Define a closed term e of type T in T to be hereditarily terminating at type T by induction on
the structure of T as follows:

(a) If T = nat, then e is hereditarily terminating at type 7 iff e is terminating (that is, iff
e —* 7 for some n.)

(b) If T = 71 = T, then e is hereditarily terminating iff when e; is hereditarily terminating
at type 11, then e(e1) is hereditarily terminating at type .

80

9.6.

9.7.

9.5 Notes

Attempt to prove hereditary termination for well-typed terms: if e : T, then e is hereditarily
terminating at type 7. The stronger inductive hypothesis bypasses the difficulty that arose
in Exercise 9.4, but introduces another obstacle. What is the complication? Can you think of
an even stronger inductive hypothesis that would suffice for the proof?

Show that if e is hereditarily terminating at type 7, ¢’ : 7, and ¢/ — ¢, then ¢’ is also hered-

itarily terminating at type 7. (The need for this result will become clear in the solution to
Exercise 9.5.)

Define an open, well-typed term
X1:T, .-, Xn:Tple:T

to be open hereditarily terminating iff every substitution instance
{e1,...,en/x1,...,xn}e

is closed hereditarily terminating at type T when each e; is closed hereditarily terminating at
type 7; for each 1 < i < n. Derive Exercise 9.3 from this result.

Chapter 10

Product Types

The binary product of two types consists of ordered pairs of values, one from each type in the or-
der specified. The associated elimination forms are projections, which select the first and second
component of a pair. The nullary product, or unit, type consists solely of the unique “null tuple”
of no values, and has no associated elimination form. The product type admits both a lazy and an
eager dynamics. According to the lazy dynamics, a pair is a value without regard to whether its
components are values; they are not evaluated until (if ever) they are accessed and used in another
computation. According to the eager dynamics, a pair is a value only if its components are values;
they are evaluated when the pair is created.

More generally, we may consider the finite product, (7;);c;, indexed by a finite set of indices I.
The elements of the finite product type are I-indexed tuples whose ith component is an element
of the type 1, for each i € I. The components are accessed by I-indexed projection operations,
generalizing the binary case. Special cases of the finite product include n-tuples, indexed by sets
of the form I = {0,...,n — 1}, and labeled tuples, or records, indexed by finite sets of symbols.
Similarly to binary products, finite products admit both an eager and a lazy interpretation.

10.1 Nullary and Binary Products

The abstract syntax of products is given by the following grammar:

Typ T = unit unit nullary product
prod(T;T2) T X T» Dbinary product

Exp ¢ == triv () null tuple
pair(ej;ep) (ey,ex) ordered pair
pr[l](e) e-1 left projection
prir](e) e-r right projection

There is no elimination form for the unit type, there being nothing to extract from the null tuple.

84 10.1 Nullary and Binary Products

The statics of product types is given by the following rules.

(10:1a)
I {):unit
I'Fer:ym The:nm
10.1
FF<€1,€2>:T1><T2 (O b)
T'Fe:m x1m
TFe1l:n (10.1¢)
I'Fe:m x1m
_= 10.1
e-r: T (0 d)
The dynamics of product types is defined by the following rules:
10.2a
() val ()
[81 val] [62 val] (10 2b)
<€1, 82> val '
[e e 1020
2c
(e1,e2) = (€], 2)
[ejval ey — ¢} |
(10.2d)
(e1,€2) > (e1, &)
er— e
___ 10.2
e-lr—e-1 (10.2¢)
er— e
—_— (10.2f)
eer—e-r
le1 val] [ep val]
(e1,€2) - 1> e (10.2g)
le1 val] [ep val]
N L o (10.2h)

(e1,e2) ‘T > e

The bracketed rules and premises are omitted for a lazy dynamics, and included for an eager
dynamics of pairing.

The safety theorem applies to both the eager and the lazy dynamics, with the proof proceeding
along similar lines in each case.

10.2 Finite Products 85

Theorem 10.1 (Safety). 1. Ife: tande v ¢, thene : T.
2. Ife: T then either e val or there exists ¢’ such that e — ¢’

Proof. Preservation is proved by induction on transition defined by rules (10.2). Progress is proved
by induction on typing defined by rules (10.1). O

10.2 Finite Products

The syntax of finite product types is given by the following grammar:

Typ 7 = prod(i—=T|ic€l) (s product
Exp e == tpl(i—e|icl) (i—e|icl) tuple
prli](e) e-i projection

The variable I stands for a finite index set over which products are formed. The type prod(i — T |
i €1),or (1;)cs for short, is the type of I-tuples of expressions e; of type T;, one foreachi € I. An
I-tuple has the form tpl(i<—e; | i € I), or (i<>e; | i € I) for short, and for each i € I the ith
projection from an I-tuple e is written pr[i](e), or e - i for short.

When I = {ij,...,i, }, the I-tuple type may be written in the form
(=T, i Ty)
where we make explicit the association of a type to each index i € I. Similarly, we may write
(i1 —=e1, ..., in—en)

for the I-tuple whose ith component is e;.

Finite products generalize empty and binary products by choosing I to be empty or the two-
element set { 1, r }, respectively. In practice I is often chosen to be a finite set of symbols that serve
as labels for the components of the tuple to enhance readability.

The statics of finite products is given by the following rules:

I'ter:yg ... Thre,: 1y
: : . : (10.3a)
FE(ip—=er, ..., in=en): (i1 =T, .. 0 Ty)
Tke:{(ii—=T,...,.ipn 1) (1<k<n) (103b)

FFE'ikZTk

In rule (10.3b) the index iy € I is a particular element of the index set I, whereas in rule (10.3a), the
indices iy, .. .,i, range over the entire index set I.
The dynamics of finite products is given by the following rules:

[ezval ... ey vall
<11 %e],...,in<—>en> Val

(10.4a)

86 10.3 Primitive Mutual Recursion

epval ... ej_jval ej=e; ... i1 =¢j1
ror r_
e]' — ej ej+1 — €]+1 oo en - en (104b)

(i1 —=e1, ... in—eq) — (i1—=e,... in—ep)

e— e
— (10.4¢)
e-1——e -1
[<11 ‘—)61,...,in‘—>€n> val]
(10.4d)

(i1 <>e1,...,ipey) i —> e

As formulated, rule (10.4b) specifies that the components of a tuple are evaluated in some sequen-
tial order, without specifying the order in which the components are considered. It is not hard, but
a bit technically complicated, to impose an evaluation order by imposing a total ordering on the
index set and evaluating components according to this ordering.

Theorem 10.2 (Safety). Ife : T, then either e val or there exists ¢’ such that ¢’ : Tand e — ¢'.

Proof. The safety theorem is decomposed into progress and preservation lemmas, which are proved
as in Section 10.1. O

10.3 Primitive Mutual Recursion

Using products we may simplify the primitive recursion construct of T so that only the recursive
result on the predecessor, and not the predecessor itself, is passed to the successor branch. Writing
this as iter[T](e;ep; x.e;), we may define rec[T](e;ep;x.y.e1) to be ¢ - r, where ¢ is the
expression

itere{z<> (z,e0) |s(x') = (s(x'-1),{x"-1,x" -x/x,y}er)}.

The idea is to compute inductively both the number n and the result of the recursive call on #,
from which we can compute both + 1 and the result of another recursion using e;. The base case
is computed directly as the pair of zero and ¢. It is easy to check that the statics and dynamics of
the recursor are preserved by this definition.

We may also use product types to implement mutual primitive recursion, in which we define two

functions simultaneously by primitive recursion. For example, consider the following recursion
equations defining two mathematical functions on the natural numbers:

e(0) =1
0(0)=0
e(n+1) =o(n)
o(n+1) =e(n)

Intuitively, e(n) is non-zero if and only if 1 is even, and o(n) is non-zero if and only if 7 is odd.

10.4 Notes 87

To define these functions in T enriched with products, we first define an auxiliary function ego
of type
nat — (nat X nat)

that computes both results simultaneously by swapping back and forth on recursive calls:
A(n:nat)itern{z<— (1,0)|s(b)—= (b-r,b-1)}.
We may then define eev and ey 4 as follows:

eey = A(n:nat)eeo(n)-1

L

eod = A(m:nat)eeo(n)-r.

10.4 Notes

Product types are the most basic form of structured data: All languages have some form of product
type, but often in a form that is combined with other, separable, concepts. Common manifestations
of products include: (1) functions with “multiple arguments” or “multiple results”; (2) “objects”
represented as tuples of mutually recursive functions; (3) “structures,” which are tuples with mu-
table components. There are many papers on finite product types, which include record types
as a special case. Pierce (2002) provides a thorough account of record types, and their subtyping
properties (for which, see Chapter 24).- Allen et al. (2006) analyzes many of the key ideas in the
framework of dependent type theory.

Exercises

10.1. A database schema may be thought of as a finite product type (T);c;, in which the columns, or
attributes. are labeled by the indices I whose values are restricted to atomic types, such as nat
and str. A value of a schema type is called a tuple, or instance, of that schema. A database
may be thought of as a finite sequence of such tuples, called the rows of the database. Give a
representation of a database using function, product, and natural numbers types, and define
the project operation that sends a database with columns I to a database with columns I’ C T
by restricting each row to the specified columns.

10.2. Rather than choose between a lazy and an eager dynamics for products, we can instead
distinguish two forms of product type, called the positive and the negative. The statics of the
negative product is given by rules (10.1), and the dynamics is lazy. The statics of the positive
product, written 73 ® 1, is given by the following rules:

I'kFei:m The:p
r}—®(€1,‘€2)371®72

(10.5a)

I'kFey:m®m Ty :mx:mle:t
Ik split(eg;x1,x2.€): 7T

(10.5b)

88

10.3.

10.4 Notes

The dynamics of fuse, the introduction form for the positive pair, is eager, essentially be-
cause the elimination form, split, extracts both components simultaneously.

Show that the negative product is definable in terms of the positive product using the unit
and function types to express the lazy dynamics of negative pairing. Show that the positive
product is definable in terms of the negative product, provided that we have at our disposal a
let expression with a by-value dynamics so that we may enforce eager evaluation of positive
pairs.

Specializing Exercise 10.2 to nullary products, we obtain a positive and a negative unit type.
The negative unit type is given by rules (10.1), with no elimination forms and one introduc-
tion form. Give the statics and dynamics for a positive unit type, and show that the positive
and negative unit types are inter-definable without any further assumptions.

Chapter 11

Sum Types

Most data structures involve alternatives such as the distinction between a leaf and an interior
node in a tree, or a choice in the outermost form of a piece of abstract syntax. Importantly, the
choice determines the structure of the value. For example, nodes have children, but leaves do not,
and so forth. These concepts are expressed by sum types, specifically the binary sum, which offers a
choice of two things, and the nullary sum, which offers a choice of no things. Finite sums generalize
nullary and binary sums to allow an arbitrary number of cases indexed by a finite index set. As
with products, sums come in both eager and lazy variants, differing in how values of sum type are
defined.

11.1 Nullary and Binary Sums

The abstract syntax of sums is given by the following grammar:

Typ T == void void nullary sum
sum(T ;T2) T+ 0 binary sum

Exp e u= case[T](e) casee{} null case
in[1l][7;m](e) l-e left injection
in[r]|[71;m](e) r-e right injection
case(e;xj.ep;x2.6p) casee{l-x;—ej|r-xy— ey} caseanalysis

The nullary sum represents a choice of zero alternatives, and hence admits no introduction form.
The elimination form, casee { }, expresses the contradiction that e is a value of type void. The
elements of the binary sum type are labeled to show whether they are drawn from the left or the
right summand, either 1 - ¢ or r - e. A value of the sum type is eliminated by case analysis.

The statics of sum types is given by the following rules.

I'e:void
I'tcasee{}: T

(11.1a)

90 11.1 Nullary and Binary Sums

'kFe:n

11.1b
'Fle:m+m (:
I'te: 1
11.1
I'Fre:m+ 1w (X
I'Fe:n+n T'mp:nbe:t In:nlhe:t (11.1d)

I'tcasee{l-x1—>ej|r-xp0e}:T

For the sake of readability, in rules (11.1b) and (11.1c) we have written 1 - e and r - e in place of
the abstract syntax in[1][7 ;2 |(e) and in[r|[7; ™2 |(e), which includes the types 71 and T
explicitly. In rule (11.1d) both branches of the case analysis must have the same type. Because
a type expresses a static “prediction” on the form of the value of an expression, and because an
expression of sum type could evaluate to either form at run-time, we must insist that both branches
yield the same type.

The dynamics of sums is given by the following rules:

er—e
11.2a
casee{ } — casee {} ()
¢ val (11.2b)
1:eval
exall (11.2¢)
r-eval
[er— e]
PN 11.2d
1-e— l.el ()
[er— e]
ST (11.2¢)
r-e—>r-e
er— e
; (11.2f)
casee{l-x; el |r-xp—e}r—>casee {1-x1e|r - x2e}
[e val]
casel-e{l-x; e |r-xp—e} — {e/x1}e (11.2g)
[e val]
(11.2h)

caser-e{l-x;—ej|r-xp e} — {e/x2}er

The bracketed premises and rules are included for an eager dynamics, and excluded for a lazy
dynamics.
The coherence of the statics and dynamics is stated and proved as usual.

11.2 Finite Sums 91

Theorem 11.1 (Safety). 1. Ife: tande v ¢, thene : T.

2. Ife: T, then either e val or e — €’ for some ¢’

Proof. The proof proceeds by induction on rules (11.2) for preservation, and by induction on
rules (11.1) for progress. O

11.2 Finite Sums

Just as we may generalize nullary and binary products to finite products, so may we also gener-
alize nullary and binary sums to finite sums. The syntax for finite sums is given by the following
grammar:

Typ 7 == sum(i—T|iel) [Tilicr sum
Exp e == in[i][T](e) i-e injection
case(e;i<—x;.e; | i€]) casee{i-x;<—e;|ic I} caseanalysis

The variable I stands for a finite index set over which sums are formed. The notation T stands for
a finite function (i < 7T;);c; for some index set I. The type sum(i<7; | i € I), or [1;];c; for short,
is the type of I-classified values of the form in[i]|[I](e;), ori-e; for short, where i € I and ¢; is
an expression of type 7;. An I-classified value is analyzed by an I[-way case analysis of the form
case(e;i—x;.e; |1 €1).

When I = {1ij,...,i, }, the type of I-classified values may be written

[il‘—>T1,...,in"—>Tn]

specifying the type associated with each class I; € I. Correspondingly, the I-way case analysis has
the form

caseedi] - Xy —er | ... |in-xn ey}
Finite sums generalize empty and binary sums by choosing I to be empty or the two-element set
{1, 1}, respectively. In practice I is often chosen to be a finite set of symbols that serve as names
for the classes so as to enhance readability.

The statics of finite sums is defined by the following rules:

Tke: (1<k<n)

11.3a
Ttig-e:[ii =T, ... 0 T ()
Tre:fh—=Tm,...,in—>1| Lxi:mgbe:t ... Txy,:thbey:t (11.3b)
[k casee{iy-x1<=er|...lin - xn—en}:T '
These rules generalize the statics for nullary and binary sums given in Section 11.1.
The dynamics of finite sums is defined by the following rules:
le val] (11.4)

i-eval

92 11.3 Applications of Sum Types

er— e
7 (11.4b)
ire—>i-e
er— ¢
11.4c
casee{i-x;— e |i €} — casee {i-x;—e; |iel} ()
i-eval
casei-e{i-x;—e |ie€l}— {e/x;}e; (11.4d)
These again generalize the dynamics of binary sums given in Section 11.1.
Theorem 11.2 (Safety). If e : T, then either e val or there exists €' : T such that e — ¢’
Proof. The proof is like that for the binary case, as described in Section 11.1. O

11.3 Applications of Sum Types

Sum types have many uses, several of which we outline here. More interesting examples arise
once we also have inductive and recursive types, which are introduced in Parts VI and Part VIII.

11.3.1 Void and Unit

It is instructive to compare the types unit and void, which are often confused with one another.
The type unit has exactly one element, (), whereas the type void has no elements at all. Con-
sequently, if e : unit, then if e evaluates to a value, that value is () — in other words, e has no
interesting value. On the other hand, if e : void, then e must not yield a value; if it were to have a
value, it would have to be a value of type void, of which there are none. Thus what is called the
void type in many languages is really the type unit because it indicates that an expression has no
interesting value, not that it has no value at all!

11.3.2 Booleans

Perhaps the simplest example of a sum type is the familiar type of Booleans, whose syntax is given
by the following grammar:

Typ T == bool bool booleans
Exp e == true true truth
false false falsity

if(e;e;;ey) ifethenejelsee, conditional

The expression if(e;e; ; ep) branches on the value of e : bool.
The statics of Booleans is given by the following typing rules:

(11.5a)
T true: bool

11.3 Applications of Sum Types 93

(11.5b)
't false : bool
l"l—e:bo.ol I'kFeg:t They: T (11.50)
'+ ifethenejelseey : T
The dynamics is given by the following value and transition rules:

(11.6a)

true val
- (11.6b)

false val
if truethene; elseey — €1 (11.6c)
if falsethenejelseey —> € (11.6d)

er— e
\ (11.6e)

if etheneq elseey — if e theneq elseep
The type bool is definable in terms of binary sums and nullary products:

bool = unit +unit (11.7a)
true =1- () (11.7b)
false =r- () (11.7¢)
ifetheneelseey; = casee{l-x; e |r-xp ey} (11.7d)

In the last equation above the variables x; and x, are chosen arbitrarily such that x; & ¢; and
xy ¢ ep. It is a simple matter to check that the readily-defined statics and dynamics of the type
bool are engendered by these definitions.

11.3.3 Enumerations

More generally, sum types can be used to define finite enumeration types, those whose values are
one of an explicitly given finite set, and whose elimination form is a case analysis on the elements
of that set. For example, the type suit, whose elements are &, <, ©, and #, has as elimination
form the case analysis

casee{d—ey | O —e1 | Ve | B —e3},

which distinguishes among the four suits. Such finite enumerations are easily representable as
sums. For example, we may define suit = [unit] ¢, where I = { &, {, O, & } and the type family
is constant over this set. The case analysis form for a labeled sum is almost literally the desired

94 11.3 Applications of Sum Types

case analysis for the given enumeration, the only difference being the binding for the uninteresting
value associated with each summand, which we may ignore.

Other examples of enumeration types abound. For example, most languages have a type char
of characters, which is a large enumeration type containing all possible Unicode (or other such
standard classification) characters. Each character is assigned a code (such as UTF-8) used for in-
terchange among programs. The type char is equipped with operations such as chcode(n) that
yield the char associated to the code 1, and codech(¢) that yield the code of character c. Using the
linear ordering on codes we may define a total ordering of characters, called the collating sequence
determined by that code.

11.3.4 Options

Another use of sums is to define the option types, which have the following syntax:

Typ T = opt(T) T opt option
Exp e = null null nothing
just(e) just(e) something
ifnull{t](e;e1;x.ex) ifnulle{null < e |just(x)<— e}
null test

The type opt(T) represents the type of “optional” values of type 7. The introduction forms are
null, corresponding to “no value”, and just(e), corresponding to a specified value of type 7. The
elimination form discriminates between the two possibilities.

The option type is definable from sums and nullary products according to the following equa-
tions:!

Topt =unit+ 71 (11.8a)

null =1-() (11.8b)

just(e)=r-e (11.8¢)

ifnulle{null <>e; | just(xp) < ep} =casee{l - _—ej|r-xp e} (11.8d)

We leave it to the reader to check the statics and dynamics implied by these definitions.

The option type is the key to understanding a common misconception, the null pointer fallacy.
This fallacy arises from two related errors. The first error is to deem values of certain types to
be mysterious entities called pointers. This terminology arises from suppositions about how these
values might be represented at run-time, rather than on their semantic role in the language. The
second error compounds the first. A particular value of a pointer type is distinguished as the null
pointer, which, unlike the other elements of that type, does not stand for a value of that type at all,
but rather rejects all attempts to use it.

To help avoid such failures, such languages usually include a function, say null : T — bool,
that yields true if its argument is null, and false otherwise. Such a test allows the programmer to

1We often write an underscore in place of a bound variable that is not used within its scope.

11.4 Notes 95

take steps to avoid using null as a value of the type it purports to inhabit. Consequently, programs
are riddled with conditionals of the form

ifnull(e)then...error... else...proceed (11.9)

Despite this, “null pointer” exceptions at run-time are rampant, in part because it is quite easy
to overlook the need for such a test, and in part because detection of a null pointer leaves little
recourse other than abortion of the program.

The underlying problem is the failure to distinguish the type 7 from the type T opt. Rather than
think of the elements of type T as pointers, and thereby have to worry about the null pointer, we
instead distinguish between a genuine value of type T and an optional value of type 7. An optional
value of type T may or may not be present, but, if it is, the underlying value is truly a value of type
T (and cannot be null). The elimination form for the option type,

ifnull e {null < eerror | just(x) < ey}, (11.10)

propagates the information that e is present into the non-null branch by binding a genuine value
of type T to the variable x. The case analysis effectsa change of type from “optional value of type
T” to “genuine value of type 7”7, so that within the non-null branch no further null checks, explicit
or implicit, are necessary. Note that such a change of type is not achieved by the simple Boolean-
valued test exemplified by expression (11.9); the advantage of option types is precisely that they
do so.

11.4 Notes

Heterogeneous data structures are ubiquitous. Sums codify heterogeneity, yet few languages sup-
port them in the form given here. The best approximation in commercial languages is the concept
of a class in object-oriented programming. A class is an injection into a sum type, and dispatch is
case analysis on the class of the data object. (See Chapter 26 for more on this correspondence.) The
absence of sums is the origin of C.A.R. Hoare’s self-described “billion dollar mistake,” the null
pointer (Hoare, 2009). Bad language designs put the burden of managing “null” values entirely at
run-time, instead of making the possibility or the impossibility of “null” apparent at compile time.

Exercises

11.1. Complete the definition of a finite enumeration type sketched in Section 11.3.3. Derive enu-
meration types from finite sum types.

11.2. The essence of Hoare’s mistake is the misidentification of the type T opt with the type bool x
T. Values of the latter type are pairs consisting of a boolean “flag” and a value of type 7. The
idea is that the flag indicates whether the associated value is “present”. When the flag is
true, the second component is present, and, when the flag is false, the second component
is absent.

96

11.3.

11.4.

11.5.

11.4 Notes
Analyze Hoare’s mistake by attempting to define 7 opt to be the type bool X 7 by filling in
the following chart:

null =?

(>

just(e) =7

ifnulle {null < e; | just(x) ey} =2

Argue that even if we adopt Hoare’s convention of admitting a “null” value of every type,
the chart cannot be properly filled.

Databases have a version of the “null pointer” problem that arises when not every tuple
provides a value for every attribute (such as a person’s middle name). More generally, many
commercial databases are limited to a single atomic type for each attribute, presenting prob-
lems when the value of that attribute may have several types (for example, one may have
different sorts of postal codes depending on the country). Consider how to address these
problems using the methods discussed in Exercise 10.1. Suggest how to handle null val-
ues and heterogeneous values that avoids some of the complications that arise in traditional
formulations of databases.

A combinational circuit is an open expression of type
X1 :bool,...,x, : bool F e :bool,

which computes a boolean value from 7 boolean inputs. Define a NOR and a NAND gate as
boolean circuits with two inputs and one output. There is no reason to restrict to a single
output. For example, define an HALF-ADDER that takes two boolean inputs, but produces
two boolean outputs, the sum and the carry outputs of the HALF-ADDER. Then define a
FULL-ADDER that takes three inputs, the addends and an incoming carry, and produces two
outputs, the sum and the outgoing carry. Define the type NYBBLE to be the product bool x
bool X bool X bool. Define the combinational circuit NYBBLE-ADDER that takes two nybbles
as input and produces a nybble and a carry-out bit as output.

A signal is a time-varying sequence of booleans, representing the status of the signal at each
time instant. An RS latch is a fundamental digital circuit with two input signals and two
output signals. Define the type signal of signals to be the function type nat — bool of
infinite sequences of booleans. Define an RS latch as a function of type

(signal X signal) — (signal X signal).

Part V

Types and Propositions

Part VI

Infinite Data Types

Chapter 16

System F of Polymorphic Types

The languages we have considered so far are all monomorphic in that every expression has a unique
type, given the types of its free variables, if it has a type at all. Yet it is often the case that essentially
the same behavior is required, albeit at several different types. For example, in T there is a distinct
identity function for each type 7, namely A (x: T) x, even though the behavior is the same for each
choice of 7. Similarly, there is a distinct composition operator for each triple of types, namely

onmn =A(f 2 2B)A(g:in = n)A(x:T)f(8(x)).

