Motivation Previous work

Attacking and defending PCM-based main memory Milo Polte and Robert J. Simmons

- DRAM is running into density scaling problems
- Phase-Change Memory (PCM) is a NVRAM technology that uses thermal expansion properties to store data
- Previous work: PCM feasible as DRAM replacement
- Like Flash, PCM is susceptible to wearout.
 - Attacking: Worst case wear? Realistic wear?
 - Defending: Can it be mitigated with wear-leveling?

(日)

Motivation Previous work

Attacking and defending PCM-based main memory Milo Polte and Robert J. Simmons

DRAM is running into density scaling problems

- Phase-Change Memory (PCM) is a NVRAM technology that uses thermal expansion properties to store data
- Previous work: PCM feasible as DRAM replacement
- Like Flash, PCM is susceptible to wearout.
 - Attacking: Worst case wear? Realistic wear?
 - Defending: Can it be mitigated with wear-leveling?

Motivation Previous work

Attacking and defending PCM-based main memory Milo Polte and Robert J. Simmons

- DRAM is running into density scaling problems
- Phase-Change Memory (PCM) is a NVRAM technology that uses thermal expansion properties to store data
- Previous work: PCM feasible as DRAM replacement
- Like Flash, PCM is susceptible to wearout.
 - Attacking: Worst case wear? Realistic wear?
 - Defending: Can it be mitigated with wear-leveling?

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Motivation Previous work

Attacking and defending PCM-based main memory Milo Polte and Robert J. Simmons

- DRAM is running into density scaling problems
- Phase-Change Memory (PCM) is a NVRAM technology that uses thermal expansion properties to store data
- Previous work: PCM feasible as DRAM replacement
- Like Flash, PCM is susceptible to wearout.
 - Attacking: Worst case wear? Realistic wear?
 Defending: Can it be mitigated with wear-leveling?

< 日 > < 回 > < 回 > < 回 > < 回 > <

Motivation Previous work

Attacking and defending PCM-based main memory Milo Polte and Robert J. Simmons

- DRAM is running into density scaling problems
- Phase-Change Memory (PCM) is a NVRAM technology that uses thermal expansion properties to store data
- Previous work: PCM feasible as DRAM replacement
- Like Flash, PCM is susceptible to wearout.
 - Attacking: Worst case wear? Realistic wear?
 - Defending: Can it be mitigated with wear-leveling?

(日)

Motivation Previous work

Attacking and defending PCM-based main memory Milo Polte and Robert J. Simmons

- DRAM is running into density scaling problems
- Phase-Change Memory (PCM) is a NVRAM technology that uses thermal expansion properties to store data
- Previous work: PCM feasible as DRAM replacement
- Like Flash, PCM is susceptible to wearout.
 - Attacking: Worst case wear? Realistic wear?
 - Defending: Can it be mitigated with wear-leveling?

Motivation Previous work

Previous work

Primary background: Lee et al., <u>Architecting Phase Change</u> Memory as a Scalable DRAM Alternative, ISCA 2009

- PCM is competitive with DRAM in terms of time and power
- Instead of one 2048-byte memory buffer (sense amplifier), have four 512-byte memory buffers

Mitigates comparatively slow writes

• Instead of writing back the whole buffer back to memory, track modified data by L2 cache blocks or by word

Prevents wearout

イロト イヨト イヨト イヨト

Motivation Previous work

Previous work

Primary background: Lee et al., <u>Architecting Phase Change</u> Memory as a Scalable DRAM Alternative, ISCA 2009

- PCM is competitive with DRAM in terms of time and power
- Instead of one 2048-byte memory buffer (sense amplifier), have four 512-byte memory buffers

Mitigates comparatively slow writes

• Instead of writing back the whole buffer back to memory, track modified data by L2 cache blocks or by word

Prevents wearout

< 日 > < 回 > < 回 > < 回 > < 回 > <

Motivation Previous work

Previous work

Primary background: Lee et al., <u>Architecting Phase Change</u> Memory as a Scalable DRAM Alternative, ISCA 2009

- PCM is competitive with DRAM in terms of time and power
- Instead of one 2048-byte memory buffer (sense amplifier), have four 512-byte memory buffers

• Mitigates comparatively slow writes

- Instead of writing back the whole buffer back to memory, track modified data by L2 cache blocks or by word
 - Prevents wearout

Motivation Previous work

Previous work

Primary background: Lee et