Each choice of the three types requires a different program, even though they all have the same
behavior when executed.

Obviously it would be useful to capture the pattern once and for all, and to instantiate this
pattern each time we need it. The expression patterns codify generic (type-independent) behaviors
that are shared by all instances of the pattern. Such generic expressions are polymorphic. In this
chapter we will study the language F, which was introduced by Girard under the name Systern F
and by Reynolds under the name polymorphic typed A-calculus. Although motivated by a simple
practical problem (how to avoid writing redundant code), the concept of polymorphism is central
to an impressive variety of seemingly disparate concepts, including the concept of data abstraction
(the subject of Chapter 17), and the definability of product, sum, inductive, and coinductive types
considered in the preceding chapters. (Only general recursive types extend the expressive power
of the language.)

142 16.1 Polymorphic Abstraction

16.1 Polymorphic Abstraction

The language F is a variant of T in which we eliminate the type of natural numbers, but add, in
compensation, polymorphic types:!

Typ T u= ¢ t variable
arr(m;) T — D function
all(t.Tt) Y(t.T) polymorphic

Exp e == «x x
AT](x.e) A(x:7T)e abstraction
ap(e1;e2) ei(er) application
A(t.e) A(t)e type abstraction
App[T](e) e[T] type application

A type abstraction A(t.e) defines a generic, or polymorphic, function with type variable t standing for
an unspecified type within e. A type application, or instantiation App[T |(e) applies a polymorphic
function to a specified type, which is plugged in for the type variable to obtain the result. The
universal type, all(t. T), classifies polymorphic functions.

The statics of F consists of two judgment forms, the type formation judgment,
At T type,

and the fyping judgment,
ATke:T.

The hypotheses A have the form ¢ type, where t is a variable of sort Typ, and the hypotheses I have
the form x : T, where x is a variable of sort Exp.
The rules defining the type formation judgment are as follows:

Aftpel fope (16.12)
A1t AF1t
T type T type (16.1b)
At arr(m ;1) type
A, t type F T type
16.1
A all(f.T) type oo
The rules defining the typing judgment are as follows:
AT,xitixit (16.22)
AFTtype AT, x:mbe:n (16.2b)
ATHA[T](x.e):arr(T;T2)
ATter:arr(m;T7) ATker:n (16.2¢)

ATFap(ej;e):T

1Girard’s original version of System F included the natural numbers as a basic type.

16.1 Polymorphic Abstraction 143

AttypeTFe: T

ATHFA(t.e):all(t.T) (16.2d)
ATkFe:all(t.7") Al Ttype
AT+ app[t](e): {t/t}7 (16:2¢)

Lemma 16.1 (Regularity). If AT e : T, and if A = 71; type for each assumption x; : 7; in I, then
A T type.

Proof. By induction on rules (16.2). O

The statics admits the structural rules for a general hypothetical judgment. In particular, we
have the following critical substitution property for type formation and expression typing.

Lemma 16.2 (Substitution). 1. IfA, t typet T’ typeand A T type, then A & {t/t}’ type.
2. IfA t typeT ¢ - T/ and A+ T type, then A {t/t}T + {t/t}e : {t/t}7.
3. IfAT,x:tke:T"and ATFe: 1, then AT F {e/x}e : 7.

The second part of the lemma requires substitution into the context I' as well as into the term
and its type, because the type variable t may occur freely in any of these positions.

Returning to the motivating examples from the introduction, the polymorphic identity func-
tion, I, is written

A(E)A(x:t)x;

it has the polymorphic type
V(t.b—t).

Instances of the polymorphic identity are written I[7], where T is some type, and have the type
T—T.

Similarly, the polymorphic composition function, C, is written
A(t)ACR)A(B)A(f:ta = t3)A(g:t =) A(x:t) f(g(x)).
The function C has the polymorphic type
V(i V(. V(t3. (2 = t3) = (= 1) = (= 13)))).

Instances of C are obtained by applying it to a triple of types, written C[11 |[T2][13]. Each such
instance has the type

(Tz*)Tg)*)(TlﬁTz)—)(Tl—)T\g).

144

Dynamics

The dynamics of F is given as follows:
Alt](x.e) val
A(t.e)val

[e2 val]
ap(A[T](x.e);ex) — {ea/x}e

e — €]

ap(e1;ey) —> ap(ef;er)

epval ey ¢

ap(e;;ey) — ap(eq;e5)

App[T](A(E.e)) — {1/t}e

e— ¢

App[T](e) = App[T](¢’)

16.1 Polymorphic Abstraction

(16.3a)

(16.3b)

(16.3¢)

(16.3d)

(16.3e)

(16.3f)

(16.3g)

The bracketed premises and rule are included for a call-by-value interpretation, and omitted for a

call-by-name interpretation of F.

It is a simple matter to prove safety for F, using familiar methods.

Lemma 16.3 (Canonical Forms). Suppose that e : T and e val, then
1. Ift=arr(m ;) thene =A[1 |(x.ex) withx : 1y F ey : T.
2. Ift=2all(t.7'), thene= A(t.¢) witht typet e : T'.

Proof. By rule induction on the statics.

Theorem 16.4 (Preservation). Ife: Tande—s ¢, thene' : T.

Proof. By rule induction on the dynamics.

Theorem 16.5 (Progress). If e : T, then either e val or there exists ¢’ such that e — ¢’

Proof. By rule induction on the statics.

16.2 Polymorphic Definability 145

16.2 Polymorphic Definability

The language F is astonishingly expressive. Not only are all (lazy) finite products and sums de-
finable in the language, but so are all (lazy) inductive and coinductive types. Their definability is
most naturally expressed using definitional equality, which is the least congruence containing the
following two axioms:

AT, x:ykFe:mmn ATFer:m
ATE(A(x:m)ex)(er) ={e1/x}er: 1
AttypeI'Fe:T AlF ptype

ATE(A(t)e)[p] ={p/the: {p/t)T
In addition there are rules omitted here specifying that definitional equality is-a congruence rela-
tion (that is, an equivalence relation respected by all expression-forming operations).

(16.4a)

(16.4b)

16.2.1 Products and Sums

The nullary product, or unit, type is definable in F as follows:
unit £V(r.r = r)
O=A(r)A(x:r)x

The identity function plays the role of the null tuple, because it is the only closed value of this
type.
Binary products are definable in F by using encoding tricks similar to those described in Chap-
ter 21 for the untyped A-calculus:
TXxDEV(r.(n =1 —=71)=7)
(er,e2) SA(r)A(xim — 10— 1) x(er)(e2)
x)
y)

The statics given in Chapter 10 is derivable according to these definitions. Moreover, the following
definitional equalities are derivable in F from these definitions:

12 e[n)(A(x:im)A(y:im
eln](A(x:m)A(y:

1>

)
e-r)
(e1,€2) 1=e1:7m

and
<€1,€2> ‘T =6 : .

The nullary sum, or void, type is definable in F:
void 2 V(r.r)

casee{} 2 ¢[p]

146 16.2 Polymorphic Definability

Binary sums are also definable in F:

Tn+neY(r.(n—=r)=(nn—=r)—=r)
e)

r

1.géA(r)A(x:T1—>r)/\(]/3T2—>7’ x(

re2A(r)A(x:m—=r)A(y:m—r)yle)
casee{l'x1‘—>€1|r'952‘—>6’2}é

ef[p](A(x1:m)er)(A(x2:12)e2)

provided that the types make sense. It is easy to check that the following equivalences are deriv-
able in F:
casel-d; {l-x1 e |r~X2‘—>€2} — {dl/X1}61 Yy

and
caser-dy{l-x1 e |r-xp—ex} ={da/x2}er : p.

Thus the dynamic behavior specified in Chapter 11 is correctly implemented by these definitions.

16.2.2 Natural Numbers

As we remarked above, the natural numbers (under a lazy interpretation) are also definable in F.
The key is the iterator, whose typing rule we recall here for reference:

ep:nat e;:T x:Thke:T
iter[t|(eg;e1;x.e0): T

Because the result type 7 is arbitrary, this means that if we have an iterator, then we can use it to
define a function of type
nat > V(t.t > (t—>t) > t).

This function, when applied to an argument #, yields a polymorphic function that, for any result
type, t, given the initial result for z and a transformation from the result for x into the result for
s(x), yields the result of iterating the transformation # times, starting with the initial result.

Because the only operation we can perform on a natural number is to iterate up to it, we may
simply identify a natural number, 1, with the polymorphic iterate-up-to-n function just described.
Thus we may define the type of natural numbers in F by the following equations:

nat 2V(t.t — (t—t) —t)
22 A()A(z:it)A(s:t—=t)z
s(e)2A(t)A(z:t)A(s:t—t)s(e[t](z)(s))
iter[T](ep;e1;x.e2) Zeo[T](e1)(A(x:T)er)

It is easy to check that the statics and dynamics of the natural numbers type given in Chapter 9
are derivable in F under these definitions. The representations of the numerals in F are called the
polymorphic Church numerals.

16.3 Parametricity Overview 147

The encodability of the natural numbers shows that F is at least as expressive as T. But is it more
expressive? Yes! It is possible to show that the evaluation function for T is definable in F, even
though it is not definable in T itself. However, the same diagonal argument given in Chapter 9
applies here, showing that the evaluation function for F is not definable in F. We may enrich F a bit
more to define the evaluator for F, but as long as all programs in the enriched language terminate,
we will once again have an undefinable function, the evaluation function for that extension.

16.3 Parametricity Overview

A remarkable property of F is that polymorphic types severely constrain the behavior of their
elements. We may prove useful theorems about an expression knowing only its type—that is,
without ever looking at the code. For example, if i is any expression of type ¥(t.t — t), then it
is the identity function. Informally, when i is applied to a type, T, and an argument of type 7, it
returns a value of type 7. But because 7 is not specified until i is called, the function has no choice
but to return its argument, which is to say that it is essentially the identity function. Similarly, if b
is any expression of type V(t.t — t —), then b is equivalent to either A(t)A (x:t)A (y:t)xor
A(t)A(x:t)A(y:t)y. Intuitively, when b is applied to two arguments of a given type, the only
value it can return is one of the givens.

Properties of a program in F that can be proved knowing only its type are called parametricity
properties. The facts about the functions i and b stated above are examples of parametricity prop-
erties. Such properties are sometimes called “free theorems,” because they come from typing “for
free”, without any knowledge of the code itself. It bears repeating that in F we prove non-trivial
behavioral properties of programs without ever examining the program text. The key to this in-
credible fact is that we are able to prove a deep property, called parametricity, about the language F,
that then applies to every program written in F. One may say that the type system “pre-verifies”
programs with respect to a broad range of useful properties, eliminating the need to prove those
properties about every program separately. The parametricity theorem for F explains the remark-
able experience that if a piece of code type checks, then it “just works.” Parametricity narrows the
space of well-typed programs sufficiently that the opportunities for programmer error are reduced
to almost nothing.

So how does the parametricity theorem work? Without getting into too many technical details
(but see Chapter 48 for a full treatment), we can give a brief summary of the main idea. Any
functioni: V(t.t — t) in F enjoys the following property:

For any type T and any property P of the type T, then if P holds of x : T, then P holds of
ifr](x).

To show that for any type 7, and any x of type 7, the expression i[T](x) is equivalent to x, it
suffices to fix xg : 7, and consider the property Py, that holds of y : T iff y is equivalent to xo.
Obviously P holds of xj itself, and hence by the above-displayed property of i, it sends any argu-
ment satisfying Py, to a result satisfying Py,, which is to say that it sends x(to xo. Because xy is
an arbitrary element of 7, it follows that i[7] is the identity function, A (x: T) x, on the type 7, and
because T is itself arbitrary, 7 is the polymorphic identity function, A(t) A (x:¢) x.

148 16.4 Notes

A similar argument suffices to show that the function b, defined above, is either A(#)A (x:t) A (y:t)x
or A(t)A(x:t)A(y:t)y. By virtue of its type the function b enjoys the parametricity property

For any type T and any property P of T, if P holds of x : T and of y : T, then ‘P _holds of
bl](x)(y)

Choose an arbitrary type T and two arbitrary elements xo and y of type 7. Define Qy, ,, to hold
of z : T iff either z is equivalent to x¢ or z is equivalent to yo. Clearly Q,,,, holds of both xj
and yo themselves, so by the quoted parametricity property of b, it follows that Qy,y, holds of
b[T](x0)(yo), which is to say that it is equivalent to either x or yp. Since T, xg, and yg are arbi-
trary, it follows that b is equivalent to either A(t) A (x:t) A (y:t)xor A(t)A (x:t)A(y:t)y.

The parametricity theorem for F implies even stronger properties of functions such as i and
b considered above. For example, the function i of type V(t.t — t) also satisfies the following
condition:

If T and T’ are any two types, and R is a binary relation between T and T, then for any x : T
and x' : ', if R relates x to x', then R relates i[T](x) toi[T"|(x").

Using this property we may again prove that i is equivalent to the polymorphic identity function.
Specifically, if T is any type and g : T — T is any function on that type, then it follows from the
type of i alone that i[T](g(x)) is equivalent to g(i[T]|(x)) for any x : T. To prove this, simply
choose R to the be graph of the function g, the relation R that holds of x and x’ iff x” is equivalent
to g(x). The parametricity property of i, when specialized to Ry, states that if x’ is equivalent to
g(x), then i[T]|(x") is equivalent to g(i[T](x)), which is to say that i[T](g(x)) is equivalent
to g(i[T](x)). To show that i is equivalent to the identity function, choose x(: T arbitrarily, and
consider the constant function gy on 7 that always returns x(. Because xg is equivalent to go(x¢),
it follows that i[T](xo) is equivalent to x, which is to say that i behaves like the polymorphic
identity function.

16.4 Notes

System F was introduced by Girard (1972) in the context of proof theory and by Reynolds (1974)
in the context of programming languages. The concept of parametricity was originally isolated
by Strachey, but was not fully developed until the work of Reynolds (1983). The phrase “free
theorems” for parametricity theorems was introduced by Wadler (1989).

Exercises

16.1. Give polymorphic definitions and types to the s and k combinators defined in Exercise 3.1.

16.2. Define in F the type bool of Church booleans. Define the type bool, and define true and false
of this type, and the conditional if e theneg else e;, where e is of this type.

16.4 Notes 149

16.3. Define in F the inductive type of lists of natural numbers as defined in Chapter 15. Hint:
Define the representation in terms of the recursor (elimination form) for lists, following the
pattern for defining the type of natural numbers.

16.4. Define in F an arbitrary inductive type, u(t.7). Hint: generalize your answer to Exer-
cise 16.3.

16.5. Define the type t 1ist as in Exercise 16.3, with the element type, ¢, unspecified. Define the
finite set of elements of a list | to be those x given by the head of some number of tails of [.
Now suppose that f : V(t.t1ist — t1ist) is an arbitrary function of the stated type. Show
that the elements of f[T](!) are a subset of those of I. Thus f may only permute, replicate,
or drop elements from its input list to obtain its output list.

Part VIII

Partiality and Recursive Types

Chapter 19

System PCF of Recursive Functions

We introduced the language T as a basis for discussing total computations, those for which the
type system guarantees termination. The language M generalizes T to admit inductive and coin-
ductive types, while preserving totality. In this chapter we introduce PCF as a basis for discussing
partial computations, those that may not terminate when evaluated, even when they are well-
typed. At first blush this may seem like a disadvantage, but as we shall see in Chapter 20 it admits
greater expressive power than is possible in T.

The source of partiality in PCF is the concept of general recursion, which permits the solution
of equations between expressions. The price for admitting solutions to all such equations is that
computations may not terminate—the solution to some equations might be undefined (divergent).
In PCF the programmer must make sure that a computation terminates; the type system does not
guarantee it. The advantage is thatthe termination proof need not be embedded into the code
itself, resulting in shorter programs.

For example, consider the equations

f(0) =1
fn+1) = (n+1) x f(n).

Intuitively, these equations define the factorial function. They form a system of simultaneous
equations in the unknown f which ranges over functions on the natural numbers. The function
we seek is a solution to these equations—a specific function f : IN — IN such that the above
conditions are satisfied.

A solution to such a system of equations is a fixed point of an associated functional (higher-
order function). To see this, let us re-write these equations in another form:

. [1 ifn=0
fln) = {nxf(n’) ifn=n"+1.

168

Re-writing yet again, we seek f given by

1 ifn=20
n
nx f(n') ifn=n"+1

Now define the functional F by the equation F(f) = f/, where f’ is given by

1 ifn=20
nes
nx f(n') ifn=n"+1

Note well that the condition on f’ is expressed in terms of f, the argument to the functional F, and
not in terms of f’ itself! The function f we seek is a fixed point of F, a function f : N — IN such
that f = F(f). In other words f is defined to be fix(F), where fix is a higher-order operator on
functionals F that computes a fixed point for it.

Why should an operator such as F have a fixed point? The key is that functions in PCF are
partial, which means that they may diverge on some (or even all) inputs. Consequently, a fixed
point of a functional F is the limit of a series of approximations of the desired solution obtained
by iterating F. Let us say that a partial function ¢ on the natural numbers, is an approximation to
a total function f if ¢(m) = n implies that f(m) = n. Let L: N — IN be the totally undefined
partial function—_L (1) is undefined for every n € IN. This is the “worst” approximation to the
desired solution f of the recursion equations given above. Given any approximation ¢ of f, we
may “improve” it to ¢’ = F(¢). The partial function ¢’ is defined on 0 and on m + 1 for every
m > 0 on which ¢ is defined. Continuing, ¢ = F(¢') = F(F(¢)) is an improvement on ¢’, and
hence a further improvement on ¢. If we start with L as the initial approximation to f, then pass
to the limit

im F(0)
lim F7(L),

we will obtain the least approximation to f that is defined for every m € IN, and hence is the
function f itself. Turning this around, if the limit exists, it is the solution we seek.

Because this construction works for any functional F, we conclude that all such operators have
fixed points, and hence that all systems of equations such as the one given above have solutions.
The solution is given by general recursion, but there is no guarantee that it is a total function
(defined on all elements of its domain). For the above example it happens to be true, because we
can prove by induction that this is so, but in general the solution is a partial function that may
diverge on some inputs. It is our task as programmers to ensure that the functions defined by
general recursion are total, or at least that we have a grasp of those inputs for which it is well-
defined.

19.1 Statics

19.1 Statics

The syntax of PCF is given by the following grammar:

Typ T = nat nat
parr(T;2) (TN)
Exp e = «x X
V4 V4

s(e) s(e)

ifz[eg;x.e1](e) ifze{z—ey|s(x)—er}

AMlt](x.e) Alx:T)e
ap(er;ez) e1(e2)
fix[T](x.e) fixx:Tise

naturals

partial function
variable

Zero

successor

zero test
abstraction
application
recursion

169

The expression fix[T](x.e) is general recursion; it is discussed in more detail below. The expres-
sion ifz[eg; x.e1](e) branches according to whether e evaluates to z or not, binding the prede-

cessor to x in the case that it is not.

The statics of PCF is inductively defined by the following rules:
Ix:thkx:1

I'Fz:nat
I'te:nat
I'ts(e):nat

'HFe:nat They:T I,x:nathke :t
T'Fifz[eg;x.e1](e): T

Ix:mbke:m
I'EAln(x.e):parr(T; 1)

I'keyiparr(m;7) The:m

I'kap(ej;en): T

Ix:tke:T
[fix[t)(x.e):T

(19.1a)

(19.1b)

(19.1¢)

(19.1d)

(19.1e)

(19.1f)

(19.1g)

Rule (19.1g) reflects the self-referential nature of general recursion. To show that fix[7|(x.e) has
type T, we assume that it is the case by assigning that type to the variable x, which stands for the
recursive expression itself, and checking that the body, e, has type T under this very assumption.

The structural rules, including in particular substitution, are admissible for the statics.

Lemma19.1. IfT,x:thH¢ : 7, THe:7 thenT F {e/x}e : 7.

170 19.2 Dynamics

19.2 Dynamics

The dynamics of PCF is defined by the judgments e val, specifying the closed values, and e — ¢/,

specifying the steps of evaluation.
The judgment e val is defined by the following rules:

(19.2a)
z val
[e val]
5(¢) val (19.2b)
4 (19.2¢)
AlT](x.e) val

The bracketed premise on rule (19.2b) is included for the eager interpretation of the successor oper-
ation, and omitted for the lazy interpretation. (See Chapter 36 for a further discussion of laziness.)
The transition judgment e — ¢’ is defined by the following rules:

e—se
. (19.3a)

s(e) — s(€)

er— e
ifz[eg;x.e1|(e) > ifz[ep;x.e1](e) (19.3b)
ifz[eg;x.e1](z) — e (19.3c)

s(e) val
ifz[eg;x.e1](s(e)) — {e/x}er (19.3d)

e1 — e}
ap(e;ex) — ap(el;er) (19.3¢)

erval e — eé

ap(ey;ex) — ap(er;eh) (19.3f)

[e2 val]
ap(A[t](x.¢);e2) — {ea/x}e (19.3g)
(19.3h)

fix[T]|(x.e) — {fix[T]|(x.e)/x}e

19.3 Definability 171

The bracketed rule (19.3a) is included for an eager interpretation of the successor, and omitted
otherwise. Bracketed rule (19.3f) and the bracketed premise on rule (19.3g) are included for a
call-by-value interpretation, and omitted for a call-by-name interpretation, of function applica-
tion. Rule (19.3h) implements self-reference by substituting the recursive expression itself for the
variable x in its body; this is called unwinding the recursion.

Theorem 19.2 (Safety).

1. Ife:tande — €, thene' : 7.
2. Ife: T, then either e val or there exists e’ such that e — ¢'.

Proof. The proof of preservation is by induction on the derivation of the transition judgment.
Consider rule (19.3h). Suppose that fix[T|(x.e) : 7. By inversion and substitution we have
{fix[T](x.e)/x}e : T, as required. The proof of progress proceeds by induction on the deriva-
tion of the typing judgment. For example, for rule (19.1g) the result follows because we may make
progress by unwinding the recursion. O

It is easy to check that if e val, then e is irreducible in that there is no ¢’ such that e — ¢’. The

safety theorem implies the converse, that an irreducible expression is a value, provided that it is
closed and well-typed.

Definitional equality for the call-by-name variant of PCF, written I' - ¢; =e : 7, is the
strongest congruence containing the following axioms:

(19.4)
I'Fifz[eg;x.e1](z)=ep: T
(19.4b)
['Eifzleg;x.e1](s(e))={e/x}er: T
(19.4¢)
I fix[t](xce) = {fix[T]|(x.e)/x}e: T
(19.4d)

IF'Eap(A[T](x.ex);e1) ={er/x}er: T

These rules suffice to calculate the value of any closed expression of type nat: if e : nat, then
e =7 :nat iff e —" 7.

19.3 Definability

Let us write fun x(y:71):7p ise for a recursive function within whose body, e : 15, are bound two
variables, y : 7 standing for the argument and x : 71 — T standing for the function itself. The

172 19.3 Definability

dynamics of this construct is given by the axiom

(funx(y:my)pise)(er) — {funx(y:my):pise,e1/x,y}e .

That is, to apply a recursive function, we substitute the recursive function itself for x and the
argument for y in its body.
Recursive functions are defined in PCF using fixed points, writing

fixx:m —~ThisA(y:7)e

for funx(y:1y):2 ise. We may easily check that the static and dynamics of recursive functions
are derivable from this definition.
The primitive recursion construct of T is defined in PCF using recursive functions by taking
the expression
rece{z<—ep|s(x)withy e}

to stand for the application ¢/ (¢), where €’ is the general recursive function
fun f(umat):Tisifzu{z—ey|s(x)—={f(x)/y}e}.

The static and dynamics of primitive recursion are derivable in PCF using this expansion.

In general, functions definable in PCF are partial in that they may be undefined for some
arguments. A partial (mathematical) function, ¢ : IN — N, is definable in PCF iff there is an
expression ey : nat —mnat such that ¢(m) = niff es(7) =7 : nat. So, for example, if ¢ is the
totally undefined function, then e, is any function that loops without returning when it is applied.

It is informative to classify those partial functions ¢ that are definable in PCF. The partial re-
cursive functions are defined to be the primitive recursive functions extended with the minimization
operation: given ¢(m,n), define {(n) to be the least m > 0 such that (1) for m" < m, ¢(m’,n) is
defined and non-zero, and (2) ¢(m, n) = 0. If no such m exists, then ¢(n) is undefined.

Theorem 19.3. A partial function ¢ on the natural numbers is definable in PCF iff it is partial recursive.

Proof sketch. Minimization is definable in PCF, so it is at least as powerful as the set of partial
recursive functions. Conversely, we may, with some tedium, define an evaluator for expressions of
PCF as a partial recursive function, using Godel-numbering to represent expressions as numbers.
Therefore PCF does not exceed the power of the set of partial recursive functions. O

Church’s Law states that the partial recursive functions coincide with the set of effectively
computable functions on the natural numbers—those that can be carried out by a program written
in any programming language that is or will ever be defined.! Therefore PCF is as powerful as
any other programming language with respect to the set of definable functions on the natural
numbers.

1Gee Chapter 21 for further discussion of Church’s Law.

19.4 Finite and Infinite Data Structures 173

The evaluator, or universal, function ¢,,,,;, for PCF is the partial function on the natural numbers
defined by

(Puniv(‘—e—l)(m) =n iffE(ﬁ) =7 : nat.

In contrast to T, the universal function ¢,,,;; for PCF is partial (might be undefined for some
inputs). It is, in essence, an interpreter that, given the code "¢ of a closed expression of type
nat — nat, simulates the dynamics to calculate the result, if any, of applying it to the 71, obtaining
7. Because this process may fail to terminate, the universal function is not defined for all inputs.

By Church’s Law the universal function is definable in PCF. In contrast, we proved in Chap-
ter 9 that the analogous function is not definable in T using the technique of diagonalization. It is
instructive to examine why that argument does not apply in the present setting. As in Section 9.4,
we may derive the equivalence

en(Ten’) =s(ea(Tes™))

for PCF. But now, instead of concluding that the universal function, e,,;,, does not existas we did
for T, we instead conclude for PCF that ¢,,,;, diverges on the code for e5 applied to its own code.

19.4 Finite and Infinite Data Structures

Finite data types (products and sums), including their use in pattern matching and generic pro-
gramming, carry over verbatim to PCF. However, the distinction between the eager and lazy
dynamics for these constructs becomes more important. Rather than being a matter of preference,
the decision to use an eager or lazy dynamics affects the meaning of a program: the “same” types
mean different things in a lazy dynamics than in an eager dynamics. For example, the elements of
a product type in an eager language are pairs of values of the component types. In a lazy language
they are instead pairs of unevaluated, possibly divergent, computations of the component types,
a very different thing indeed. And similarly for sums.

The situation grows more acute for infinite types such as the type nat of “natural numbers.”
The scare quotes are warranted, because the “same” type has a very different meaning under
an eager dynamics than under a lazy dynamics. In the former case the type nat is, indeed, the
authentic type of natural numbers—the least type containing zero and closed under successor.
The principle of mathematical induction is valid for reasoning about the type nat in an eager
dynamics. It corresponds to the inductive type p(t.unit +) in the sense of Chapter 15.

On the other hand, under a lazy dynamics the type nat is no longer the type of natural numbers
at all. For example, it includes the value

w2 fixx:natiss(x),

which has itself as predecessor! It is, intuitively, an “infinite stack of successors”, growing without
end. It is clearly not a natural number (it is larger than all of them), so the principle of mathemat-
ical induction does not apply. In a lazy setting nat could be renamed lnat to remind us of the
distinction. It corresponds to the coinductive type v(t.unit + ¢) in the sense of Chapter 15.

174 19.5 Totality and Partiality

19.5 Totality and Partiality

The advantage of a total programming language such as T is that it ensures, by type checking,
that every program terminates, and that every function is total. There is no way to have a well-
typed program that goes into an infinite loop. This prohibition may seem appealing, until one
considers that the upper bound on the time to termination may be large, so large that it might
as well diverge for all practical purposes. But let us grant for the moment that it is a virtue of T
that it precludes divergence. Why, then, bother with a language such as PCF that does not rule
out divergence? After all, infinite loops are invariably bugs, so why not rule them out by type
checking? The notion seems appealing until one tries to write a program in a language such as T.

Consider the computation of the greatest common divisor (gcd) of two natural numbers. It can
be programmed in PCF by solving the following equations using general recursion:

ged(m,0) = m
gcd(0,n

)=n
ged(m,n) = ged(m —mn,n) ifm >n
) =

ged(m,n) =ged(m,n —m) ifm <n

The type of gcd defined this way is (nat X nat) — nat, which suggests that it may not terminate
for some inputs. But we may prove by induction on the sum of the pair of arguments that it is, in
fact, a total function.

Now consider programming this function in T. It is, in fact, programmable using only primi-
tive recursion, but the code to do it is rather painful (try it!). One way to see the problem is that
in T the only form of looping is one that reduces a natural number by one on each recursive call;
it is not (directly) possible to make a recursive call on a smaller number other than the immedi-
ate predecessor. In fact one may code up more general patterns of terminating recursion using
only primitive recursion as a primitive, but if you check the details, you will see that doing so
comes at a price in performance and program complexity. Program complexity can be mitigated
by building libraries that codify standard patterns of reasoning whose cost of development should
be amortized over all programs, not just one in particular. But there is still the problem of perfor-
mance. Indeed, the encoding of more general forms of recursion into primitive recursion means
that, deep within the encoding, there must be a “timer” that goes down by ones to ensure that the
program terminates. The result will be that programs written with such libraries will be slower
than necessary.

But, one may argue, T is simply not a serious language. A more serious total programming
language would admit sophisticated patterns of control without performance penalty. Indeed, one
could easily envision representing the natural numbers in binary, rather than unary, and allowing
recursive calls by halving to get logarithmic complexity. Such a formulation is possible, as would
be quite a number of analogous ideas that avoid the awkwardness of programming in T. Could
we not then have a practical language that rules out divergence?

We can, but at a cost. We have already seen one limitation of total programming languages:
they are not universal. You cannot write an interpreter for T within T, and this limitation extends
to any total language whatever. If this does not seem important, then consider the Blum Size
Theorem (BST), which places another limitation on total languages. Fix any total language £ that

19.6 Notes 175

permits writing functions on the natural numbers. Pick any blowup factor, say 22". The BST states
that there is a total function on the natural numbers that is programmable in £, but whose shortest
program in L is larger by the given blowup factor than its shortest program in PCF!

The underlying idea of the proof is that in a total language the proof of termination of a program nust
be baked into the code itself, whereas in a partial language the termination proof is an external verification
condition left to the programmer. There are, and always will be, programs whose termination proof
is rather complicated to express, if you fix in advance the means of proving it total. (In T it was
primitive recursion, but one can be more ambitious, yet still get caught by the BST.) But if you
leave room for ingenuity, then programs can be short, because they do not have to embed the
proof of their termination in their own running code.

19.6 Notes

The solution to recursion equations described here is based on Kleene’s fixed point theorem for
complete partial orders, specialized to the approximation ordering of partial functions. The lan-
guage PCF is derived from Plotkin (1977) as a laboratory for the study of semantics of program-
ming languages. Many authors have used PCF as the subject of study of many problems in se-
mantics. It has thereby become the E. coli of programming languages.

Exercises

19.1. Consider the problem considered in Section 10.3 of how to define the mutually recursive
“even” and “odd” functions. There we gave a solution in terms of primitive recursion. You
are, instead, to give a solution in terms of general recursion. Hint: consider that a pair of
mutually recursive functions is a recursive pair of functions.

19.2. Show that minimization, as explained before the statement of Theorem 19.3, is definable in
PCF.

19.3. Consider the partial function ¢y, such that if e : nat — nat, then ¢y.5("e”) evaluates to
zero iff e("e ') converges, and evaluates to one otherwise. Prove that ¢y, is not definable
in PCF.

19.4. Suppose that we changed the specification of minimization given prior to Theorem 19.3 so
that (n) is the least m such that ¢(m,n) = 0, and is undefined if no such m exists. Is this
“simplified” form of minimization definable in PCF?

19.5. Suppose that we wished to define, in the lazy variant of PCF, a version of the parallel or
function specified as a function of two arguments that returns z if either of its arguments
is z, and s(z) if both are non-zero. That is, we wish to find an expression e satisfying the

176

19.6.

19.6 Notes

following properties:
e(er)(ep) —" zifey —" z
e(er)(e) —" zifep —" z

e(er)(e2) —" s(z)ife; —* s(_)and ey —* ().

Thus, e defines a total function of its two arguments, even if oneof the arguments diverges, as
long as the other is z. Clearly such a function cannot be defined in the call-by-value variant
of PCF, but can it be defined in the call-by-name variant? If so, show how; if not, prove that
it cannot be, and suggest an extension of PCF that would allow it to be defined.

We appealed to Church’s Law to argue that the universal function for PCF is definable in
PCF. See what is behind this claim by considering two aspects of the problem: (1) Godel-
numbering, the representation of abstract syntax by a number; (2) evaluation, the process of
interpreting a function on its inputs. Part(1) is a technical issue arising from the limited data
structures available in PCF. Part (2) is the heart of the matter; explore its implementation in
terms of a solution to Part (1).

Part XI

Dynamic Dispatch

Chapter 28

Control Stacks

Structural dynamics is convenient for proving properties of languages, such as a type safety the-
orem, but is less convenient as a guide for implementation. A structural dynamics defines a tran-
sition relation using rules that determine where to apply the next instruction without spelling out
how to find where the instruction lies within an expression. To make this process explicit we in-
troduce a mechanism, called a control stack, that records the work that remains to be done after an
instruction is executed. Using a stack eliminates the need for premises on the transition rules so
that the transition system defines an abstract machine whose steps are determined by information
explicit in its state, much as a concrete computer does.

In this chapter we develop an abstract machine K for evaluating expressions in PCF. The
machine makes explicit the context in which primitive instruction steps are executed, and the
process by which the results are propagated to determine the next step of execution. We prove
that K and PCF are equivalent in the sense that both achieve the same outcomes for the same
expressions.

28.1 Machine Definition

A state sof the stack machine K for PCF consists of a control stack k and a closed expression e.
States take one of two forms:

1. An evaluation state of the form k > e corresponds to the evaluation of a closed expression e on
a control stack k.

2. A return state of the form k < ¢, where e val, corresponds to the evaluation of a stack k on a
closed value e.

As an aid to memory, note that the separator “points to” the focal entity of the state, the expression
in an evaluation state and the stack in a return state.

The control stack represents the context of evaluation. It records the “current location” of eval-
uation, the context into which the value of the current expression is returned. Formally, a control

262 28.1 Machine Definition

stack is a list of frames:

€ stack (28.1a)

f frame k stack
o T 28.1b
k; f stack ()

The frames of the K machine are inductively defined by the following rules:

B e (28.2a)
(28.2b)

ifz[ep;x.e1](—) frame
(28.2¢)

ap(—;ey) frame

The frames correspond to search rules in the dynamics of PCF. Thus, instead of relying on the
structure of the transition derivation to keep a record of pending computations, we make an ex-
plicit record of them in the form of a frame on the control stack.

The transition judgment between states of the PCF machine is inductively defined by a set of
inference rules. We begin with the rules for natural numbers, using an eager dynamics for the
SuCCessor.

k>z——kaz (28.3a)
kDS(E)I—)k}s(_)De (283b)
(28.3¢)

k;s(—)<der—kas(e)

To evaluate z we simply return it. To evaluate s(¢), we push a frame on the stack to record the
pending successor, and evaluate e; when that returns with ¢/, we return s(¢’) to the stack.
Next, we consider the rules for case analysis.

k> ifz[eg;x.e1](e) — k;ifz[eg;x.e1](—)>e (28.4a)
k;ifz[ep;x.e1](—)<z— ke (28.4b)
(28.4¢)

k;ifzlep;x.e1](—)<as(e)— k> {e/x}e

28.2 Safety 263

The test expression is evaluated, recording the pending case analysis on the stack. Once the value
of the test expression is determined, the zero or non-zero branch of the condition is evaluated,
substituting the predecessor in the latter case.

Finally, we give the rules for functions, which are evaluated by-name, and the rule for general
recursion.

ko A[T](x.e) — k< A[T](x.¢) (28.5a)
k>ap(ey;ex) — k;ap(—;ex) > ey (28.5b)
k;ap(—;ex) <A[T](x.e)— k>qer/x}e (28.5¢)
k> fix[t](x.e)— k> {fix[T](x.e)/x}e (28.5d)
It is important that evaluation of a general recursion requires no stack space.
The initial and final states of the K machine are defined by the following rules:

cbeinitial (28.6a)

€ > e initial

e val

€ < e final (28.6b)

28.2 Safety

To define and prove safety for the PCF machine requires that we introduce a new typing judgment,
k + T, which states that the stack k expects a value of type 7. This judgment is inductively defined
by the following rules:

(28.7a)
€T

k=t fit~1
k;f+t
This definition makes use of an auxiliary judgment, f : T~ 7/, stating that a frame f transforms a
value of type 7 to a value of type 7’.

(28.7b)

(28.8a)

s(—) :nat ~>nat

ep:T Xx:nmathej:T

ifz[é’o;x-fﬁ](—):natwr (28.8b)

264 28.3 Correctness of the Stack Machine

ey Ty

ap(—;ey) :parr(m;T)~T (28.8¢)

The states of the PCF machine are well-formed if their stack and expression components match:

k-1 e:T
Thoook (28.9a)
k=71t e:1T eval (28.9b)

k <eok

We leave the proof of safety of the PCF machine as an exercise.

Theorem 28.1 (Safety). 1. Ifs okand s — s/, then s’ ok.

2. If s ok, then either s final or there exists s’ such that's —> s'.

28.3 Correctness of the Stack Machine

Does evaluation of an expression ¢ using the K machine yield the same result as does the structural
dynamics of PCF? The answer to this question can be derived from the following facts.

Completeness If e —* ¢/, where ¢’ val, thene > e —* e < ¢'.

Soundness If € > e —3* € q ¢, then e —* ¢’ with ¢’ val.

To prove completeness a plausible first step is to consider a proof by induction on the definition
of multi-step transition, which reduces the theorem to the following two lemmas:

1. Ifeval, thene>e—* e «e.
2. Ife— €, then, forevery v val, ife> ¢/ —* € <v, thene> e —* e a0,

The first can be proved easily by induction on the structure of e. The second requires an inductive
analysis of the derivation of e — ¢ that gives rise to two complications. The first complication is

that we cannot restrict attention to the empty stack, for if e is, say, ap(1 ; e), then the first step of
the K machine is
e>ap(e;;ep) —> €;ap(—;ex) >ey.

To handle such situations we consider the evaluation of e; on any stack, not just the empty stack.
Specifically, we prove that if e — ¢’ and k > ¢/ —* k < v, then k > e —* k < v. Reconsider the

case e = ap(e1;er), ¢ = ap(e];ep), with ey — e]. We are given that k > ap(e};e;) —* k < v,

and we are to show thatk > ap(e ;e) —™* k < v. It is easy to show that the first step of the former

derivation is
k> ap(e);e) —s k;ap(—;ex) > ef.

28.3 Correctness of the Stack Machine 265

We would like to apply induction to the derivation of ¢; — ¢/, but to do so we need a value 1
such that ¢j —* vy, which is not at hand.

We therefore consider the value of each sub-expression of an expression. This information is
given by the evaluation dynamics described in Chapter 7, which has the property that e | ¢’ iff
e—" ¢’ and ¢ val.

Lemma 28.2. Ife | v, then for every k stack, k > e —* k < v.

The desired result follows by the analog of Theorem 7.2 for PCF, which states that e |} v iff
er—"o.

To prove soundness, we note that it is awkward to reason inductively about a multi-step tran-
sition from € > e —" € < v. The intermediate steps could involve alternations of evaluation and

return states. Instead we consider a K machine state to encode an expression, and show that the
machine transitions are simulated by the transitions of the structural dynamics.

To do so we define a judgment, s &~ ¢, stating that state s “unravels to” expression e. It will
turn out that for initial states, s = € > ¢, and final states, s = € < ¢, we have s & e. Then we show
thatif s —* s/, where ¢’ final, s & ¢, and s’ & ¢/, then ¢’ val and e —" ¢’. For this it is enough to

show the following two facts:

1. If s & e and s final, then e val.

2. Ifs— 5,53 ¢, 3 ¢ ,and ¢ —* v, where v val, then e —* v.

The first is quite simple, we need only note that the unraveling of a final state is a value. For the
second, it is enough to prove the following lemma.

Lemma 28.3. Ifs — s', s & e, and s’ & ¢, then e —* ¢'.

Corollary 28.4. e —* 1 iffe > e —" € < 7.

28.3.1 Completeness

Proof of Lemma 28.2. The proof is by induction on an evaluation dynamics for PCF.
Consider the evaluation rule

erd Alm](x.e) {ex/x}el v
ap(er;e2) | v

(28.10)

For an arbitrary control stack k we are to show that k > ap(ej;e;) —™* k < v. Applying both of

266 28.3 Correctness of the Stack Machine

the inductive hypotheses in succession, interleaved with steps of the K machine, we obtain
k>ap(er;ep) —k;ap(—;e) > e
—*k;ap(—;e) <A[m](x.e)
— k> {ex/x}e

—* k<.

The other cases of the proof are handled similarly. O

28.3.2 Soundness

The judgment s 3~ ¢/, where s is either k i e or k < ¢, is defined in terms of the auxiliary judgment
ke = ¢ by the following rules:

_
IWL—EI (28.11a)
kpedse

—_
]WL—% (28.11b)
kaedse

In words, to unravel a state we wrap the stack around the expression to form a complete program.
The unraveling relation is inductively defined by the following rules:

AV (28.12a)
kas(e)=¢
el (28.12b)
kaifz[eg;x.e](e) =¢ (28.120)
1ZC
k;ifz[eg;x.e1](—)xe=¢
k jep) =
ap(e;;er) =e (28.12d)

k;ap(—;ex)>ae; =e
These judgments both define total functions.

Lemma 28.5. The judgment s & e relates every state s to a unique expression e, and the judgment ki<ie =
¢’ relates every stack k and expression e to a unique expression e’.

We are therefore justified in writing k >< e for the unique ¢’ such that ke = ¢’

The following lemma is crucial. It states that unraveling preserves the transition relation.

Lemma 28.6. Ife— ¢/, k<te =d, ke’ = d', thend — d’.

28.4 Notes 267

Proof. The proof is by rule induction on the transition ¢ — ¢/. The inductive cases, where the

transition rule has a premise, follow easily by induction. The base cases, where the transition is an
axiom, are proved by an inductive analysis of the stack k.
For an example of an inductive case, suppose thate = ap(ej;e;), ¢ = ap(¢];ey), and ey — ¢e].

We have ki<ie = d and ki<ie’ = d’. It follows from rules (28.12) that k; ap(—;e;) >e; = d and
k;ap(—;ep)pae] =d'. Soby induction d — d’, as desired.

For an example of a base case, suppose that e = ap(A[12](x.e);er) and € = {ex/x}e with
e — ¢ directly. Assume that k<ie = d and ki<e’ = d’; we are to show that d — d'. We

proceed by an inner induction on the structure of k. If k = ¢, the result follows immediately.
Consider, say, the stack k = k' ; ap(—;¢z). It follows from rules (28.12) that k' xtap(e;cp) = d
and k' >aap(e’ ;cp) = d’. But by the structural dynamics ap(e;cp) — ap(e’; ¢z), so by the inner

inductive hypothesis we have d — d’, as desired. O

We may now complete the proof of Lemma 28.3.

Proof of Lemma 28.3. The proof is by case analysis on the transitions of the K machine. In each case,
after unraveling, the transition will correspond to zero or one transitions of the PCF structural
dynamics.

Suppose thats = k> s(e)and s’ = k;s(—) >e. Note that kixis(e) =€ iffk;s(—) e =¢/,
from which the result follows immediately.

Suppose that s = k;ap(—;ex) <4 A[t](x.e1), and s’ = k > {ea/x}e;. Let ¢’ be such that
k;ap(—;ex)><aA[T](x.e1) = € and let ¢’ be such that k< {e;/x}e; = ¢’. Noting that k<
ap(A[T](x.e1);ex) =€, the result follows from Lemma 28.6.

0

28.4 Notes

The abstract machine considered here is typical of a wide class of machines that make control flow
explicit in the state. The prototype is the SECD machine (Landin, 1965), which is a linearization of
a structural operational semantics (Plotkin, 1981). The advantage of a machine model is that the
explicit treatment of control is needed for languages that allow the control state to be manipulated
(see Chapter 30 for a prime example). The disadvantage is that the control state of the computation
must be made explicit, necessitating rules for manipulating it that are left implicit in a structural
dynamics.

Exercises

28.1. Give the proof of Theorem 28.1 for conditional expressions.

28.2. Formulate a call-by-value variant of the PCF machine.

268 28.4 Notes

28.3. Analyze the worst-case asymptotic complexity of executing each instruction of ma-
chine.

28.4. Refine the proof of Lemma 28.2 by bounding the number of machine st
step of the PCF dynamics.

Q
&

Chapter 29

Exceptions

Exceptions effect a non-local transfer of control from the point at which the exception is raised
to an enclosing handler for that exception. This transfer interrupts the normal flow of control in
a program in response to unusual conditions. For example, exceptions can be used to signal an
error condition, or to signal the need for special handling in unusual circumstances. We could
use conditionals to check for and process errors or unusual conditions, but using exceptions is
often more convenient, particularly because the transfer to the handler is conceptually direct and
immediate, rather than indirect via explicit checks.

In this chapter we will consider two extensions of PCF with exceptions. The first, FPCF, en-
riches PCF with the simplest form of exception, called a failure, with no associated data. A failure
can be intercepted, and turned into a success (or another failure!) by transferring control to an-
other expression. The second, XPCF, enriches PCF with exceptions, with associated data that is
passed to an exception handler that intercepts it. The handler may analyze the associated data to
determine how to recover from the exceptional condition. A key choice is to decide on the type of
the data associated to an exception.

29.1 Failures

The syntax of FPCF is defined by the following extension of the grammar of PCF:

Exp e == fail fail signal a failure
catch(ep;ep) catchejowey catch a failure

The expression fail aborts the current evaluation, and the expression catch(e; ; ey) catches any
failure in ey by evaluating e, instead. Either e; or e, may themselves abort, or they may diverge or
return a value as usual in PCF.

The statics of FPCF is given by these rules:

(29.1a)
I'Ffail: T

270 29.1 Failures

I'ter:t The: T
T'kcatch(e;en): T

(29.1b)

A failure can have any type, because it never returns. The two expressions in a catch expression
must have the same type, because either might determine the value of that expression.

The dynamics of FPCF is given using a technique called stack unwinding. Evaluation of a catch
pushes a frame of the form catch(— ;e) onto the control stack that awaits the arrival of a failure.
Evaluation of a fail expression pops frames from the control stack until it reaches a frame of the
form catch(— ;e), at which point the frame is removed from the stack and the expression e is
evaluated. Failure propagation is expressed by a state of the form k <« , which extends the two
forms of state considered in Chapter 28 to express failure propagation.

The FPCF machine extends the PCF machine with the following additional rules:

k> fail —s k <« (29.2a)

k> catch(ey ey) — k;catch(—;ex) > eg (29.2b)
k;catch(—;e) <vr— k<o (29.2¢)
k;catch(—;e) 4« —> k> e (29.2d)

(f # catch(—;e)) 2920

k;f4+— k<

Evaluating fail propagates a failure up the stack. The act of failing itself, fail, will, of course,
give rise to a failure. Evaluating catch(ej ; e,) consists of pushing the handler on the control stack
and evaluating e;. If a value reaches to the handler, the handler is removed and the value is passed
to the surrounding frame. If a failure reaches the handler, the stored expression is evaluated with
the handler removed from the control stack. Failures propagate through all frames other than the
catch frame.

The initial and final states of the FPCF machine are defined by the following rules:

- (29.3a)
€ > e initial
e val
€ < e final (29.3b)
(29.3¢)

€ « final

29.2 Exceptions 271

The definition of stack typing given in Chapter 28 can be extended to account for the new forms
of frame so that safety can be proved in the same way as before. The only difference is that the
statement of progress must be weakened to take account of failure: a well-typed expression is
either a value, or may take a step, or may signal failure.

Theorem 29.1 (Safety for FPCF). 1. Ifs okand s — s, then s’ ok.

2. If s ok, then either s final or there exists s’ such that s — s'.

29.2 Exceptions

The language XPCF enriches FPCF with exceptions, failures to-which a value is attached. The
syntax of XPCF extends that of PCF with the following forms of expression:

Exp e == raise(e) raise(e) raise an exception
try(e;;x.ey) tryejowx < ey handle an exception

The argument to raise is evaluated to determine the value passed to the handler. The expression
try(e;;x.ey) binds a variable x in the handlere,. The associated value of the exception is bound
to that variable within e;, should an exception be raised when e, is evaluated.

The statics of exceptions extends the statics of failures to account for the type of the value
carried with the exception:

[le:exn
[+ raise(e): T 24
The:t T,x:exnkex: T (29.4b)

T'ktry(e;;x.e0): T

The type exn is some fixed, but as yet unspecified, type of exception values. (The choice of exn is
discussed in Section 29.3.)

The dynamics of XPCF is similar to that of FPCF, except that the failure state k « is replaced
by the exception state k <« e¢ which passes an exception value e to the stack k. There is only one
notion of exception, but the associated value can be used to identify the source of the exception.

The stack frames of the PCF machine are extended to include raise(—) and try(—;x.ep).
These are used in the following rules:

k> raise(e) — k;raise(—)p>e (29.5a)
k;raise(—)<er—k «e (29.5b)
(29.5¢)

ko try(ep;x.ep) —r k;try(—;x.ep) > eq

272 29.3 Exception Values

k;try(—;x.ep)der—k<e (29.5d)
kitry(—;x.ex) 4er— ko {e/x}e (29.5¢)
SiEn=n (29.5f)

k;f de— ke

The main difference compared to Rules (29.2) is that an exception passes a values to the stack,
whereas a failure does not.
The initial and final states of the XPCF machine are defined by the following rules:

& (29.6a)
€ > ¢ initial
e val
€ < e final (29.6b)
e val
€ « e final (29.6)

Theorem 29.2 (Safety for XPCF). 1. Ifs ok and s — ', then s ok.

2. If s ok, then either s final or there exists s’ such that s — s’

29.3 Exception Values

The statics of XPCF is parameterized by the type exn of values associated to exceptions. The
choice of exn is important because it determines how the source of an exception is identified in a
program. If exn is the one-element type unit, then exceptions degenerate to failures, which are
unable to identify their source. Thus exn must have more than one value to be useful.

This fact suggests that exnshould be a finite sum. The classes of the sum identify the sources of
exceptions, and the classified value carries information about the particular instance. For example,
exn might be a sum type of the form

[div <> unit, fnf < string,...].

Here the class div might represent an arithmetic fault, with no associated data, and the class fnf
might represent a “file not found” error, with associated data being the name of the file that was
not found.

Using a sum means that an exception handler can dispatch on the class of the exception value
to identify its source and cause. For example, we might write

29.4 Notes 273

handle e; ow x —
match x {

div () < ediv

| fnf s < efmr }

to handle the exceptions specified by the above sum type. Because the exception and its associated
data are coupled in a sum type, there is no possibility of misinterpreting the data associated to one
exception as being that of another.

The disadvantage of choosing a finite sum for exn is that it specifies a closed world of possible
exception sources. All sources must be identified for the entire program, which impedes modular
development and evolution. A more modular approach admits an open world of exception sources
that can be introduced as the program evolves and even as it executes. A generalization of finite
sums, called dynamic classification, defined in Chapter 33, is required for an open world. (See that
Chapter for further discussion.)

When exn is a type of classified values, its classes are often called exceptions, so that one may
speak of “the fnf exception” in the above example. This terminology is harmless, and all but
unavoidable, but it invites confusion between two separate ideas:

1. Exceptions as a control mechanism that allows the course of evaluation to be altered by raising
and handling exceptions.

2. Exceptions as a data value associated with such a deviation of control that allows the source
of the deviation to be identified.

As a control mechanism exceptions can be eliminated using explicit exception passing. A computa-
tion of type T that may raise an exception is interpreted as an exception-free computation of type
T + exn.

29.4 Notes

Various forms of exceptions were considered in Lisp (Steele, 1990). The original formulation of
ML (Gordon et al., 1979) as a metalanguage for mechanized logic used failures to implement back-
tracking proof search. Most modern languages now have exceptions, but differ in the forms of
data that may be associated with them.

Exercises

29.1. Prove Theorem 29.2. Are any properties of exn required for the proof?
29.2. Give an evaluation dynamics for XPCF using the following judgment forms:

¢ Normal evaluation: e || v, wheree : 7, v : T, and v val.

e Exceptional evaluation: e f} v, where e : T, and v : exn, and v val.

274

29.3.

29.4 Notes

The first states that e evaluates normally to value v, the second that e raises an exception with
value .

Give a structural operational dynamics to XPCF by inductively defining the following judg-
ment forms:

e ¢+ ¢, stating that expression e transitions to expression ¢’;
* ¢ val, stating that expression ¢ is a value.

Ensure thate |} viffe —* v, and e {} v iff e —* raise(v.), where v val in both cases.

Chapter 34

Modernized Algol

Modernized Algol, or MA, is an imperative, block-structured programming language based on
the classic language Algol. MA extends PCF with-a new syntactic sort of commands that act on
assignables by retrieving and altering their contents. Assignables are introduced by declaring them
for use within a specified scope; this is the essence of block structure. Commands are combined
by sequencing, and are iterated using recursion.

MA maintains a careful separation between pure expressions, whose meaning does not de-
pend on any assignables, and impure commands, whose meaning is given in terms of assignables.
The segregation of pure from impure ensures that the evaluation order for expressions is not con-
strained by the presence of assignables in the language, so that they can be manipulated just as in
PCF. Commands, on the other hand, have a constrained execution order, because the execution of
one may affect the meaning of another.

A distinctive feature of MA is that it adheres to the stack discipline, which means that assignables
are allocated on entry to the scope of their declaration, and deallocated on exit, using a conven-
tional stack discipline. Stack allocation avoids the need for more complex forms of storage man-
agement, at the cost of reducing the expressive power of the language.

34.1 Basic Commands

The syntax of the language MA of modernized Algol distinguishes pure expressions from impure
commands. The expressions include those of PCF (as described in Chapter 19), augmented with
one construct, and the commands are those of a simple imperative programming language based
on assignment. The language maintains a sharp distinction between variables and assignables. Vari-
ables are introduced by A-abstraction and are given meaning by substitution. Assignables are
introduced by a declaration and are given meaning by assignment and retrieval of their contents,
which is, for the time being, restricted to natural numbers. Expressions evaluate to values, and
have no effect on assignables. Commands are executed for their effect on assignables, and return
a value. Composition of commands not only sequences their execution order, but also passes the
value returned by the first to the second before it is executed. The returned value of a command

312 34.1 Basic Commands

is, for the time being, restricted to the natural numbers. (But see Section 34.3 for the general case.)
The syntax of MA is given by the following grammar, from which we have omitted repetition
of the expression syntax of PCF for the sake of brevity.

Typ T == cmd cmd command

Exp e = cmd(m) cmd m encapsulation

Cmd m == ret(e) rete return
bnd(e;x.m) bndx<—e;m sequence
dcl(e;a.m) dcla:=einm new assignable
get|a] @a fetch
set[a](e) a:=e assign

The expression cmd(m) consists of the unevaluated command m thought of as a value of type
cmd. The command ret(e) returns the value of the expression e without having any effect on
the assignables. The command bnd(e; x.m) evaluates e to an encapsulated command, then this
command is executed for its effects on assignables, with its value substituted for x in m. The
command dcl(e;a.m) introduces a new assignable, a, for use within the command m whose
initial contents is given by the expressione. The command get[a | returns the current contents of
the assignable @ and the command set[a]|(e) changes the contents of the assignable a to the value
of ¢, and returns that value.

34.1.1 Statics

The statics of MA consists of two forms of judgment:
1. Expression typing: I' -y, e : 7.
2. Command formation: T -y m ok.

The context T specifies the types of variables, as usual, and the signature X consists of a finite set
of assignables. As with other uses of symbols, the signature cannot be interpreted as a form of
typing hypothesis (it enjoys no structural properties of entailment), but must be considered as an
index of a family of judgments, one for each choice of X.

The statics of MA is inductively defined by the following rules:

I' by m ok

'ty cmd(m) : cmd (34.1a)
[ty e:nat
Ity ret(e) ok (34.1b)
I'kye:cmd T,x:nat by m ok 6410
Ity bnd(e;x.m) ok
'y e:nat T'Fy, mok
TR (34.1d)

Ity dcl(e;a.m) ok

34.1 Basic Commands 313

34.1e
I'Fy,get[a] ok ()

I'ky,e:nat
I'ty,set[a](e) ok

Rule (34.1a) is the introduction rule for the type cmd, and rule (34.1c) is the corresponding elimi-
nation form. Rule (34.1d) introduces a new assignable for use within a specified command. The
name 7 of the assignable is bound by the declaration, and so may be renamed to satisfy the implicit
constraint that it not already occur in . Rule (34.1¢) leaves implicit that the command to retrieve
the contents of an assignable a returns a natural number, as all do. Rule (34.1f) states that we may
assign a natural number to an assignable.

(34.1f)

34.1.2 Dynamics

The dynamics of MA is defined in terms of a memory y a finite function assigning a numeral to
each of a finite set of assignables.
The dynamics of expressions consists of these two judgment forms:

1. e valy, stating that ¢ is a value relative to X.

2. ¢ = ¢/, stating that the expression e steps to the expression ¢’.

These judgments are inductively defined by the following rules, together with the rules defining
the dynamics of PCF (see Chapter19). It is important, however, that the successor operation be
given an eager, instead of lazy, dynamics so that a closed value of type nat is a numeral (for reasons
that will be explained in Section 34.3).

cmd(m) valy (3422)

Rule (34.2a) states that an encapsulated command is a value.
The dynamics of commands is defined in terms of states y || m, where y is a memory mapping
assignables to values, and m is a command. There are two judgments governing such states:

1. p || m finaly. The state y || m is complete.

20 ||m e ' || m'. The state u || m steps to the state i’ || m’; the set of active assignables is

given by the signature 2.

These judgments are inductively defined by the following rules:

e valy,
i || ret(e) finalg (3432)
er— e
> (34.3b)

plzet(e) — p [zet(e)

314 34.1 Basic Commands

34.3
yand(e;x.m)»?y||bnd(e’,'x.m) (34.3c)
e valy
|| bnd(cmd(ret(e));x.m) gy || {e/x}m (34.3d)
ol m > | mh
34.3
p Il ona(ema(m) ma) — ' bna(cn(mig) ;.o) (34.3¢)
y@a‘—)e”get[a]|2—>y®a<—>e||ret(e) (34.36)
,a
erz—>e’
a4
34.3
i sexlal(e) > Al setlal(?) (%4%)
evaly ,
nwa | set[al(e) — p@avelzet(e) (34.3h)
0
er—s¢
s (34.3i)
‘u||dcl(e;a.m)|?>y||dcl(e’;a.m)
evaly p®@a—el|m—s ' @a—eé | m
b (34.3j)
‘qucl(e;a.m)n?y’Hdcl(e’;a.m’) .
evaly ¢ valy,
(34.3k)

pl del(e;a.ret(e)) el | ret(e’)

Rule (34.3a) specifies that a ret command is final if its argument is a value. Rules (34.3c) to (34.3¢)
specify the dynamics of sequential composition. The expression e must, by virtue of the type
system, evaluate to an encapsulated command, which is executed to find its return value, which
is then substituted into the command m before executing it.

Rules (34.31) to (34.3k) define the concept of block structure in a programming language. Dec-
larations adhere to the stack discipline in that an assignable is allocated during evaluation of the
body of the declaration, and deallocated after evaluation of the body is complete. Therefore the
lifetime of an assignable can be identified with its scope, and hence we may visualize the dynamic
lifetimes of assignables as being nested inside one another, in the same way as their static scopes
are nested inside one another. The stack-like behavior of assignables is a characteristic feature of
what are known as Algol-like languages.

34.1 Basic Commands 315

34.1.3 Safety

The judgment y || m oky, is defined by the rule

= k 12
T Mok K& (34.4)
p || m oks
where the auxiliary judgment y : X is defined by the rule
VaeX Ze wu(a)=eandevalpand Fgpe:nat (34.5)

X
That is, the memory must bind a number to each assignable in 2.

Theorem 34.1 (Preservation).

1. Ife'?e’undkzezr,thenkze’:T.
2. Ifu || mi— w || m', with -y, m okand p : ¥, then s, m' ok and ' : X.

Proof. Simultaneously, by induction onrules (34.2) and (34.3).

Consider rule (34.3j). Assume that 5, dcl(e;a.m) ok and p : X. By inversion of typing we
have -3 e : nat and -y ; m ok. Because e valy and y : ¥, we have 4 ® a — e : X, a. By induction we
have by, m’ ok and i/ ® a < €' : &, a, from which the result follows immediately.

Consider rule (34.3k). Assume that -y, dcl(e;a.ret(e’)) ok and u : £. By inversion we have
by e:nat,and -y, ret(€’) ok, and so -y , ¢’ : nat. But because ¢’ valy ,, and ¢’ is a numeral, and
we also have by, ¢ : nat, as required. O

Theorem 34.2 (Progress).
1. Ifbx e : T, then either e valy, or there exists ¢’ such that e n? e.
2. If bs, m ok and y : X, then either ji || m finaks or p || m = W' || m’ for some y' and m’.
Proof. Simultaneously, by induction on rules (34.1). Consider rule (34.1d). By the first inductive

hypothesis we have either e ?) ¢’ or e valy. In the former case rule (34.3i) applies. In the latter, we

have by the second inductive hypothesis,

p®a—el mfinalg, or y®a<—>e\|mlz—>y'®a<—>e’ | m'.
,a

In the former case we apply rule (34.3k), and in the latter, rule (34.3j). O

316 34.2 Some Programming Idioms

34.2 Some Programming Idioms

The language MA is designed to expose the elegant interplay between the execution of an expres-
sion for its value and the execution of a command for its effect on assignables. In this section we
show how to derive several standard idioms of imperative programming in MA.

We define the sequential composition of commands, written {x <— m ; m, }, to stand for the com-
mand bnd x < cmd (my) ; my. Binary composition readily generalizes to an n-ary form by defining

{1 = my; . xyg g my
to stand for the iterated composition
{xymy;.. . {xy_1m,_q1;my}}.

We sometimes write just {my ; my} for the composition {_ < mj ; my} where the returned value
from m; is ignored; this generalizes in the obvious way to an n-ary form.

A related idiom, the command do ¢, executes an encapsulated command and returns its result.
By definition do e stands for the command bnd x < e ; ret x.

The conditional command ifz (m) m; elseny executes either mj or my according to whether
the result of executing m is zero or not:

{x<+m;do(ifzx{z<— cmdmq|s(-) < cmdmy})}.

The returned value of the conditional is the value returned by the selected command.

The while loop command while (m;) m; repeatedly executes the command m;, while the com-
mand 1, yields a non-zero number. It is defined as follows:

do (fixloop:cmdiscmd (ifz (my) {retz} else {my;doloop})).

This commands runs the self-referential encapsulated command that, when executed, first exe-
cutes my, branching on the result. If the result is zero, the loop returns zero (arbitrarily). If the
result is non-zero, the command 1, is executed and the loop is repeated.

A procedure is a function of type T — cmd that takes an argument of some type T and yields
an unexecuted command as result. Many procedures have the form A (x: 7) cmd m, which we
abbreviate to proc (x : T) m. A procedure call is the composition of a function application with the
activation of the resulting command. If e is a procedure and e, is its argument, then the procedure
call calleq(ey) is defined to be the command do (¢; (e)), which immediately runs the result of

applying e to e;.

As an example, here is a procedure of type nat — cmd that returns the factorial of its argument:

34.3 Typed Commands and Typed Assignables 317

proc (x:nat) {

dcl r := 1 in

dcl a := x in

{ while (@ a) {
y+— @r
;2 ¢— @ a
;roi= (x-z+l) X y
; a = z-1

}

s X +— @r

; ret x

}
}

The loop maintains the invariant that the contents of r is the factorial of the quantity x minus the
contents of a. Initialization makes this invariant true, and it is preserved by each iteration of the
loop, so that upon completion of the loop the assignable a contains 0 and r contains the factorial
of x, as required.

34.3 Typed Commands and Typed Assignables

So far we have restricted the type of the returned value of a command, and the contents of an
assignable, to be nat. Can this restriction be relaxed, while adhering to the stack discipline?

The key to admitting returned and assignable values of other types may be uncovered by a
close examination of the proof of Theorem 34.1. For the proof to go through it is crucial that
values of type nat, the type of assignables and return values, cannot contain an assignable, for
otherwise the embedded assignable would escape the scope of its declaration. This property is
self-evidently true for eagerly evaluated natural numbers, but fails when they are evaluated lazily.
Thus the safety of MA hinges on the evaluation order for the successor operation, in contrast to
most other situations where either interpretation is also safe.

When extending MA to admit assignables and returned values of other types, it is necessary
to pay close attention to whether assignables can be embedded in a value of a candidate type.
For example, if return values of procedure type are allowed, then the following command violates
safety:

dcla:=zin {ret (proc(x:nat){a:=x})}.

This command, when executed, allocates a new assignable a4 and returns a procedure that, when
called, assigns its argument to 4. But this makes no sense, because the assignable a is deallocated
when the body of the declaration returns, but the returned value still refers to it. If the returned
procedure is called, execution will get stuck in the attempt to assign to a.

A similar example shows that admitting assignables of procedure type is also unsound. For
example, suppose that b is an assignable whose contents are of type nat — cmd, and consider the
command

dcla:=zin{b:=proc(x:nat){a:=x};retz}.

318 34.3 Typed Commands and Typed Assignables

We assign to b a procedure that uses a locally declared assignable a and then leaves the scope of
the declaration. If we then call the procedure stored in b, execution will get stuck attempting to
assign to the non-existent assignable 4.

To admit declarations that return values other than nat and to admit assignables with contents
of types other than nat, we must rework the statics of MA to record the returned type of a com-
mand and to record the type of the contents of each assignable. First, we generalize the finite set
¥ of active assignables to assign a mobile type to each active assignable so that ¥ has the form
of a finite set of assumptions of the form a ~ T, where a is an assignable. Second, we replace the
judgment I' -5 m ok by the more general form I' -5, m < T, stating that m is a well-formed com-
mand returning a value of type 7. Third, the type cmd is generalized to cmd(7), which is written
in examples as T cmd, to specify the return type of the encapsulated command.

The statics given in Section 34.1.1 is generalized to admit typed commands and typed assignables
as follows:

Tl—zm&‘f (346)
.6a
Ity cmd(m) : cmd(T)
Fkye:t
[hyret(e)d T (34.6b)
Itye:emd(t) Tx:thgms 1 (34.60)
.6bc
[ty bnd(e;x.m)~ T
IFye:t Tmobile Thy, m~ T 7 mobil
ve mobile Sa~t M / mobile (34.6d)
[Fydcl(e;a.m)~T
34.6e
r |_Z,a~r get[a} ~T ()
I'kFygore: 7
BT (34.6f)

[Fya.rsetfa](e)~T

Apart from the generalization to track returned types and content types, the most important
change is that in Rule (34.6d) both the type of a declared assignable and the return type of the
declaration is required to be mobile. The definition of the judgment T mobile is guided by the
following mobility condition:

if T mobile, -5 e : T and e valy, then kg e: Tand e valg. (34.7)

That is, a value of mobile type may not depend on any active assignables.
As long as the successor operation is evaluated eagerly, the type nat is mobile:

- (34.8)
nat mobile

Similarly, a product of mobile types may safely be deemed mobile, if pairs are evaluated eagerly:

T4 mobile T, mobile
T X T mobile

(34.9)

34.4 Notes 319

And the same goes for sums, if the injections are evaluated eagerly:

71 mobile T, mobile
T1 + T mobile

(34.10)

In each of these cases laziness defeats mobility, because values may contain suspended computa-
tions that depend on an assignable. For example, if the successor operation for the natural num-
bers were evaluated lazily, then s(e) would be a value for any expression e including one that
refers to an assignable a.

Because the body of a procedure may involve an assignable, no procedure type is mobile, nor
is any command type. What about function types other than procedure types? We may think
they are mobile, because a pure expression cannot depend on an assignable. Although this is the
case, the mobility condition need not hold. For example, consider the following value of type
nat — nat:

A(x:nat)(A(-:Tcemd)z)(cmd {@a}).

Although the assignable a is not actually needed to compute the result, it nevertheless occurs in
the value, violating the mobility condition.

The mobility restriction on the statics of declarations ensures that the type associated to an
assignable is always mobile. We may therefore assume, without loss of generality, that the types
associated to the assignables in the signature X are mobile.

Theorem 34.3 (Preservation for Typed Commands).

1. Ifel? eandbs e: T, thenks e : 1.

2. Ifu || m = || m', withts, m % tand p: S, then Fyom’ ~ tand p' : 2.
Theorem 34.4 (Progress for Typed Commands).

1. Ifby e : T, then either e valy, or there exists e’ such that e = e.
2. Ifbgm < Tand p : X, then either || m finak, or y || m = w || m' for some ' and m’.

The proofs of Theorems 34.3 and 34.4 follows very closely the proof of Theorems 34.1 and 34.2.
The main difference is that we appeal to the mobility condition to ensure that returned values and
stored values are independent of the active assignables.

34.4 Notes

Modernized Algol is a derivative of Reynolds’s Idealized Algol (Reynolds, 1981). In contrast to
Reynolds’s formulation, Modernized Algol maintains a separation between computations that
depend on the memory and those that do not, and does not rely on call-by-name for function
application, but rather has a type of encapsulated commands that can be used where call-by-name

320 34.4 Notes

would otherwise be required. The modal distinction between expressions and commands was
present in the original formulation of Algol 60, but is developed here in using the concept of
monadic effects introduced by Moggi (1989). Its role in functional programming was emphasized
by Wadler (1992). The modal separation in MA is adapted directly from Pfenning and Davies
(2001), which stresses the connection to lax modal logic.

What are called assignables here are invariably called variables elsewhere. The distinction be-
tween variables and assignables is blurred in languages that allow assignables as forms of expres-
sion. (Indeed, Reynolds himself (personal communication, 2012) regards this as a defining feature
of Algol, in opposition to the formulation given here.) In MA we choose to make the distinction
between variables, which are given meaning by substitution, and assignables, which are given
meaning by mutation. Drawing this distinction requires new terminology; the term assignable
seems apt for the imperative programming concept.

The concept of mobility of a type was introduced in the ML5 language for distributed comput-
ing (Murphy et al., 2004), with the similar meaning that a value of a mobile type cannot depend
on local resources. Here the mobility restriction is used to ensure that the language adheres to the
stack discipline.

Exercises

34.1. Originally Algol had both scalar assignables, whose contents are atomic values, and array
assignables, which is a finite sequence of scalar assignables. Like scalar assignables, array
assignables are stack-allocated. Extend MA with array assignables, ensuring that the lan-
guage remains type safe, but allowing that computation may abort if a non-existent array
element is accessed.

34.2. Consider carefully the behavior of assignable declarations within recursive procedures, as in
the following expression

fixpisA(x:7)dcla:=eincmd(m)

of type T — p cnd for some p. Because p is recursive, the body m of the procedure may
call itself during its execution, causing the same declaration to be executed more than once.
Explain the dynamics of getting and setting a in such a situation.

34.3. Originally Algol considered assignables as expressions that stand for their contents in mem-
ory. Thus, if a is an assignable containing a number, one could write expressions such as
a + a that would evaluate to twice the contents of a. Moreover, one could write commands
such as a := a + a to double the contents of a. These conventions encouraged programmers
to think of assignables as variables, quite the opposite of their separation in MA. This con-
vention, combined with an over-emphasis on concrete syntax, led to a conundrum about the
different roles of a in the above assignment command: its meaning on the left of the assign-
ment is different from its meaning on the right. These came to be called the left-, or [-value,
and the right-, or r-value of the assignable a, corresponding to its position in the assignment
statement. When viewed as abstract syntax, though, there is no ambiguity to be explained:

34.4 Notes 321

34.4.

the assignment operator is indexed by its target assignable, instead of taking as argument
an expression that happens to be an assignable, so that the command is set[a](a + a), not
set(a;a+a).

This still leaves the puzzle of how to regard assignables as forms of expression. As a first
cut, reformulate the dynamics of MA to account for this. Reformulate the dynamics of ex-
pressions in terms of the judgments y || e = #' || ¢ and u || e final that allow evaluation of e

to depend on the contents of the memory. Each use of an assignable as an expression should
require one access to the memory. Then prove memory invariance:: if y || e = i || ¢, then

W=

A natural generalization is to allow any sequence of commands to be considered as an ex-
pression, if they are all passive in the sense that no assignments are allowed. Write do {m},
where m is a passive command, for a passive block whose evaluation consists of executing the
command m on the current memory, using its return value as the value of the expression.
Observe that memory invariance holds for passive blocks.

The use of an assignable a as an expression may now be rendered as the passive block
do{@ua}. More complex uses of assignables as expressions admit several different inter-
pretations using passive blocks. For example, an expression such as a + amight be rendered
in one of two ways:

(a) do{@a} +do{@a},or

(b) letxbedo{@a}inx + x.

The latter formulation accesses a only once, but uses its value twice. Comment on there
being two different interpretations of a + a.

Recursive procedures in Algol are declared using a command of the form procp(x:7) :
p is m inm’, which is governed by the typing rule

[p:t—pemd,x:Thkymsp I,p:T—pcndbym &7

34.11
[ty procp(x:7T):pisminm +~ 7 ()

From the present viewpoint it is peculiar to insist on declaring procedures at all, because they
are simply values of procedure type, and even more peculiar to insist that they be confined
for use within a command. One justification for this limitation, though, is that Algol included
a peculiar feature, called an own variable! that was declared for use within the procedure, but
whose state persisted across calls to the procedure. One application would be to a procedure
that generated pseudo-random numbers based on a stored seed that influenced the behavior
of successive calls to it. Give a formulation in MA of the extended declaration

procp(x:T):pis{owna:=einm}inm’

I That is to say, an own assignable.

322

34.5.

34.6.

34.4 Notes

where 7 is declared as an “own” of the procedure p. Contrast the meaning of the foregoing
declaration with the following one:

procp(x:T):pis{dcla:=einm} inm’.

A natural generalization of own assignables is to allow the creation of many such scenarios
for a single procedure (or mutually recursive collection of procedures), with each instance
creating its own persistent state. This ability motivated the concept of a class in Simula-67 as
a collection of procedures, possibly mutually recursive, that shared common persistent state.
Each instance of a class is called an object of that class; calls to its constituent procedures mu-
tate the private persistent state. Formulate this 1967 precursor of imperative object-oriented
programming in the context of MA.

There are several ways to formulate an abstract machine for MA that accounts for both the
control stack, which sequences execution (as described in Chapter 28 for PCF), and the data
stack, which records the contents of the assignables. A consolidated stack combines these two
separate concepts into one, whereas separated stacks keeps the memory separate from the
control stack, much as we have done in the structural dynamics given by Rules (34.3). In
either case the storage required for an assignable is deallocated when exiting the scope of
that assignable, a key benefit of the stack discipline for assignables in MA.

With a modal separation between expressions and commands it is natural to use a structural
dynamics for expressions, and a stack machine dynamics for commands.

(a) Formulate a consolidated stack machine where both assignables and stack frames are
recorded on the same stack. Consider states k >y m, where by k - Tand Fy m % T,
and k <y, where Fy k = T and Fy e : . Comment on the implementation methods
required for a consolidated stack.

(b) Formulate a separated stack machine where the memory is maintained separately from
the control stack. Consider states of the form k || u by, m, where p : £, -y k + 7, and
by m % T,and of the form k || 4 <y e, where by k = T,y e : 7, and e valg.

Chapter 35

Assignable References

A reference to an assignable a is a value, written &a, of reference type that refers to the assignable a. A
reference to an assignable provides the capability to get or set the contents of that assignable, even if
the assignable itself is not in scope when it is used. Two references can be compared for equality to
test whether they govern the same underlying assignable. If two references are equal, then setting
one will affect the result of getting the other; if they are not equal, then setting one cannot influence
the result of getting from the other. Two references that govern the same underlying assignable
are aliases. Aliasing complicates reasoning about programs that use references, because any two
references may refer to the same assignable.

Reference types are compatible with both a scoped and a scope-free allocation of assignables.
When assignables are scoped, the range of significance of a reference type is limited to the scope
of the assignable to which it refers. Reference types are therefore immobile, so that they cannot be
returned from the body of a declaration, nor stored in an assignable. Although ensuring adherence
to the stack discipline, this restriction precludes using references to create mutable data structures,
those whose structure can be altered during execution. Mutable data structures have a number of
applications in programming, including improving efficiency (often at the expense of expressive-
ness) and allowing cyclic (self-referential) structures to be created. Supporting mutability requires
that assignables be given a scope-free dynamics, so that their lifetime persists beyond the scope of
their declaration. Consequently, all types are mobile, so that a value of any type may be stored in
an assignable or returned from a command.

35.1 Capabilities

The commands get[a] and set[a](e) in MA operate on statically specified assignable a. Even to
write these commands requires that the assignable a be in scope where the command occurs. But
suppose that we wish to define a procedure that, say, updates an assignable to double its previous
value, and returns the previous value. We can write such a procedure for a specific assignable, a,
but what if we wish to write a generic procedure that works uniformly for all assignables?

324 35.2 Scoped Assignables

One way to do this is give the procedure the capability to get and set the contents of some caller-
specified assignable. Such a capability is a pair consisting of a getter and a setter for that assignable.
The getter for an assignable a is a command that, when executed, returns the contents of a. The
setter for an assignable a is a procedure that, when applied to a value of suitable type, assigns that
value to a. Thus, a capability for an assignable a containing a value of type T is a value of type

Tcap= Temd X (T — Tcmd).

A capability for getting and setting an assignable a containing a value of type 7 is given by the
pair
(cmd (@a), proc (x:7T)a:=x)

of type 7 cap. Because a capability type is a product of a command type and a procedure type,
no capability type is mobile. Thus, a capability cannot be returned from a command, nor stored
into an assignable. This is as it should be, for otherwise we would violate the stack discipline for
allocating assignables.

The proposed generic doubling procedure is programmed using capabilities as follows:

proc ((get,set) :nat cmd X (nat — natcmd)) {x <—doget;y < do(set(x+x));retx}.

The procedure is called with the capability to access an assignable a. When executed, it invokes the
getter to obtain the contents of 4, and then invokes the setter to assign to a, returning the previous
value. Observe that the assignable a need not be accessible by this procedure; the capability given
by the caller comprises the commands required to get and set a.

35.2 Scoped Assignables

A weakness of using a capability to give indirect access to an assignable is that there is no guaran-
tee that a given getter/setter pair are in fact the capability for a particular assignable. For example,
we might pair the getter for 2 with the setter for b, leading to unexpected behavior. There is noth-
ing in the type system that prevents creating such mismatched pairs.

To avoid this we introduce the concept of a reference to an assignable. A reference is a value
from which we may obtain the capability to get and set a particular assignable. Moreover, two
references can be tested for equality to see whether they act on the same assignable.! The reference
type ref (7)) has as values references to assignables of type 7. The introduction and elimination
forms for this type are given by the following syntax chart:

Typ T = ref(T) Tref assignable
Exp e = refla] &a reference
Cmd m == getref(e) xe contents

setref(ey;ey) ejx=ey update

IThe getter and setter do not suffice to define equality, because not all types admit a test for equality. When they do,
and when there are at least two distinct values of their type, we can determine whether they are aliases by assigning to one
and checking whether the contents of the other is changed.

35.2 Scoped Assignables 325

The statics of reference types is defined by the following rules:

(35.1a)
[ty,.orrefla] :ref(T)
I'kye:ref
ze:ref(T) (35.1b)
I'by getref(e) ~ T
I'ky e :ref(T) I'kye:t (35.10)

[y setref(ei;ep) & T

Rule (35.1a) specifies that a reference to any active assignable is an expression of type ref().
The dynamics of reference types defers to the corresponding operations on assignables, and
does not alter the underlying dynamics of assignables:

e T (35.2a)

ref[a] ValZ,a»vT
35.2b
il getref(e) — || getret(e’) (35.2b)
i |l getret(retla]) —— p || get[a] (35.20)

A~T

e1 n? e}
, (35.2d)
|| setref(er;en) S K | setref(e];ey)

(35.2¢)

i || setref(ref[a];e) Sk | set[a](e)
A reference to an assignable is a value. The getref and setref operations on references defer to
the corresponding operations on assignables once the referent has been resolved.
Because references give rise to capabilities, the reference type is immobile. As a result refer-
ences cannot be stored in assignables or returned from commands. The immobility of references
ensures safety, as can be seen by extending the safety proof given in Chapter 34.

As an example of using references, the generic doubling procedure discussed in the preceding
section is programmed using references as follows:

proc (7:natref) {x <« *r;r*=x+ x;retx}.

Because the argument is a reference, rather than a capability, there is no possibility that the getter
and setter refer to different assignables.

326 35.3 Free Assignables

The ability to pass references to procedures comes at a price, because any two references might
refer to the same assignable (if they have the same type). Consider a procedure that, when given
two references x and y, adds twice the contents of y to the contents of x. One way to write this
code creates no complications:

A(x:natref)) (y:natref)cmd{x +*x;y < xy;xx=x"+y +vy'}.

Even if x and y refer to the same assignable, the effect will be to set the contents of the assignable
referenced by x to the sum of its original contents and twice the contents of the assignable refer-
enced by v.

But now consider the following seemingly equivalent implementation of this procedure:

A(x:natref)A(y:natref)cmd{x+ =y;x+ =y},
where x + =y is the command
{x —xx;y < *xy;xx=x+v'}

that adds the contents of y to the contents of x. The second implementation works right, as long
as x and y do not refer to the same assignable. If they do refer to a common assignable a, with
contents 1, the result is that a is to set 4 X n, instead of the intended 3 x n. The second get of y is
affected by the first set of x.

In this case it is clear how to avoid the problem: use the first implementation, rather than
the second. But the difficulty is not in fixing the problem once it has been discovered, but in
noticing the problem in the first place. Wherever references (or capabilities) are used, the problems
of interference lurk. Avoiding them requires very careful consideration of all possible aliasing
relationships among all of the references in play. The problem is that the number of possible
aliasing relationships among # references grows combinatorially in #.

35.3 - Free Assignables

Although it is interesting to note that references and capabilities are compatible with the stack
discipline, for references to be useful requires that this restriction be relaxed. With immobile ref-
erences it is impossible to build data structures containing references, or to return references from
procedures. To allow this we must arrange that the lifetime of an assignable extend beyond its
scope. In other words we must give up stack allocation for heap allocation. Assignables that
persist beyond their scope of declaration are called scope-free, or just free, assignables. When all
assignables are free, every type is mobile and so any value, including a reference, may be used in
a data structure.

Supporting free assignables amounts to changing the dynamics so that allocation of assignables
persists across transitions. We use transition judgments of the form

vE{p | m}pr— v {y || m'}.

35.3 Free Assignables 327

Execution of a command may allocate new assignables, may alter the contents of existing assignables,
and may give rise to a new command to be executed at the next step. The rules defining the dy-
namics of free assignables are as follows:

e valy, s
vE{p || ret(e) } final (35.3a)
er— ¢
- ; (35.3b)
vE{p||ret(e) } — vE{pu| ret(e)}
e»?)e’
vE{y| bnd(e;x.m)}—vE{u| bad(e;x.m)} (35.3¢)
e valy
vE{p | bnd(cmd(ret(e));x.m)}r—vE{pul {e/x}m} (35.3d)
vE{p [l my}— vE L ' | my }
vE{(pond(ema(my) e m) § s v (i [ond(endlm)ix ma)] o
vEia~t{p®a—el|getlal}r—via~t{u®a—el ret(e)} (35.3f)
en?e’
35.3
vE (| setlal(e)} — vE{p | set[a](e)} (35.3g)
evaly, .t
vE,a~t{p®a—_||set[a](e)} —vZ,a~T{u®a el ret(e)} (35.3h)
e»?e’
vE{p|del(e;a.m)} — vE{p | dcl(e ;a.m)} (35.3i)
e valy,
(35.3j)

vE{yu|del(e;a.m)}r—vEa~t{u@a—e|m}

The language RMA extends MA with references to free assignables. Its dynamics is similar to
that of references to scoped assignables given earlier.
er— e

x (35.4a)

vE{y | getref(e) } —> vE{ || getref(e)}

328 35.4 Safety

35.4b
vE{ [[getret(retla])} — vE{u | getla]] N
e e}

(35.4¢)

vE{ | setref(er;ep) } —— vE{ || setref(e];ey)}
VT {1 || setret(ref[a];e) } — vE (i || setla](e2)] (354d)

The expressions cannot alter or extend the memory, only commands may do so.
As an example of using RMA, consider the command newref| T |(e) defined by

dcla:=einret(&a). (35.5)

This command allocates a fresh assignable, and returns a reference to it. Its static and dynamics
are derived from the foregoing rules as follows:

Fl—ze:r 5.6
I' Fy newref[T](e) % ref(7) (35.6)
er—s ¢
= , (35.7a)
vE{ | newref[T|(e)} —> vE{y || newref[T](e)}
evaly
(35.7b)

vE{p | newref[t|(e)} —vEa~t{pu®a—e| ret(refla])}

Oftentimes the command newref[T|(e) is taken as primitive, and the declaration command is
omitted. In that case all assignables are accessed by reference, and no direct access to assignables
is provided.

35.4 Safety

Although the proof of safety for references to scoped assignables presents few difficulties, the
safety for free assignables is tricky. The main difficulty is to account for cyclic dependencies within
data structures (such as will arise in Section 35.5.) The contents of one assignable may contain a
reference to itself, or a reference to another assignable that contains a reference to it, and so forth.
For example, consider the following procedure ¢ of type nat — nat cmd:

proc (x:nat){ifz(x)ret(1l)else{f < @a;y<+ f(x—1);ret(xxy)}}.

Let u be a memory of the form ’ ® a < e in which the contents of a contains, via the body of the
procedure, a reference to a itself. Indeed, if the procedure e is called with a non-zero argument, it
will “call itself” by indirect reference through a.

35.4 Safety 329

Cyclic dependencies complicate the definition of the judgment vE { it || m } ok. Itis defined by
the following rule:
FsmAT Frp:X
vE{ | m}ok

The first premise of the rule states that the command m is well-formed relative to X. The second
premise states that the memory y conforms to X, relative to all of ¥ so that cyclic dependencies are
permitted. The judgment Fy/ p : ¥ is defined as follows:

(35.8)

Va~t€X de u(a)=eand Fye:T
Fyp: X

(35.9)

In the safety proof to follow X' is chosen to be X to allow for cyclicity.
Theorem 35.1 (Preservation).

1. Ifl—ze:Tande?)e’,thenl—z e T
2. IfvE{p||m}okandvE{p||m} — vE{y || m'}, thenvX {y || m"} ok.

Proof. Simultaneously, by induction on transition. We prove the following stronger form of the
second statement:

HfvE{p|m}— vE{y || m'}, whereby m & 7, Fy u: X, then ¥/ extends %, and
Fyrm' & 7,and by p 0 2
Consider the transition

vE{p | decl(e;a.m)}r—vEa~p{pu®@a—el| m}

where ¢ valy. By assumption and inversion of rule (34.6d) we have -y e : p, x4 m + T, and
Fs u : 2. But because extension of X with a fresh assignable does not affect typing, we also have
Fxa-p p: X and by, €@ p, from which it follows by rule (35.9) that -y, p p ®a—e: ¥, a~p.
The other cases follow a similar pattern, and are left as an exercise for the reader.
O

Theorem 35.2 (Progress).

1. If by e : T, then either e vals or there exists ¢’ such that e = e.

2. IfvE{p| m} oktheneither vy {y || m} finalorvE{p || m}— v {u" || m'} for some¥,
W, and m'.
Proof. Simultaneously, by induction on typing. For the second statement we prove

Iftym~ tand by p: Z, theneither vE{p || m} final, or vE{p | m} — vE {3 |

m' } for some ¥/, i/, and m’.

330 35.5 Benign Effects

Consider the typing rule
Fl—ge:p r}—Z,uA,pm"?T

Iy dcl(e;a.m)~ 1T

We have by the first inductive hypothesis that either e valy, or e =7 ¢’ for some ¢’. In the latter case

we have by rule (35.3i)

vE{yuldci(e;a.m)} —vE{u| dci(e ;a.m)}.

In the former case we have by rule (35.3j) that

vE{p|dcl(e;a.m)}—vEa~p{u@a—el m}.

Now consider the typing rule

[Fyairgetlal~ 1

By assumption by ;.7 ¢ : X, 4 ~ T, and hence there exists e valy, ;.. such that y = p/ ® a — e and
Fs a1 €: T. By rule (35.3f)

v, a~t{y @a—el get[a]}r—vZa~t{W @a—el ret(e)},

as required. The other cases are handled similarly.

35.5 Benign Effects

The modal separation between commands and expressions ensures that the meaning of an expres-
sion does not depend on the (ever-changing) contents of assignables. Although this is helpful in
many, perhaps most, situations, it also precludes programming techniques that use storage effects
to implement purely functional behavior. A prime example is memoization. Externally, a sus-
pended computation behaves exactly like the underlying computation; internally, an assignable
is associated with the computation that stores the result of any evaluation of the computation for
future use. Other examples are self-adjusting data structures, which use state to improve their effi-
ciency without changing their functional behavior. For example, a splay tree is a binary search tree
that uses mutation internally to re-balance the tree as elements are inserted, deleted, and retrieved,
so that lookup takes time proportional to the logarithm of the number of elements.

These are examples of benign storage effects, uses of mutation in a data structure to improve
efficiency without disrupting its functional behavior. One class of examples are self-adjusting data
structures that reorganize themselves during one use to improve efficiency of later uses. Another
class of examples are memoized, or lazy, data structures, which are discussed in Chapter 36. Be-
nign effects such as these are impossible to implement if a strict separation between expressions
and commands is maintained. For example, a self-adjusting tree involves mutation, but is a value

35.5 Benign Effects 331

just like any other, and this cannot be achieved in MA. Although several special-case techniques
are known, the most general solution is to do away with the modal distinction, coalescing expres-
sions and commands into a single syntactic category. The penalty is that the type system no longer
ensures that an expression of type T denotes a value of that type; it might also have storage effects
during its evaluation. The benefit is that one may freely use benign effects, but it is up to the
programmer to ensure that they truly are benign.

The language RPCF extends PCF with references to free assignables. The following rules de-
fine the statics of the distinctive features of RPCF:

T |—2 e1: N T I_Z,a~‘r1 [I)]

35.10
ke dcl(eg;a.e): D (2)
(35.10b)
Ibyaorgetia):T
I'ky,ore:T
ks (35.10¢)

IbFya.rsetjal(e):t

Correspondingly, the dynamics of RPCF is given by transitions of the form
vE{p el = vX | Y

where e is an expression, and not a command. The rules defining the dynamics are very similar to
those for RMA, but with commands and expressions integrated into asingle category.

To illustrate the concept of a benign effect, consider the technique of back-patching to implement
recursion. Here is an implementation of the factorial function that uses an assignable to implement
recursive calls:

dcl a4 := An:nat.0 in
{ f < a := Antnat.ifz(n, 1, n'.nx(@a)(n))
; ret(f)
}

This declaration returns a function of type nat — nat that is obtained by (a) allocating a free
assignable initialized arbitrarily with a function of this type, (b) defining a A-abstraction in which
each “recursive call” consists of retrieving and applying the function stored in that assignable, (c)
assigning this function to the assignable, and (d) returning that function. The result is a function
on the natural numbers, even though it uses state in its implementation.

Backpatching is not expressible in RMA, because it relies on assignment. Let us attempt to
recode the previous example in RMA:

dcl a := proc(n:nat){ret 0} in

{f+a:=..
; ret(f)
b

where the elided procedure assigned to 4 is given by

332 35.6 Notes

proc(n:nat) {if (ret(n)) {ret(1)} else {f«@u; x+£f(n-1); ret(nxx)}}.

The difficulty is that what we have is a command, not an expression. Moreover, the result of
the command is of the procedure type nat — (nat cmd), and not of the function type nat — nat.
Consequently, we cannot use the factorial procedure in an expression, but have to execute it as'a
command using code such as this:

{ £ « fact; x < £(n); ret(x) }.

35.6 Notes

Reynolds (1981) uses capabilities to provide indirect access to assignables; references are just an
abstract form of capability. References are often permitted only for free assignables, but with
mobility restrictions one may also have references to scoped assignables. The proof of safety of
free references outlined here follows those given by Wright and Felleisen (1994) and Harper (1994).

Benign effects are central to the distinction between Haskell, which provides an Algol-like sep-
aration between commands and expressions, and ML, which integrates evaluation with execution.
The choice between them is classic trade-off, with neither superior to the other in all respects.

Exercises

35.1. Consider scoped array assignables as described in Exercise 34.1. Extend the treatment of
array assignables in Exercise 34.1, to account for array assignable references.

35.2. References to scope-free assignables are often used to implement recursive data structures
such as mutable lists and trees. Examine such data structures in the context of RMA enriched
with sum, product, and recursive types.

Give six different types that could be considered a type of linked lists, according to the fol-
lowing characteristics:

(a) A mutable list may only be updated in toto by replacing it with another (immutable)
list.

(b) A mutable list can be altered in one of two ways, to make it empty, or to change both its
head and tail element simultaneously. The tail element is any other such mutable list,
so circularities may arise.

(c) A mutable list is, permanently, either empty or non-empty. If not, both its head and tail
can be modified simultaneously.

(d) A'mutable list is, permanently, either empty or non-empty. If not, its tail, but not its
head, can be set to another such list.

(e) A mutable list is, permanently, either empty or non-empty. If not, either its head or its
tail elements can be modified independently.

35.6 Notes 333

(f) A mutable list can be altered to become either empty or non-empty. If it is non-empty,
either it head, or its tail, can be modified independently of one another.

Discuss the merits and deficiencies of each representation.

Q
&

Chapter 37

Nested Parallelism

Parallel computation seeks to reduce the running times of programs by allowing many computa-
tions to be carried out simultaneously. For example, if we wish to add two numbers, each given by
a complex computation, we may consider evaluating the addends simultaneously, then comput-
ing their sum. The ability to exploit parallelism is limited by the dependencies among parts of a
program. Obviously, if one computation depends on the result of another, then we have no choice
but to execute them sequentially so that we may propagate the result of the first to the second.
Consequently, the fewer dependencies among sub-computations, the greater the opportunities for
parallelism.

In this chapter we discuss the language PPCF, which is the extension of PCF with nested par-
allelism. Nested parallelism has a hierarchical structure arising from forking two (or more) parallel
computations, then joining these computations to combine their results before proceeding. Nested
parallelism is also known as fork-join parallelism. We will consider two forms of dynamics for
nested parallelism. The first is a structural dynamics in which a single transition on a compound
expression may involve multiple transitions on its constituent expressions. The second is a cost dy-
namics (introduced in Chapter 7) that focuses attention on the sequential and parallel complexity
(also known as the work and the depth, or span) of a parallel program by associating a series-parallel
graph with-each computation.

37.1 Binary Fork-Join
The syntax of PPCF extends that of PCF with the following construct:
Exp e = par(ej;ep;x1.xp.e) parx) =ejandxp; =eyine parallel let
The variables x; and x, are bound only within e, and not within e; or ep, which ensures that they

are not mutually dependent and hence can be evaluated simultaneously. The variable bindings
represent a fork of two parallel computations e; and ey, and the body e represents their join.

348 37.1 Binary Fork-Join

The statics of PPCF enriches that of PCF with the following rule for parallel let:

I'tey:m Thre:m Txy:m,x:mhe:T
I'tpar(e;;ex;x1.%0.): T

(37.1)

The sequential structural dynamics of PPCF is defined by a transition judgment of the form

e E) ¢’ defined by these rules:

e — €}
seq

, (37.2a)
par(ej;ex;X1.Xp.e) — par(ej;ep;x;.xp.¢)
seq

erval ey —éb
seq

, (37.2b)
par(ey;e;x1.x.¢) Wpar(el;ez;xl.xz.e)

ey val ep val
par(ej;ex;Xx1.x2.¢) W {e1,e2/x1,x2}e

(37.2¢)

The parallel structural dynamics of PPCF is given by a transition judgment of the form e W ¢,

defined as follows:
e — e ep— ¢
par par

(37.3a)
par(ej;epy;x1.xp.¢€) ?par(e’l;e’z;xl.xz.e)
er — ey e val
par (37.3b)
par(ej;ex;x1.x2.¢€) wpar(e’l;ez;xl.xz.e)
epval epr— 6/2
par (37.3c)
par(ej;er;x1.xp.¢€) Wpar(el;e’z;xl.xz.e)
e val ep val
(37.3d)

par(ej;ex;x1.x3.¢€) '? {e1,e2/x1,x2}e

The parallel dynamics abstracts away from any limitations on processing capacity; such limitations
are considered in Section 37.4.

The implicit parallelism theorem states that the sequential and the parallel dynamics coincide.
Consequently, we need never be concerned with the meaning of a parallel program (its meaning
is given by the sequential dynamics), but only with its efficiency. As a practical matter, this means
that a program can be developed on a sequential platform, even if it is meant to run on a parallel
platform, because the behavior is not affected by whether we execute it using a sequential or a
parallel dynamics. Because the sequential dynamics is deterministic (every expression has at most

37.1 Binary Fork-Join 349

one value), the implicit parallelism theorem implies that the parallel dynamics is also determin-
istic. For this reason the implicit parallelism theorem is also known as the deterministic parallelism
theorem. This terminology emphasizes the distinction between deterministic parallelism, the subject
of this chapter, from non-deterministic concurrency, the subject of Chapters 39 and 40.

A proof of the implicit parallelism theorem can be given by giving an evaluation dynamics
e | v in the style of Chapter 7, and showing that

e—*v iff ellv iff e—*v
par seq

(where v is a closed expression such that v val). The most important rule of the evaluation dynam-
ics is for the evaluation of a parallel binding:

erdor el v {v,v/x,x}e o
par(ej;e;x1.x2.¢) | v
The other rules are easily derived from the structural dynamics of PCF as in Chapter 7.

It is possible to show that the sequential dynamics of PPCF agrees with its evaluation dynam-
ics by extending the proof of Theorem 7.2.

(37.4)

Lemma 37.1. Forall v val, e ?* v if, and only if, e || v.
q

Proof. Tt suffices to show that if e — ¢’ and ¢’ | v, then e || v, and that if 4 —* v; and
seq seq

ey —* vp and {v1,v2/x1, X2 }e —* v, then
seq seq
parx; =ejandXxp; =¢p ine ——* 0.
seq

O

By a similar argument we may show that the parallel dynamics also agrees with the evaluation
dynamics, and hence with the sequential dynamics.

Lemma 37.2. Forall v val, e |T>* v if, and only if, e || v.
par

Proof. Tt suffices to show that if e — ¢’ and ¢/ | v, then e || v, and that if ¢, —* v; and
par par

ey —* vy and {vq,vy/x1, X2 te —* v, then
par par

parx; =ejand X, =ep ine ——" 0.
par
The proof of the first is by induction on the parallel dynamics. The proof of the second proceeds
by simultaneous induction on the derivations of e; ——* v1 and e; ——"* v,. If ¢1 = v with vy val
par par

and e; = vy with vy val, then the result follows immediately from the third premise. If e = v
but ¢y — ¢} —* vy, then by induction we have that par x; = ¢} andx; = v; ine —"* v, and
par par par

hence the result follows by an application of rule (37.3b). The symmetric case follows similarly by
an application of rule (37.3c), and in the case that both e; and e, transition, the result follows by
induction and rule (37.3a). O

350 37.2 Cost Dynamics

Theorem 37.3 (Implicit Parallelism). The sequential and parallel dynamics coincide: for all v val, e IQ*

; *
vsze»;) v.

Proof. By Lemmas 37.1 and 37.2. O

The implicit parallelism theorem states that parallelism does not affect the meaning of a pro-
gram, only the efficiency of its execution. Correctness is not affected by parallelism, only efficiency.

37.2 Cost Dynamics

In this section we define a parallel cost dynamics that assigns a cost graph to the evaluation of a PPCF
expression. Cost graphs are defined by the following grammar:

Cost ¢ == 0 zero cost
1 unit cost
c1 ®cp parallel combination
c1 ®cp sequential combination

A cost graph is a series-parallel ordered directed acyclic graph, with a designated source node and
sink node. For 0 the graph consists of one node and no edges, with the source and sink both being
the node itself. For 1 the graph consists of two nodes and one edge directed from the source to
the sink. For c; ® ¢y, if g1 and g7 are the graphs of c¢; and cy, respectively, then the graph has two
extra nodes, a source node with two edges to the source nodes of g; and g7, and a sink node, with
edges from the sink nodes of g; and g to it. The children of the source are ordered according to
the sequential evaluation order. Finally, for ¢; @ ¢z, where g1 and g7 are the graphs of ¢y and ¢y,
the graph has as source node the source of g;, as sink node the sink of g, and an edge from the
sink of g7 to the source of g».

The intuition behind a cost graph is that nodes represent subcomputations of an overall com-
putation, and edges represent sequentiality constraints stating that one computation depends on
the result of another, and hence cannot be started before the one on which it depends completes.
The product of two graphs represents parallelism opportunities in which there are no sequentiality
constraints between the two computations. The assignment of source and sink nodes reflects the
overhead of forking two parallel computations and joining them after they have both completed.
At the structural level, we note that only the root has no ancestors, and only the final node of
the cost graph has no descendents. Interior nodes may have one or two descendents, the former
representing a sequential dependency, and the latter representing a fork point. Such nodes may
have one or two ancestors, the former corresponding to a sequential dependency and the latter
representing a join point.

We associate with each cost graph two numeric measures, the work, wk(c), and the depth, dp(c).

37.2 Cost Dynamics 351

The work is defined by the following equations:

0 ifc=0
wk(c) = 4 ife=1 (37.5)
) wk(cq) + wk(cy) ifc=c; @cy ’

wk(c1) + wk(cp) ifc=c1Pcr

The depth is defined by the following equations:

0 ifc=0
1 ifc=1
dp(c) = 37.6
ple) max(dp(cy),dp(cz)) ifc=c1®¢ (37.6)
dp(c1) +dp(ca) ifc=c1 P

Informally, the work of a cost graph determines the total number of computation steps repre-
sented by the cost graph, and thus corresponds to the sequential complexity of the computation.
The depth of the cost graph determines the critical path length, the length of the longest depen-
dency chain within the computation, which imposes a lower bound on the parallel complexity of a
computation. The critical path length is a lower bound on the number of steps required to com-
plete the computation.

In Chapter 7 we introduced cost dynamics to assign time complexity to computations. The proof

of Theorem 7.7 shows that e /¥ v iff e —* v. That is, the step complexity of an evaluation of e to
a value v is just the number of transitions required to derive e —* v. Here we use cost graphs

as the measure of complexity, then relate these cost graphs to the structural dynamics given in
Section 37.1.

The judgment e || v, where e is a closed expression, v is a closed value, and ¢ is a cost graph
specifies the cost dynamics. By definition we arrange that e || ¢ when e val. The cost assignment
for let is given by the following rule:

ep 41 v e J20y {vy,v2/x1, 2 e v

par(ej;es;xy.xy.e) | (192)810C,

(37.7)

The cost assignment specifies that, under ideal conditions, e; and e, are evaluated in parallel, and
that their results are passed to e. The cost of fork and join is implicit in the parallel combination
of costs, and assign unit cost to the substitution because we expect it to be implemented by a
constant-time mechanism for updating an environment. The cost dynamics of other language
constructs is specified in a similar way, using only sequential combination to isolate the source of
parallelism to the par construct.

Two simple facts about the cost dynamics are important to keep in mind. First, the cost assign-
ment does not influence the outcome.

Lemma 37.4. e |} viffe | v for some c.

352 37.2 Cost Dynamics

Proof. From right to left, erase the cost assignments to construct an evaluation derivation. From
left to right, decorate the evaluation derivations with costs as determined by the rules defining the
cost dynamics. O

Second, the cost of evaluating an expression is uniquely determined.

Lemma 37.5. Ife ||° vande l}c/ v, thencis c'.
Proof. By induction on the derivation of e |} v. O

The link between the cost dynamics and the structural dynamics is given by the following
theorem, which states that the work cost is the sequential complexity, and the depth cost is the
parallel complexity, of the computation.

Theorem 37.6. Ife || v, then e 'Qw vande ?d v, where w = wk(c) and d = dp(c). Conversely, if
e »Q“’ v, then there exists c such that e |\ v with wk(c) = w, and if e ?d o', then there exists ¢’ such
that e | o with dp(c') = d.

Proof. The first part is proved by induction on the derivation of e ||° v, the interesting case being
rule (37.7). By induction we have e; Eﬂ"l 01, €2 wwz vy, and {vy,v2/ %1, x2}e Qw v, where
wy = wk(c1), wy = wk(cp), and w = wk(c). By pasting together derivations we get a derivation

w1

par(ej;ex;xy.xp.¢€) W par(vy;ex;x1.xp.¢€)

w: . .
';) 2par(vl,z)2,x1.x2.e)

— {01/ Z)Z/Xl/ x2}e
seq

—% o,
seq

Noting that wk((c; ® ¢3) ®1 @ c) = wi + wy + 1 + w completes the proof. Similarly, we have
by induction that e; wdl v1, € de vy, and {v1,v2/x1,x2}e wd v, where di = dp(cy),

dy = dp(cy), and d = dp(c). Assume, without loss of generality, that d; < d, (otherwise simply
swap the roles of d; and d, in‘'what follows). We may paste together derivations as follows:

par(ej;en;x1.x2.¢€) :;r%dl par(vy;eh;x1.xp.¢)

dy—d . .
W 27" par(v1;vp;x1.%2.¢€)

— {v1,v2/x1, x2}e
par

>—>d 0.

par

Calculating dp((c1 ® c2) ® 1@ ¢) = max(dq,dp) + 1+ d completes the proof.

37.3 Multiple Fork-Join 353

Turning to the second part, it suffices to show that if e — ¢’ with ¢/ ¢ o, then e I v with
seq
wk(c) = wk(c') + 1, and if e —s ¢/ with ¢/ | o, then e |\ v with dp(c) = dp(c’) + 1.
par
Suppose that e = par(ej;ex;x1.x2.¢0) with ey val and e, val. Then e —— ¢/, where e =
seq
{e1,e2/x1, %2 }eo and there exists ¢’ such that ¢/ ilcl v. But then e |° v, wherec = (0®0) P16,
and a simple calculation shows that wk(c) = wk(c’) + 1, as required. Similarly, e — ¢’ for ¢’ as
par
above, and hence ¢ || v for some ¢ such that dp(c) = dp(c’) + 1, as required.
Suppose that e = par(ej;ex;x1.%p.¢p) and e — ¢/, where ¢/ = par(e];e;;x1.%2.¢€p) and
seq
e; — e]. From the assumption that ¢’ l}cl v, we have by inversion that ¢} l}cll 01, € l}cg oy
seq

and {v1,v2/x1, %2 }eg ilcé v, with ¢’ = (¢} ® ¢}) ®1® c|,. By induction there exists ¢; such that
wk(c1) =1+ wk(c}) and e; ! v1. But then e || v, with ¢ = (c; ® ¢}) &1 & ¢}
By a similar argument, suppose that ¢ = par(ej;ep;x1.x2.¢)) and e — ¢/, where ¢/ =
par

/ . . !
par(e};eh;x1.x2.€0) and e ? el e n;) ey, and ¢’ || v. Then by inversion ¢j |1 oy,

el l}cﬁ vy, {v1,02/x1,x2}eg 0 v. But then e || v, where c = (¢ ®¢2) 1@ o, e1 I v with
dp(c1) = 1+dp(c}), ex 42 vy with dp(cp) = 1+ dp(ch), and {v1,v2/%x7, x2}eo I v. Calculating,
we get

dp(c) = max(dp(cy) + 1,dp(c3) + 1) + 1 +dp(co)
= max(dp(cy),dp(cy)) + 141+ dp(co)
=dp((c;® ;) 1D) +1
=dp(c) +1,

which completes the proof. O

Corollary 37.7. Ife »?)w vande |T>d v/, then v is v’ and e |}° v for some c such that wk(c) = w and
q par
dp(c) =d.

37.3 Multiple Fork-Join

So far we have confined attention to binary fork/join parallelism induced by the parallel par con-
struct. A generalizaton, called data parallelism, allows the simultaneous creation of any number of
tasks that compute on the components of a data structure. The main example is a sequence of val-
ues of a specified type. The primitive operations on sequences are a natural source of unbounded
parallelism. For example, we may consider a parallel map construct that applies a given function
to every element of a sequence simultaneously, forming a sequence of the results.

354 37.3 Multiple Fork-Join

We will consider here a simple language of sequence operations to illustrate the main ideas.

Typ T = seq(T) T seq sequence

Exp e == seq[n](ey,....4—1) (e0,....n—1)n sequence
len(e) le| size
sub(ep;en) e1]er] element
tab(x.e1;e) tab(x.e;;ey) tabulate
map(x.e1;e) [e1]|x€er] map
cat(ep;e) cat(ej;en) concatenate

The expression seq[n](ey, ... e,_1) evaluates to a sequence whose length is n and whose elements
are given by the expressions ey, . .., ¢,_1. The operation len(e) returns the number of elements in
the sequence given by e. The operation sub(e; ; e) retrieves the element of the sequence given by
e1 at the index given by e;. The tabulate operation, tab(x.ej; ez), yields the sequence of length
given by e; whose ith element is given by [i/x]e;. The operation map(x .e;; ey) computes the
sequence whose ith element is given by {e/x }ey, where e is the ith element of the sequence given
by e,. The operation cat(e ;e) concatenates two sequences of the same type.
The statics of these operations is given by the following typing rules:

I'tey:t ... Theq:7
(37.8a)
't seq[n](ey,..-,en_1):seq(T)
I'ke:
ciseq(7) (37.8b)
Ik len(e) : nat
I'te;:seq(t) TFep:nat (37.80)
I'tsub(e;;ep): T
Ix:nattFe :T T'kFep:nat
7.
I'tab(x.ep;ex) :seq(T) (37.8d)
I'teyiseq(t) Tx:the:t (37.8¢)
['=map(x.e;;ex) :seq(T)
IF'Feji:seq(t) ThHep:seq(T) (3780)
I'kcat(er;ey) :seq(T)
The cost dynamics of these constructs is defined by the following rules:
e vy ... ey 1 4,
. (37.9a)
seq[n](ep,...,en—1) =0 % seq[n](vy,...,05-1)
e n|(vg,...,0,_
¥ selnl(en i) .
len(e) ““! num[n|
e 4 nl(vo,...0,_ er 2 i 0<i<n
1 4 seq[n](vo n—1) e 4 num[i] (0<) (37.90)

sub(ep;er) 9a®1

37.4 Bounded Implementations 355

ep num[n] {num[0]/x}e; vy ... {num[n—1]/x}e; § 1 v, 4 3798
tab(x.e1;er) J°P®0 % seq[n](vp, - .. 1) '
ex ¢ seq[n](vg,...,v5-1)
{vo/x}er Y00y ... {on_1/x}er 451)4 (37.9¢)
wap(xe17¢2) P8I0 saq(n](h, .2 1)
er IV seq[m](vg, ..., vm-1) e 2 seq(n](vy,...,0,_ 1) p=m+n
/ (37.96)

"
cat(er;ep) 19291 geq[p](vy, . e Um—1, V4o, U)

The cost dynamics for sequence operations is validated by introducing a sequential and parallel
cost dynamics and extending the proof of Theorem 37.6 to cover this extension.

37.4 Bounded Implementations

Theorem 37.6 states that the cost dynamics accurately models the dynamics of the parallel let
construct, whether executed sequentially or in parallel. The theorem validates the cost dynamics
from the point of view of the dynamics of the language, and permits us to draw conclusions
about the asymptotic complexity of a parallel program that abstracts away from the limitations
imposed by a concrete implementation. Chief among these is the restriction to a fixed number,
p > 0, of processors on which to schedule the workload. Besides limiting the available parallelism
this also imposes some synchronization overhead that must be taken into account. A bounded
implementation is one for which we may establish an asymptotic bound on the execution time once
these overheads are taken into account.

A bounded implementation must take account of the limitations and capabilities of the hard-
ware on which the program is run. Because we are only interested in asymptotic upper bounds,
it is convenient to formulate an abstract machine model, and to show that the primitives of the
language can be implemented on this model with guaranteed time (and space) bounds. One ex-
ample of such a model is the shared-memory multiprocessor, or SMP, model. The basic assumption
of the SMP model is that there are some fixed p > 0 processors coordinated by an interconnect
that permits constant-time access to any object in memory shared by all p processors.! An SMP
is assumed to provide a constant-time synchronization primitive with which to control simulta-
neous access to a memory cell. There are a variety of such primitives, any of which are enough
to provide a parallel fetch-and-add instruction that allows each processor to get the current con-
tents of a memory cell and update it by adding a fixed constant in a single atomic operation—the
interconnect serializes any simultaneous accesses by more than one processor.

Building a bounded implementation of parallelism involves two major tasks. First, we must
show that the primitives of the language can be implemented efficiently on the abstract machine
model. Second, we must show how to schedule the workload across the processors to minimize
execution time by maximizing parallelism. When working with a low-level machine model such

LA slightly weaker assumption is that each access may require up to lg p time to account for the overhead of synchro-
nization, but we shall neglect this refinement in the present, simplified account.

356 37.4 Bounded Implementations

as an SMP, both tasks involve a fair bit of technical detail to show how to use low-level machine
instructions, including a synchronization primitive, to implement the language primitives and to
schedule the workload. Collecting these together, we may then give an asymptotic bound on the
time complexity of the implementation that relates the abstract cost of the computation to cost
of implementing the workload on a p-way multiprocessor. The prototypical result of this kind is
Brent’s Theorem.

Theorem 37.8. If e || v with wk(c) = w and dp(c) = d, then e can be evaluated on a p-processor SMP
in time O(max(w/p,d)).

The theorem tells us that we can never execute a program in fewer steps than its depth 4 and
that, at best, we can divide the work up evenly into w/p rounds of execution by the p processors.
Note that if p = 1 then the theorem establishes an upper bound of O(w) steps, the sequential
complexity of the computation. Moreover, if the work is proportional to the depth, then we are
unable to exploit parallelism, and the overall time is proportional to the work alone.

Theorem 37.8 motivates consideration of a useful figure of merit, the parallelizability ratio, which
is the ratio w/d of work to depth. If w/d > p, then the program is parallelizable, because then
w/p > d, and we may therefore reduce running time by using p processors at each step. If the
parallelizability ratio is a constant, then d will dominate w/ p, and we will have little opportunity
to exploit parallelism to reduce running time. It is not known, in general, whether a problem
admits a parallelizable solution. The best we can say, on present knowledge, is that there are
algorithms for some problems that have a high degree of parallelizability, and there are problems
for which no such algorithm is known. It is a difficult problem in complexity theory to analyze
which problems are parallelizable, and which are not.

Proving Brent’s Theorem for an SMP would take us much too far afield for the present pur-
poses. Instead we shall prove a Brent-type Theorem for an abstract machine, the P machine. The
machine is unrealistic in that it is defined at a very high level of abstraction. But it is designed to
match well the cost dynamics given earlier in this chapter. In particular, there are mechanisms that
account for both sequential and parallel dependencies in a computation.

At the highest level, the state of the P machine consists of a global task graph whose struc-
ture corresponds to a “diagonal cut” through the cost graph of the overall computation. Nodes
immediately above the cut are eligible to be executed, higher ancestors having already been com-
pleted, and whose immediate descendents are waiting for their ancestors to complete. Further
descendents in the full task graph are tasks yet to be created, once the immediate descendents
are finished. The P machine discards completed tasks, and future tasks beyond the immediate
dependents are only created as execution proceeds. Thus it is only those nodes next to the cut line
through the cost graph that are represented in the P machine state.

The global state of the P machine is a configuration of the form v X { i }, where X is degenerated
to just a finite set of (pairwise distinct) task names and p is a finite mapping of the task names in X
to local states, representing the state of an individual task. A local state is either a closed PCF ex-
pression, or one of two special join points that implement the sequential and parallel dependencies
of a task on one or two ancestors, respectively.” Thus, when expanded out, a global state has the

2The use of join points for each sequential dependency is profligate, but aligns the machine with the cost dynamics.
Realistically, individual tasks manage sequential dependencies without synchronization, by using local control stacks as in

37.4 Bounded Implementations 357

form
vay, ..., an {1 =51 ®...Qa, 5y },

where n > 1, and each s; is a local state. The ordering of the tasks in a state, like the order of
declarations in the signature, is not significant.
A P machine state transition has the form v {yu} —— vE' { ' }. There are two forms of

such transitions, the global and the local. A global step selects as many tasks as are available, up
to a pre-specified parameter p > 0, which represents the number of processors available at each
round. (Such a scheduler is greedy in the sense that it never fails to execute an available task, up
to the specified limit for each round.) A task is finished if it consists of a closed PCF value, or
is a join point whose dependents are not yet finished; otherwise a task is available, or ready. A
ready task is always capable of taking a local step consisting of either a step of PCF, expressed in
the setting of the P machine, or a synchronization step that manages the join-point logic. Because
the P machine employs a greedy scheduler, it must complete execution in time proportional to
max(w/p,d) steps by doing up to p steps of work at a time, insofar as it is possible within the
limits of the depth of the computation. We thus get a Brent-type Theorem for the abstract machine
that illustrates more sophisticated Brent-type Theorems for other models, such as the PRAM, that
are used in the analysis of parallel algorithms.

The local transitions of the P machine corresponding to the steps of PCF itself are illustrated
by the following example rules for application; the others follow a similar pattern.’

—(eq val)
va{a<—>el(ez)}nl—> vaa; {a< join[a |(x1.x1(ex)) ®a; e } (37.10a)
ocC
epval —(ep val)
va{a%el(ez)}l|—>vaaz{aHjoin[az}(xz.el(xz))®a2;>32} (37.10b)
oC
e1 val
vaal{w—)join[ul](xl.xl(ez))®a1<—>el}'I—H/a{af—)el(ez)} (37.10¢)
ocC
e val ep val
vaay {ay <= join[az](xz.e1(x2)) Qax— e } — va{a—ei(e)} (37.10d)
ocC
ep val
(37.10e)

va{a%()\(x:'rz)e)(ez)}an{a%{ez/x}e}

Rules (37.10a) and (37.10b) create tasks for the evaluation of the function and argument of an ex-
pression. Rules (37.10c) and (37.10d) propagate the result of evaluation of the function or argument
of an application to the appropriate application expression. This rule mediates between the first
two rules and Rule (37.10e), which effects a -reduction in-place.

Chapter 28.
3Types are omitted from . for brevity.

358 37.4 Bounded Implementations

The local transitions of the P machine corresponding to binary fork and join are as follows:

va{a<spar(ey;ep;x1.%2.¢€)}

L (37.11a)
loc

vay,ap,a{a; e ®ay; — ey @a< join[ay;ax](xy;x.¢)}

e1 val ey val

vay,ay,a{a; — e @ay— ey @a— join[ay;ay [(x1;x.¢) }
. (37.11b)

loc
va{a = {e,e2/xy, 22} }

Rule (37.11a) creates two parallel tasks on which the executing task depends. The expression
join[ay;ap](x1;x2.e)isblocked on tasks a1 and a, so that no local step applies to it. Rule (37.11b)
synchronizes a task with the tasks on which it depends once their execution has completed; those
tasks are no longer required, and are eliminated from the state.

Each global transition is the simultaneous execution of one step of computation on as many as
p > 1 processors.

leal{y1®a1<—>sl}»|—>1/Z’1a1{yi®a1<—>s’1}
ocC

vZnan{yn®anf—>sn}»E)VZ;an{‘u;@an‘—)s’n}

(37.12)
VE)X1a1 .. . Znan { o QU1 M 51 Q... Q Uy @y —> Sy }

—

glo

v ar ... an { o @u®a1 >8] Q ... Qu, Qay s, }

At each global step some number 1 < < p of ready tasks are scheduled for execution, where 7 is
maximal among the number of ready tasks. Because no two distinct tasks may depend on the same
task, we may partition the 7 tasks so that each scheduled task is grouped with the tasks on which
it depends as necessary for any local join step. Any local fork step adds two fresh tasks to the state
resulting from the global transition; any local join step eliminates two tasks whose execution has
completed. A subtle point is that it is implicit in our name binding conventions that the names
of any created tasks are globally unique, even though they are locally created. In implementation
terms this requires a synchronization step among the processors to ensure that task names are not
accidentally reused among the parallel tasks.

The proof of a Brent-type Theorem for the P machine is now obvious. We need only ensure
that the parameter n of Rule (37.12) is chosen as large as possible at each step, limited only by
the parameter p and the number of ready tasks. A scheduler with this property is greedy; it never
allows a processor to go idle if work remains to be done. Consequently, if there are always p
available tasks at each global step, then the evaluation will complete in w/p steps, where w is

37.5 Scheduling 359

the work complexity of the program. If, at some stage, fewer than p tasks are available, then
performance degrades according to the sequential dependencies among the sub-computations. In
the limiting case the P machine must take at least d steps, where d is the depth of the computation.

37.5 Scheduling

The global transition relation of the P machine defined in Section 37.4 affords wide latitude in the
choice of tasks that are advanced by taking a local transition. Doing so abstracts from implemen-
tation details that are irrelevant to the proof of the Brent-type Theorem given later in that section,
the only requirement being that the number of tasks chosen be as large as possible up to the spec-
ified bound p, representing the number of available processors. When taking into account factors
not considered here, it is necessary to specify the scheduling policy more precisely—for example,
different scheduling policies may have asymptotically different space requirements. The overall
idea is to consider scheduling a computation on p processors as a p-way parallel traversal of its cost
graph, visiting up to p nodes at a time in an order consistent with the dependency ordering. In
this section we will consider one such traversal, p-way parallel depth-first-search, or p-DFS, which
specializes to the familiar depth-first traversal in the case that p = 1.

Recall that the depth first-search of a directed graph maintain a stack of unvisited nodes, which
is initialized with the start node. At each round, a node is popped from the stack and visited, and
then its unvisited children are pushed on the stack (in reverse order in the case of ordered graphs),
completing that round. The traversal terminates when the stack is empty. When viewed as a
scheduling strategy, visiting a node of a cost graph consists of scheduling the work associated
with that node on a processor. The job of such as scheduler is to do the work of the computation in
depth-first order, visiting the children of a node from left to right, consistently with the sequential
dynamics (which would, in particular, treat a parallel binding as two sequential bindings). Notice
that because a cost graph is directed ‘acyclic, there are no “back edges” arising from the traversal,
and because it is series-parallel in structure, there are no “cross edges”. Thus, all children of a node
are unvisited, and no task is considered more than once.

Although evocative, viewing scheduling as graph traversal invites one to imagine that the
cost graph is given explicitly as a data structure, which is not at all the case. Instead the graph
is created dynamically as the sub-computations are executed. At each round the computation
associated with a node may complete (when it has achieved its value), continue (when more work
is yet to be done), or fork (when it generates parallel sub-computations with a specified join point).
Once a computation has completed and its value has been passed to the associated join point, its
node in the cost graph is discarded. Furthermore, the children of a node only come into existence
as a result of its execution, according to whether it completes (no children), continues (one child),
or forks (two children). Thus one may envision that the cost graph “exists” as a cut through the
abstract cost graph representing pending tasks that have not yet been activated by the traversal.

A parallel depth-first search works much the same way, except that as many as p nodes are
visited at each round, constrained only by the presence of unvisited (yet-to-be-scheduled) nodes.
One might naively think that this simply means popping up to p nodes from the stack on each
round, visiting them all simultaneously, and pushing their dependents on the stack in reverse or-
der, just as for conventional depth-first search. But a moment’s thought reveals that this is not

360 37.6 Notes

correct. Because the cost graphs are ordered, the visited nodes form a sequence determined by
the left-to-right ordering of the children of a node. If a node completes, it has no children and is
removed from its position in the sequence in the next round. If a node continues, it has one child
that occupies the same relative position as its parent in the next round. And if a node forks two
children, they are inserted into the sequence after the predecessor, and immediately prior to that
node, related to each other by the left-to-right ordering of the children. The task associated to the
visited node itself becomes the join point of the immediately preceding pair of tasks, with which
it will synchronize when they complete. Thus the visited sequence of k < p nodes becomes, on
the next round, anywhere from 0 (if all nodes completes) to 3 x k nodes (if each node forks). These
are placed into consideration, in the specified order, for the next round to ensure that they are pro-
cessed in depth-first order. Importantly, the data structure maintaining the unvisited nodes of the
graph is not a simple pushdown stack, because of the “in-place” replacement of each visited node
by zero, one, or two nodes in between its predecessor and successor in the sequential ordering of
the visited nodes.

Consider a variant of the P machine in which the order of the tasks is significant. A task is
finished if it is a value, blocked if it is a join, and ready otherwise. Local transitions remain the same
as in Section 37.4, bearing in mind that the ordering is significant. A global transition, however,
consists of making a local transition on each of the first k < p ready tasks.* After this selection the
global state is depicted as follows:

VEga1 X . g X X { po®a1 e QU Q. e Q)

where each ji; consists of finished or blocked tasks, and each ¢; is ready. A schedule is greedy If
k < p only when no task.in y is ready.

After a local transition is made on each of the k selected tasks, the resulting global state has the
form

VEZ 1Sy . B S S { o @i @0 5 @ @ u Qap e @}

where each i/ represents the newly created task(s) of the local transition on task a; < ¢;, and each
e} is the expression resulting from the transition on that task. Next, all possible synchronizations
are made by replacing each occurrence of an adjacent triple of the form

aj) <> e1 @aip — e ®a; — join[aiy ;a;p](x1;x2 . €)
(with e; and e, finished) by the task a; < {ej, e2/x1, x2 }e. Doing so propagates the values of tasks

a;1 and a;; to the join point, enabling the computation to continue. The two finished tasks are
removed from the state, and the join point is no longer blocked.

37.6 Notes

Parallelism is a high-level programming concept that increases efficiency by carrying out multiple
computations simultaneously when they are mutually independent. Parallelism does not change

4Thus the local transition given by Rule (37.11b) is never applicable; the dynamics of joins will be described shortly.

37.6 Notes 361

the meaning of a program, but only how fast it is executed. The cost dynamics specifies the num-
ber of steps required to execute a program sequentially and with maximal parallelism. A bounded
implementation provides a bound on the number of steps when the number of processors is lim-
ited, limiting the degree of parallelism that can be realized. This formulation of parallelism was
introduced by Blelloch (1990). The concept of a cost dynamics and the idea of a bounded imple-
mentation studied here are derived from Blelloch and Greiner (1995, 1996).

Exercises

37.1.

37.2.

37.3.

37.4.

Consider extending PPCF with exceptions, as described in Chapter 29, under the assump-
tion that exn has at least two exception values. Give a sequential and a parallel structural
dynamics to parallel let in such a way that determinacy continues to hold.

Give a matching cost dynamics to PPCF extended with exceptions (descibed in Exercise 37.1)
by inductively defining the following two judgments:

(a) e |° v, stating that e evaluates to value v with cost ¢;

(b) e 1 v, stating that e raises the value v with cost c.

The analog of Theorem 37.6 remains valid for the dynamics. In particular, if e }° v, then
both e ngﬂ” raise(v), where w = wk(c), and e ?d raise(v), where d = dp(c), and

conversely.

Extend the P machine to admit exceptions to match your solution to Exercise 37.2. Argue
that the revised machine supports a Brent-type validation of the cost dynamics.

Another way to express the dynamics of PPCF enriched with exceptions is by rewriting
par(e;;ey; X1 «X;.e) into another such parallel binding, par(eé] ;e ; x| .x}.¢), which im-
plements the correct dynamics to ensure determinacy. Hint: Extend XPCF with sums (Chap-
ter 11), using them to record the outcome of each parallel sub-computation (¢} derived from
e1, and e/, derived from e,), then check the outcomes (¢’ derived from e) in such a way to
ensure determinacy.

Part XVI

Concurrency and Distribution

Chapter 40

Concurrent Algol

In this chapter we integrate concurrency into the framework of Modernized Algol described in
Chapter 34. The resulting language, called Concurrent Algol, or CA, illustrates the integration of
the mechanisms of the process calculus described in Chapter 39 into a practical programming lan-
guage. To avoid distracting complications, we drop assignables from Modernized Algol entirely.
(There is no loss of generality, however, because free assignables are definable in Concurrent Algol
using processes as cells.)

The process calculus described in Chapter 39 is intended as a self-standing model of concurrent
computation. When viewed in the context of a programming language, however, it is possible to
streamline the machinery to take full advantage of types that are in any case required for other
purposes. In particular the concept of a channel, which features prominently in Chapter 39, is
identified with the concept of a dynamic class as described in Chapter 33. More precisely, we take
broadcast communication of dynamically classified values as the basic synchronization mechanism
of the language. Being dynamically classified, messages consist of a payload tagged with a class,
or channel. The type of the channel determines the type of the payload. Importantly, only those
processes that have access to the channel may decode the message; all others must treat it as
inscrutable data that can be passed around but not examined. In this way we can model not only
the mechanisms described in Chapter 39, but also formulate an abstract account of encryption and
decryption in a network using the methods described in Chapter 39.

Concurrent Algol features a modal separation between commands and expressions like in
Modernized Algol. It is also possible to combine these two levels (so as to allow benign con-
currency effects), but we do not develop this approach in detail here.

390 40.1 Concurrent Algol

40.1 Concurrent Algol

The syntax of CA is obtained by removing assignables from MA, and adding a syntactic level of
processes to represent the global state of a program:

Typ T == cmd(T) T cmd commands
Exp e u= cmd(m) cmd m command
Cmd m = rete rete return
bnd(e;x.m) bnd x < ¢; m_ sequence
Proc p u= stop 1 idle
run(m) run(m) atomic
conc(py;p2) p1® p2 concurrent
newch[T|(a.p) va~T.p new channel

The process run(m) is an atomic process executing the command m. The other forms of process
are adapted from Chapter 39. If ¥ has the form ay ~ T4, . . ., 4, ~ T, then we sometimes write v Z{p}
for the iterated formva; ~ 7yva, ~ Ty . p.

The statics of CA is given by these judgments:

I'kye:t expression typing
[FymA4 T command typing
I' by p proc ' process formation
I' by a action action formation

The expression and command typing judgments are essentially those of MA, augmented with the
constructs described below.
Process formation is defined by the following rules:

- (40.1a)
Fs 1 proc
FemsT
7T (40.1b)
by, run(m) proc
Fsx p1 proc Fx pa proc (40.10)
Fsx p1 ® p2 proc
Fsan
Zao~r P Poc (40.1d)
Fsxva~T.pproc
Processes are identified up to structural congruence, as described in Chapter 39.
Action formation is defined by the following rules:
(40.2a)

s € action

40.1 Concurrent Algol 391

Fs e:clsfd evaly
Fs e! action

(40.2b)

Fs e:clsfd evaly
Fs e? action

(40.2¢)

Messages are values of the type clsfd defined in Chapter 33.

The dynamics of CA is defined by transitions between processes, which represent the state of
the computation. More precisely, the judgment p % p’ states that the process p evolves in one

step to the process p’ while undertaking action a.

m%vi‘/{m’@p}

- (40.3a)
run(m) ';) vE{run(m’') @ p}
e valy
run(rete) % 1 (40.3b)
P1 '% P1
= (40.30)
PLOp2— pL&p2
PLLY PR P2 Ph
. (40.3d)
pL@ P2 PIO P
p———p' ks aaction
2,a~T
(40.3e)

o
va~r.p»E—>1/a~T.p’

Rule (40.3a) states that a step of execution of the atomic process run(m) consists of a step of
execution of the command m, which may allocate some set X’ of symbols or create a concurrent
process p. This rule implements scope extrusion for classes (channels) by expanding the scope of
the channel declaration to the context in which the command m occurs. Rule (40.3b) states that a
completed command evolves to the inert (stopped) process; processes are executed solely for their
effect, and not for their value.

Executing a command in CA may, in addition to evolving to another command, allocate a new
channel or may spawn a new process. More precisely, the judgment'

m%M/Z’{m'@p'}

IThe right-hand side of this judgment is a triple consisting of X, m’, and p’, not a process expression comprising these
parts.

392 40.2 Broadcast Communication

states that the command m transitions to the command m’ while creating new channels £’ and
new processes p’. The action a specifies the interactions of which m is capable when executed.
As a notational convenience we drop mention of the new channels or processes when either are
trivial.

The following rules define the execution of the basic forms of command inherited from MA:

er— ¢
b
— (40.4a)
/
rete = rete
b3
202 (0%
s (40.4b)
bnd x < cmd 1y ; 1 = vY/{ondx < cmd m} ; my; @ p'}
e valy,
bndx < cmd (rete);my % {e/x}my (40.4¢)
er e}
(40.4d)

€
bnd x < eq ; my i bnd x < e} ;

These rules are supplemented by rules governing communication and synchronization among
processes in the next two sections.

40.2 Broadcast Communication

In this section we consider a very general form of process synchronization called broadcast. Pro-
cesses emit and accept messages of type clsfd, the type of dynamically classified values consid-
ered in Chapter 33. A message consists of a channel, which is its class, and a payload, which is
a value of the type associated with the channel (class). Recipients may pattern match against a
message to determine whether it is of a given class, and, if so, recover the associated payload. No
process that lacks access to the class of a message may recover the payload of that message. (See
Section 33.4.1 for a discussion of how to enforce confidentiality and integrity restrictions using
dynamic classification).

The syntax of the commands pertinent to broadcast communication is given by the following
grammar:

Cmd m == spawn(e) spawn(e) spawn
emit(e) emit(e) emitmessage
acc acc accept message
newch[T| newch new channel

The command spawn(e) spawns a process that executes the encapsulated command given by e.
The commands emit(e) and acc emit and accept messages, which are classified values whose

40.2 Broadcast Communication

393

class is the channel on which the message is sent. The command newch[7 | returns a reference toa

fresh class carrying values of type T.

The statics of broadcast communication is given by the following rules:

I'Fye:cmd(unit)
Ity spawn(e) ~ unit

I'bye:clsfd
Ity emit(e) #~ unit

Iy acc A clsfd

I' by newch[T] 4% cls(7T)

Execution of these commands is defined as follows:

spawn(cmd(m)) % ret () @ run(m)

e— e
o

spawn(e) % spawn(e’)

e valy,

emit(e) % ret ()

e— ¢
¥

emit(e) % emit(¢)
e valy

e?
acc —— rete
%

newch|T| %}V&l~’({ret(&a)}

(40.52)

(40.5b)

(40.5¢)

(40.5d)

(40.6a)

(40.6b)

(40.6¢)

(40.6d)

(40.6€)

(40.6f)

Rule (40.6¢) specifies that emit(e) has the effect of emitting the message e. Correspondingly,

rule (40.6e) specifies that acc may accept (any) message that is being sent.

As usual, the preservation theorem for CA ensures that well-typed programs remain well-
typed during execution. The proof of preservation requires a lemma about command execution.

Lemma40.1. Ifm % v {m @p'}, by m~ T, then by a action, by s m' & 7, and by 5 p' proc.

394 40.3 Selective Communication

Proof. By induction on rules (40.4). O
With this in hand the proof of preservation goes along familiar lines.

Theorem 40.2 (Preservation). If -5 p procand p < p/, then s p’ proc.

Proof. By induction on transition, appealing to Lemma 40.1 for the crucial steps. O

Typing does not, however, guarantee progress with respect to-unlabeled transition, for the
simple reason that there may be no other process with which to communicate. By extending
progress to labeled transitions we may state that this is the only way for process exceution to
get stuck. But some care must be taken to account for allocating new channels.

Theorem 40.3 (Progress). If by p proc, then either p =1, or p. = vE/{p'} such that p’ # p" for

some -y v/ p” and some -y 5/ & action.
Proof. By induction on rules (40.1) and (40.5). O

The progress theorem says that no process can get stuck for any reason other than the inability
to communicate with another process. For example, a process that receives on a channel for which
there is no sender is “stuck”, but this does not violate Theorem 40.3.

40.3 Selective Communication

Broadcast communication provides no means of restricting acceptance to messages of a particu-
lar class (that is, of messages on a particular channel). Using broadcast communication we may
restrict attention to a particular channel a of type T by running the following command:

fixloop:Temdiscmd {x 4 acc;matchxasa-y <> retyow < emit(x);doloop}

This command is always capable of receiving a broadcast message. When one arrives, it is exam-
ined to see whether it is classified by a. If so, the underlying classified value is returned; otherwise
the message is re-broadcast so that another process may consider it. Polling consists of repeatedly
executing the above command until a message of channel a is successfully accepted, if ever it is.

Polling is evidently impractical in most situations. An alternative is to change the language
to allow for selective communication. Rather than accept any broadcast message, we may confine
attention to messages sent only on certain channels. The type event(T) of events consists of a
finite choice of accepts, all of whose payloads are of type 7.

Typ T == event(T) T event events

Exp e u= rcv|[a] ?a selective read
never|T| never null
or(ey;er) e1 orep choice

wrap(ej;Xx.ey) ejasxine, post-composition
Cmd m == sync(e) sync(e) synchronize

40.3 Selective Communication

395

Events in CA are similar to those of the asynchronous process calculus described in Chapter 39.
The chief difference is that post-composition is considered as a general operation on events, in-

stead of one tied to the receive event itself.

The statics of event expressions is given by the following rules:

Yha-~t
[k revla]:event(T)

[ty never[T]: event(T)

I'kyep:event(t) Thyep:event(T)

'k or(er;er): event(T)

I'kye: event(n) Ix:tibkse:m

Ity wrap(er;x.e) :event()

The corresponding dynamics is defined by these rules:

Yha~tT
rcv[a] valy

never| 7| valy
e1 Val):, (%] Va|2
or(ep ;e) valy

e1 valy

wrap(ey;x.ey) valy

/
e1——>e
1 5 1

or(ey;er) l?or(eﬁ;eg)

eqvaly e = e

or(e;er) n?or(el;eé)

!
e —e
1 S 1

wrap(ej;x.ep) r?wrap(e’l;x.eé)

Event values are identified up to structural congruence as described in Chapter 39.
The statics of the synchronization command is given by the following rule:

IFye:event(T)

'ty sync(e) ~ T

(40.7a)

(40.7b)

(40.7¢)

(40.7d)

(40.8a)

(40.8b)

(40.8¢c)

(40.8d)

(40.8¢)

(40.8f)

(40.8g)

(40.9a)

396 40.4 Free Assignables as Processes

The type of the event determines the type of value returned by the synchronization command.
Execution of a synchronization command depends on the event.

- (40.10a)
sync(e) i sync(e’)
evaly Fye:T ZTha~t
sync(rcv]a]) % ret(e) (40.10b)
sync(eq) % my
. (40.10¢c)
sync(or(er;er)) ? 1y
sync(ep) ;2 my
_ (40.10d)
sync(or(er;e)) = m
sync(ep) % my
(40.10e)

sync(wrap(e;;x.e2)) %> bnd(cmd(my);x.ret(ey))

Rule (40.10b) states that an acceptance on a channel a may synchronize only with messages classi-
fied by a. When combined with structural congruence, Rules (40.10c) and (40.10d) state that either
event between two choices may engender an action. Rule (40.10e) yields the command that per-
forms the command 1 resulting from the action « taken by the event e;, then returns e; with x
bound to the return value of m;.

Selective communication and dynamic events can be used together to implement a communi-
cation protocol in which a channel reference is passed on a channel in order to establish a com-
munication path with the recipient. Let a be a channel carrying values of type c1s(7), and let b
be a channel carrying values of type 7, so that & b can be passed as a message along channel a.
A process that wishes to accept a channel reference on a and then accept on that channel has the
form

{x 4 sync(?a);y<« sync(2?2x);...}.
The event ?a specifies a selective receipt on channel a. Once the value x is accepted, the event ?? x
specifies a selective receipt on the channel referenced by x. So, if & b is sent along a, then the event
?? & b evaluates to ? b, which accepts selectively on channel b, even though the receiving process
may have no direct access to the channel b itself.

40.4 Free Assignables as Processes

Scope-free assignables are definable in CA by associating to each assignable a server process that
sets and gets the contents of the assignable. To each assignable a of type 7 is associated a server
that selectively accepts a message on channel a2 with one of two forms:

40.4 Free Assignables as Processes 397

1. get - (&b), where b is a channel of type 7. This message requests that the contents of a be
sent on channel b.

2. set - ((e,&Db)), where e is a value of type 7, and b is a channel of type 7. This message
requests that the contents of a be set to ¢, and that the new contents be transmitted on channel

b.
In other words a is a channel of type sy given by
[get < Tcls,set < T X Tcls].

The server selectively accepts on channel 4, then dispatches on the class of the message to satisfy
the request.

The server associated with the assignable a of type T maintains the contents of a using recur-
sion. When called with the current contents of the assignable, the server selectively accepts on
channel a, dispatching on the associated request, and calling itself recursively with the (updated,
if necessary) contents:

A (1 Ty cls) fixsror: T —unitcmdis A (x:7) cmd {y + sync(22 1) ;e(up.12)}- (40.11)

The server is a procedure that takes an argument of type 7, the current contents of the assignable,
and yields a command that never terminates, because it restarts the server loop after each request.
The server selectively accepts a message on channel 4, and dispatches on it as follows:

casey {get - 2 e 13) | set - (¥, z) = ewp 14y} (40.12)

A request to get the contents of the assignable a is served as follows:
{-<emit(inref(z;x));dosror(x)} (40.13)

A request to set the contents of the assignable a is served as follows:
{ < emit(inref(z;x"));dosror(x")} (40.14)

The type T ref is defined to be T, cls, the type of channels (classes) to servers providing a
cell containing a value of type T. A new free assignable is created by the command ref ¢y, which
is defined to be

{x +—newch;_<spawn(euo11)(x)(eo));retx}. (40.15)

A channel carrying a value of type T, is allocated to serve as the name of the assignable, and a
new server is spawned that accepts requests on that channel, with initial value ¢ of type 1.

The commands * ¢y and ep *=¢; send a message to the server to get and set the contents of an
assignable. The code for * ey is as follows:

{x < newch;_ < emit(inref(ey;get -x));sync(??(x))} (40.16)

A channel is allocated for the return value, the server is contacted with a get message specifying
this channel, and the result of receiving on this channel is returned. Similarly, the code for ey = e
is as follows:

{x <~ newch; < emit(inref(ep;set- (e1,x)));sync(??(x))} (40.17)

398 40.5 Notes

40.5 Notes

Concurrent Algol is a synthesis of process calculus and Modernized Algol; is essentially an “Algol-
like” formulation of Concurrent ML (Reppy, 1999). The design is influenced by Parallel Algol
(Brookes, 2002). Much work on concurrent interaction takes communication channels as a basic
concept, but see Linda (Gelernter, 1985) for an account similar to the one suggested here.

Exercises

40.1. In Section 40.2 channels are allocated using the command newch, which returns a channel
reference. Alternatively one may extend CA with a means of declaring channels just as
assignables are declared in MA. Formulate the syntax, statics, and dynamics of such a con-
struct, and derive newch using this extension.

40.2. Extend selective communication (Section 40.3) to account for channel references, which give
rise to a new form of event. Give the syntax, statics, and dynamics of this extension.

40.3. Adapt the implementation of an RS latch given in Exercise 39.3 to CA.

Part XVIII

Equational Reasoning

Bibliography

Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996. 183, 250, 256

Peter Aczel. An introduction to inductive definitions. In Jon Barwise, editor, Handbook of Mathe-
matical Logic, chapter C.7, pages 783-818. North-Holland, 1977. 20

John Allen. Anatomy of LISP. Computer Science Series. McGraw-Hill, 1978. 10, 299

S.F. Allen, M. Bickford, R.L. Constable, R. Eaton, C. Kreitz, L. Lorigo, and E. Moran. Innovations
in computational type theory using Nuprl. Journal of Applied Logic, 4(4):428-469, 2006. ISSN
1570-8683. doi: 10.1016/j.jal.2005.10.005. 87

Stuart Allen. A non-type-theoretic definition of Martin-L6f’s types. In'LICS, pages 215-221, 1987.
456

Zena M. Ariola and Matthias Felleisen. The call-by-need lambda calculus. J. Funct. Program., 7(3):
265-301, 1997. 343

Arvind, Rishiyur S. Nikhil, and Keshav Pingali. I-structures: Data structures for parallel comput-
ing. In Joseph H. Fasel and Robert M. Keller, editors, Graph Reduction, volume 279 of Lecture
Notes in Computer Science, pages 336-369. Springer, 1986. ISBN 3-540-18420-1. 369

Arnon Avron. Simple consequence relations. Information and Computation, 92:105-139, 1991. 30

Henk Barendregt. The Lambda Calculus, Its Syntax and Semantics, volume 103 of Studies in Logic and
the Foundations of Mathematics. North-Holland, 1984. 193

Henk Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E Maibaum,
editors, Handbook of Logic in Computer Science, volume 2, Computational Structures. Oxford Uni-
versity Press, 1992. 39

Yves Bertot, Gérard Huet, Jean-Jacques Lévy, and Gordon Plotkin, editors. From Semantics to Com-
puter Science: Essays in Honor of Gilles Kahn. Cambridge University Press, 2009. 547

Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990. ISBN 0-262-02313-X.
361

544 BIBLIOGRAPHY

Guy E. Blelloch and John Greiner. Parallelism in sequential functional languages. In FPCA, pages
226-237,1995. 361

Guy E. Blelloch and John Greiner. A provable time and space efficient implementation of NESL.
In ICFP, pages 213-225, 1996. 61, 361

Manuel Blum. On the size of machines. Information and Control, 11(3):257-265, September 1967.
Stephen D. Brookes. The essence of parallel algol. Inf. Comput., 179(1):118-149, 2002. 398
Samuel R. Buss, editor. Handbook of Proof Theory. Elsevier, Amsterdam, 1998. 544

Luca Cardelli. Structural subtyping and the notion of power type. In Proc. ACM Symposium on
Principles of Programming Languages, pages 70-79, 1988. 224

Luca Cardelli. Program fragments, linking, and modularization. -In Proc. ACM Symposium on
Principles of Programming Languages, pages 266—277,1997. 412

Giuseppe Castagna and Benjamin C. Pierce:” Decidable bounded quantification. In Proc. ACM
Symposium on Principles of Programming Languages, pages 151-162, 1994. 433

Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press, 1941. 10, 71, 193

R. L. Constable. Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall,
Englewood Cliffs, NJ, 1986. v, 10, 237, 456

Robert L. Constable. Types in logic, mathematics, and programming. In Buss (1998), chapter X. v

Robert L. Constable and Scott F. Smith. Partial objects in constructive type theory. In LICS, pages
183-193. IEEE Computer Society, 1987. 465

William R. Cook. On understanding data abstraction, revisited. In OOPSLA, pages 557-572, 2009.
183

Rowan Davies. Practical Refinement-Type Checking. PhD thesis, Carnegie Mellon University School
of Computer Science, May 2005. Available as Technical Report CMU-CS-05-110. 237

Rowan Davies and Frank Pfenning. Intersection types and computational effects. In Martin Oder-
sky and Philip Wadler, editors, ICFP, pages 198-208. ACM, 2000. ISBN 1-58113-202-6. 237

Ewen Denney. Refinement types for specification. In David Gries and Willem P. de Roever, editors,
PROCOMET, volume 125 of IFIP Conference Proceedings, pages 148-166. Chapman & Hall, 1998.
ISBN 0-412-83760-9. 237

Derek Dreyer. Understanding and Evolving the ML Module System. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, May 2005. 433

Joshua Dunfield and Frank Pfenning. Type assignment for intersections and unions in call-by-
value languages. In Andrew D. Gordon, editor, FoSSaCS, volume 2620 of Lecture Notes in Com-
puter Science, pages 250-266. Springer, 2003. ISBN 3-540-00897-7. 237

BIBLIOGRAPHY 545

Uffe Engberg and Mogens Nielsen. A calculus of communicating systems with label passing - ten
years after. In Gordon D. Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language, and
Interaction, Essays in Honour of Robin Milner, pages 599-622. The MIT Press, 2000. 386

Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of sequential
control and state. TCS: Theoretical Computer Science, 103, 1992. 49, 281

Tim Freeman and Frank Pfenning. Refinement types for ml. In David S. Wise, editor, PLDI, pages
268-277. ACM, 1991. ISBN 0-89791-428-7. 237

Daniel Friedman and David Wise. The impact of applicative programming on multiprocessing. In
International Conference on Parallel Processing, 1976. 369

David Gelernter. Generative communication in Linda. ACM Trans. Program. Lang. Syst., 7(1):80—
112, 1985. 398

Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The Collected Papers
of Gerhard Gentzen, pages 68-213. North-Holland, Amsterdam, 1969. 39

J.-Y. Girard. Interpretation fonctionelle et elimination des coupures de l'arithmetique d’ordre superieur.
These d’etat, Universite Paris VII, 1972. 148, 478

Jean-Yves Girard. Proofs and Types. Cambridge University Press, 1989. Translated by Paul Taylor
and Yves Lafont. v, 412

Kurt Godel. On a hitherto unexploited extension of the finitary standpoint. Journal of Philosphical
Logic, 9:133-142, 1980. Translated by Wilfrid Hodges and Bruce Watson. 79

Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh LCF, volume 78 of
Lecture Notes in Computer Science. Springer-Verlag, 1979. 10, 273

John Greiner and Guy E. Blelloch. A provably time-efficient parallel implementation of full spec-
ulation. ACM Trans. Program. Lang. Syst., 21(2):240-285, 1999. 369

Timothy Griffin. A formulae-as-types notion of control. In Proc. ACM Symposium on Principles of
Programming Languages, pages 47-58,1990. 119

Carl Gunter. Semantics of Programming Languages. Foundations of Computing Series. MIT Press,
1992. 183

Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM Trans.
Program. Lang. Syst., 7(4):501-538, 1985. 369

Robert Harper. Constructing type systems over an operational semantics. |. Symb. Comput., 14(1):
71-84,1992. 456

Robert Harper. A simplified account of polymorphic references. Inf. Process. Lett., 51(4):201-206,
1994. 332

546 BIBLIOGRAPHY

Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with
sharing. In Proc. ACM Symposium on Principles of Programming Languages, pages 123-137, 1994.
421, 433, 443

Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the phase dis-
tinction. In Proc. ACM Symposium on Principles of Programming Languages, pages 341-354, 1990.
433

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of the
Association for Computing Machinery, 40:194-204, 1993. 10, 30

Ralf Hinze and Johan Jeuring. Generic haskell: Practice and theory. In Roland Carl Backhouse and
Jeremy Gibbons, editors, Generic Programming, volume 2793 of Lecture Notes in Computer Science,
pages 1-56. Springer, 2003. ISBN 3-540-20194-7. 127

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666—677, 1978. 386

Tony Hoare. Null references: The billion dollar mistake. Presentation at QCon 2009, August 2009.
95

S. C. Kleene. Introduction to Metamathematics. van Nostrand, 1952. 10

Imre Lakatos. Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge University
Press, 1976. 119

P.J. Landin. A correspondence between Algol 60 and Church’s lambda notation. CACM, 8:89-101;
158-165, 1965. 48, 267

Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized metatheory of standard ml.
In Proc. ACM Symposium on Principles of Programming Languages, pages 173-184, 2007. 433

Xavier Leroy. Manifest types, modules, and separate compilation. In Proc. ACM Symposium on
Principles of Programming Languages, pages 109-122, 1994. 421, 433, 443

Xavier Leroy. Applicative functors and fully transparent higher-order modules. In Proc. ACM
Symposium on Principles of Programming Languages, pages 142-153, 1995. 444

Mark Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems. PhD thesis,
Carnegie Mellon University School of Computer Science, Pittsburgh, PA, May 1997. 433

Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst., 16(6):1811-1841, 1994. 256

Saunders MacLane. Categories for the Working Mathematician. Graduate Texts in Mathematics.
Springer-Verlag, second edition, 1998. 127, 136

David B. MacQueen. Using dependent types to express modular structure. In Proc. ACM Sympo-
sium on Principles of Programming Languges, pages 277-286, 1986. 433

BIBLIOGRAPHY 547

David B. MacQueen. Kahn networks at the dawn of functional programming. In Bertot et al.
(2009), chapter 5. 183

Yitzhak Mandelbaum, David Walker, and Robert Harper. An effective theory of type refinements.
In Runciman and Shivers (2003), pages 213-225. ISBN 1-58113-756-7. 237

Per Martin-Lof. Constructive mathematics and computer programming. In Logic, Methodology and
Philosophy of Science 1V, pages 153-175. North-Holland, 1980. 39, 55

Per Martin-Lof. On the meanings of the logical constants and the justifications of the logical laws.
Unpublished Lecture Notes, 1983. 20, 30

Per Martin-Lof. Intuitionistic Type Theory. Studies in Proof Theory. Bibliopolis, Naples, Italy, 1984.
v, 39, 412

Per Martin-Lof. Truth of a proposition, evidence of a judgement, validity of a proof. Synthese, 73
(3):407-420, 1987. 20, 30

John McCarthy. LISP 1.5 Programmer’s Manual. MIT Press, 1965. 10, 202, 290

N. P. Mendler. Recursive types and type constraints in second-order lambda calculus. In LICS,
pages 30-36, 1987. 136

Robin Milner. A theory of type polymorphism in programming. JCSS, 17:348-375, 1978. 55

Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge University Press,
1999. ISBN 978-0-521-65869-0. 290, 307, 386, 485

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML
(Revised). The MIT Press, 1997. 39, 61, 224, 307, 421, 433, 443

John C. Mitchell. Coercion and type inference. In Proc. ACM Symposium on Principles of Program-
ming Languages, pages 175-185, 1984. 224

John C. Mitchell. Representation independence and data abstraction. In Proc. ACM Symposium on
Principles of Programming Languages, pages 263-276, 1986. 158, 478

John C.Mitchell. Foundations for Programming Languages. MIT Press, 1996. v

John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM Trans. Program.
Lang. Syst., 10(3):470-502, 1988. 157, 443

Eugenio Moggi. Computational lambda-calculus and monads. In LICS, pages 14-23. IEEE Com-
puter Society, 1989. ISBN 0-8186-1954-6. 320

Tom Murphy, VII, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric modal lambda
calculus for distributed computing. In LICS, pages 286-295, 2004. 320, 404

Chetan R. Murthy. An evaluation semantics for classical proofs. In LICS, pages 96-107. IEEE
Computer Society, 1991. 119

548 BIBLIOGRAPHY

Aleksandar Nanevski. From dynamic binding to state via modal possibility. In PPDP, pages 207—
218. ACM, 2003. ISBN 1-58113-705-2. 299

R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer, editors. Selected Papers on Automath, volume 133
of Studies in Logic and the Foundations of Mathematics. North-Holland, 1994. 10, 30

B. Nordstrom, K. Petersson, and J. M. Smith. Programming in Martin-Lof’s Type Theory. Oxford
University Press, 1990. URL http://www.cs.chalmers.se/Cs/Research/Logic/book. 10

OCaml. Ocaml, 2012. URL http://caml.inria.fr/ocaml/. 444

David Michael Ritchie Park. Concurrency and automata on infinite sequences. In Peter Deussen,
editor, Theoretical Computer Science, volume 104 of Lecture Notes in Computer Science, pages 167—-
183. Springer, 1981. ISBN 3-540-10576-X. 485

Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical
Structures in Computer Science, 11(4):511-540, 2001. 320

Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002: v, 87, 224, 250, 256
Benjamin C. Pierce. Advanced Topics in Types and Programming Languages. The MIT Press, 2004. v

Andrew M. Pitts. Existential types: Logical relations and operational equivalence. In Kim Guld-
strand Larsen, Sven Skyum, and Glynn Winskel, editors, ICALP, volume 1443 of Lecture Notes in
Computer Science, pages 309-326. Springer, 1998. ISBN 3-540-64781-3. 478

Andrew M. Pitts. Operational semantics and program equivalence. In Gilles Barthe, Peter Dybjer,
Luis Pinto, and Jodo Saraiva, editors, APPSEM, volume 2395 of Lecture Notes in Computer Science,
pages 378-412. Springer, 2000. ISBN 3-540-44044-5. 465

Andrew M. Pitts and Ian D. B. Stark. Observable properties of higher order functions that dynam-
ically create local names, or what’s new? In Andrzej M. Borzyszkowski and Stefan Sokolowski,
editors, MFCS, volume 711 of Lecture Notes in Computer Science, pages 122-141. Springer, 1993.
ISBN 3-540-57182-5. 10, 290

G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,
Aarhus University Computer Science Department, 1981. 48, 267

Gordon D. Plotkin. LCF considered as a programming language. Theor. Comput. Sci., 5(3):223-255,
1977. 175

Gordon D. Plotkin. The origins of structural operational semantics. |. of Logic and Algebraic Pro-
gramming, 60:3-15, 2004. 49

John H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999. 386, 398

J. C. Reynolds. Types, abstraction, and parametric polymorphism. In Information Processing ‘83,
pages 513-523. North-Holland, Amsterdam, 1983. 148, 478

http://www.cs.chalmers.se/Cs/Research/Logic/book
http://caml.inria.fr/ocaml/

BIBLIOGRAPHY 549

John C. Reynolds. Towards a theory of type structure. In Bernard Robinet, editor, Symposium
on Programming, volume 19 of Lecture Notes in Computer Science, pages 408—-423. Springer, 1974.
ISBN 3-540-06859-7. 148, 157

John C. Reynolds. Using category theory to design implicit conversions and generic operators.
In Neil D. Jones, editor, Semantics-Directed Compiler Generation, volume 94 of Lecture Notes in
Computer Science, pages 211-258. Springer, 1980. ISBN 3-540-10250-7. 224

John C. Reynolds. The essence of Algol. In Proceedings of the 1981 International Symposium on
Algorithmic Languages, pages 345-372. North-Holland, 1981. 319, 332

John C. Reynolds. The discoveries of continuations. Lisp and Symbolic Computation, 6(3-4):233-248,
1993. 281

John C. Reynolds. Theories of Programming Languages. Cambridge University Press, Cambridge,
England, 1998. v

Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. F-ing modules. In Andrew Kennedy and
Nick Benton, editors, TLDI, pages 89-102. ACM, 2010. ISBN 978-1-60558-891-9. 433

Colin Runciman and Olin Shivers, editors. Proceedings of the Eighth ACM SIGPLAN International
Conference on Functional Programming, ICFP 2003, Uppsala, Sweden, August 25-29, 2003, 2003.
ACM. ISBN 1-58113-756-7. 547, 550

Dana Scott. Lambda calculus: Some models, some philosophy. In J. Barwise, H. J. Keisler, and
K. Kunen, editors, The Kleene Symposium, pages 223-265. North Holland, Amsterdam, 1980a.
193

Dana S. Scott. Data types as lattices. SIAM |. Comput., 5(3):522-587, 1976. 183

Dana S Scott. Relating theories of the lambda calculus. To HB Curry: Essays on combinatory logic,
lambda calculus and formalism, pages 403450, 1980b. 211

Dana S. Scott. Domains for denotational semantics. In Mogens Nielsen and Erik Meineche
Schmidt, editors, ICALP, volume 140 of Lecture Notes in Computer Science, pages 577-613.
Springer, 1982. ISBN 3-540-11576-5. 183

Michael B. Smyth and Gordon D. Plotkin. The category-theoretic solution of recursive domain
equations. SIAM J. Comput., 11(4):761-783, 1982. 183

Richard Statman. Logical relations and the typed lambda-calculus. Information and Control, 65
(2/3):85-97, 1985. 456

Guy L. Steele. Common Lisp: The Language. Digital Press, 2nd edition edition, 1990. 273

Christopher A. Stone and Robert Harper. Extensional equivalence and singleton types. ACM
Trans. Comput. Log., 7(4):676-722, 2006. 421, 433

550 BIBLIOGRAPHY

Paul Taylor. Practical Foundations of Mathematics. Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 1999. 136

PW. Trinder, K. Hammond, H.-W. Loidl, and S.L. Peyton Jones. Algorithm + strategy = parallelism.
JOURNAL OF FUNCTIONAL PROGRAMMING, 8:23-60, 1998. 369

Jaap van Oosten. Realizability: A historical essay. Mathematical Structures in Computer Science, 12
(3):239-263, 2002. 237

Philip Wadler. Theorems for free! In FPCA, pages 347-359, 1989. 148

Philip Wadler. Comprehending monads. Mathematical Structures in Computer Science, 2(4):461-493,
1992. 320

Philip Wadler. Call-by-value is dual to call-by-name. In Runciman and Shivers (2003), pages
189-201. ISBN 1-58113-756-7. 119

Mitchell Wand. Fixed-point constructions in order-enriched categories. Theor. Comput. Sci., 8:13—
30, 1979. 183

Stephen A. Ward and Robert H. Halstead. Computation structures. MIT electrical engineering and
computer science series. MIT Press, 1990. ISBN 978-0-262-23139-8. 183

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. Specifying properties of
concurrent computations in clf. Electr. Notes Theor. Comput. Sci., 199:67-87, 2008. 163

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inf. Comput.,
115(1):38-94, 1994. 55, 332

Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent types.
In Jack W. Davidson, Keith D. Cooper, and A. Michael Berman, editors, PLDI, pages 249-257.
ACM, 1998. ISBN 0-89791-987-4. 237

Index

F, see universal types

MA, see Modernized Algol
PCEF, see Plotkin’s PCF
PPCF, see parallelism

T, see Godel’s T

abstract binding tree, 3, 6
abstractor, 7
valence, 7
x-equivalence, 8
bound variable, 8
capture, 9
free variable, 8
graph representation, 11
operator, 7
arity, 7
parameter, 9
structural induction, 8
substitution, 9
weakening, 11
abstract binding trees
closed, 32
abstract syntax tree, 3-5
operator, 4
arity, 4
index, 9
parameter, 9
structural induction, 5
substitution, 6
variable, 4
weakening, 10
abt, see abstract binding tree
assignables, sece Modernized Algol
ast, see abstract syntax tree

back-patching, see references
benign effects, see references
bidirectional typing, 39, 40
boolean type, 92

capabilities, 323
channel types, see Concurrent Algol
combinators
sk basis, 30
bracket abstraction, 31, 32
conversion, 31
substitution, 31
command types, see Modernized Algol
Concurrent Algol, 389
broadcast communication, 392
dynamics, 393
safety, 393
statics, 393
class declaration, 398
definability of free assignables, 396
dynamics, 391
RS latch, 398
selective communication, 394
dynamics, 396
statics, 395
statics, 390

dynamics, 35, 41
checked errors, 54
contextual, 44
definitional equality, 47
determinacy, 44
equational, 46
equivalence theorem, 46
evaluation context, 45

552

induction on transition, 42
inversion principle, 44
structural, 42

transition system, 41
unchecked errors, 54

enumeration types, 93
equality
definitional, 47, 145, 171

event types, see Concurrent Algol

exceptions, 269, 271
dynamics, 271
evaluation dynamics, 273
exception type, 272, 273
safety, 272, 273
statics, 271
structural dynamics, 274
syntax, 271

failures, see also exceptions, 269
dynamics, 270
safety, 271
statics, 269

Godel’'s T, 73
canonical forms, 79
definability, 76
definitional equality, 76
dynamics, 74
hereditary termination, 79
iterator, 74
recursor, 73
safety, 75, 79
statics, 74
termination, 79
undefinability, 77
general judgment, 23, 28
generic derivability, 28
proliferation, 28
structurality, 28
substitution, 28
parametric derivability, 29
general recursion, 169
generic inductive definition, 29

formal generic judgment, 29
rule, 29
rule induction, 29
structurality, 29
Girard’s System F, see universal types

hypothetical inductive definition, 26
formal derivability, 27
rule, 26
rule induction, 27
uniformity of rules, 27

hypothetical judgment, 23
admissibility, 23, 25

reflexivity, 26
structurality, 26
transitivity, 26
weakening, 26
derivability, 23
reflexivity, 24
stability, 24
structurality, 24
transitivity, 24
weakening, 24

inductive definition, 13, 14
admissible rule, 25
backward chaining, 16
derivable rule, 23
derivation, 15
forward chaining, 16
function, 19
iterated, 18
rule, 14

axiom, 14
conclusion, 14
premise, 14
rule induction, 15, 16
rule scheme, 14
instance, 14
simultaneous, 18

judgment, 13
judgment form, 13
predicate, 13

INDEX

INDEX

subject, 13

laziness
parallel or, 175

mobile types, 318
mobility condition, 318
rules, 318
Modernized Algol, 311
arrays, 320
assignables, 311, 324
block structure, 314
classes and objects, 322
command types, 318
commands, 311, 317
control stack, 322
data stack, 322
expressions, 311
free assignables, 326
free dynamics, 326
idioms
conditionals, 316
iteration, 316
procedures, 316
sequential composition, 316
multiple declaration instances, 320
own assignables, 321
passive commands, 320
recursive procedures, 320
scoped dynamics, 313
scoped safety, 315
separated and consolidated stacks, 322
stack-discipline, 314
stack machine, 322
statics, 312, 318
mutual primitive recursion, 86

null, see option types
option types, 94

parallelism, 347
binary fork-join, 347
Brent’s Theorem, 356
cost dynamics, 350, 361

cost dynamics vs. transition dynamics, 352

cost graphs, 350
exceptions, 361
implicit parallelism theorem, 350
multiple fork-join, 353
parallel complexity, 351
parallel dynamics, 348
parallelizability, 356
provably efficient implementation, 355
sequence types, 353
cost dynamics, 354
statics, 354
sequential complexity, 351
sequential dynamics, 348
statics, 347
structural dynamics, 361
task dynamics, 356, 361
work vs. depth, 351
phase distinction, 35
Plotkin’s PCF, 167
Blum size theorem, 174
definability, 172
definitional equality, 171
dynamics, 170
eager natural numbers, 173
eagerness and laziness, 173
halting problem, 175
induction, 173
mutual recursion, 175
safety, 171
statics, 169
totality and partiality, 174
polarity, 87
polymorphic types, see universal types
primitive recursion, 86
product types, 83
dynamics, 84
finite, 85
safety, 84
statics, 83

reference types, 323
aliasing, 325
free dynamics, 327

554

safety, 325, 328
scoped dynamics, 325
statics, 325
references
arrays, 332
back-patching, 331
benign effects, 330
mutable data structures, 332

Reynolds’s Algol, see Modernized Algol

scoped assignables, see Modernized Algol

stack machine, 261
correctness, 264
completeness, 265
soundness, 266
unraveling, 266
dynamics, 262
frame, 261
safety, 263
stack, 261
state, 261
statics, 35
canonical forms, 38
decomposition, 38
induction on typing, 37

introduction and elimination, 38

structurality, 37
substitution, 37
type system, 36
unicity, 37
weakening, 37
sum types, 89
dynamics, 90
finite, 91
statics, 89
syntax, 3
abstract, 3
binding, 3
chart, 35
concrete, 3
structural, 3
surface, 3
System F, see universal types

type safety, 51
canonical forms, 52
checked errors, 54
errors, 55
preservation, 52, 55
progress, 52, 55

unit
dynamics, 84
statics, 83
unit type, 83
vs void type, 92
universal types, 142
sk combinators, 148

Church numerals, 146

definability, 145
booleans, 148

inductive types, 149

lists, 149

natural numbers, 146

products, 145
sums, 145

definitional equality, 145

dynamics, 144

parametricity, 147, 149

safety, 144
statics, 142

void type, 89
vs unit type, 92
dynamics, 90
statics, 89

INDEX

	Preface to the Second Edition
	I Judgments and Rules
	Abstract Syntax
	Abstract Syntax Trees
	Abstract Binding Trees
	Notes

	Inductive Definitions
	Judgments
	Inference Rules
	Derivations
	Rule Induction
	Iterated and Simultaneous Inductive Definitions
	Defining Functions by Rules
	Notes

	Hypothetical and General Judgments
	Hypothetical Judgments
	Derivability
	Admissibility

	Hypothetical Inductive Definitions
	General Judgments
	Generic Inductive Definitions
	Notes

	II Statics and Dynamics
	Statics
	Syntax
	Type System
	Structural Properties
	Notes

	Dynamics
	Transition Systems
	Structural Dynamics
	Contextual Dynamics
	Equational Dynamics
	Notes

	Type Safety
	Preservation
	Progress
	Run-Time Errors
	Notes

	III Total Functions
	System T of Higher-Order Recursion
	Statics
	Dynamics
	Definability
	Undefinability
	Notes

	IV Finite Data Types
	Product Types
	Nullary and Binary Products
	Finite Products
	Primitive Mutual Recursion
	Notes

	Sum Types
	Nullary and Binary Sums
	Finite Sums
	Applications of Sum Types
	Void and Unit
	Booleans
	Enumerations
	Options

	Notes

	V Types and Propositions
	VI Infinite Data Types
	VII Variable Types
	System F of Polymorphic Types
	Polymorphic Abstraction
	Polymorphic Definability
	Products and Sums
	Natural Numbers

	Parametricity Overview
	Notes

	VIII Partiality and Recursive Types
	System PCF of Recursive Functions
	Statics
	Dynamics
	Definability
	Finite and Infinite Data Structures
	Totality and Partiality
	Notes

	IX Dynamic Types
	X Subtyping
	XI Dynamic Dispatch
	XII Control Flow
	Control Stacks
	Machine Definition
	Safety
	Correctness of the Stack Machine
	Completeness
	Soundness

	Notes

	Exceptions
	Failures
	Exceptions
	Exception Values
	Notes

	XIII Symbolic Data
	XIV Mutable State
	Modernized Algol
	Basic Commands
	Statics
	Dynamics
	Safety

	Some Programming Idioms
	Typed Commands and Typed Assignables
	Notes

	Assignable References
	Capabilities
	Scoped Assignables
	Free Assignables
	Safety
	Benign Effects
	Notes

	XV Parallelism
	Nested Parallelism
	Binary Fork-Join
	Cost Dynamics
	Multiple Fork-Join
	Bounded Implementations
	Scheduling
	Notes

	XVI Concurrency and Distribution
	Concurrent Algol
	Concurrent Algol
	Broadcast Communication
	Selective Communication
	Free Assignables as Processes
	Notes

	XVII Modularity
	XVIII Equational Reasoning
	XIX Appendices

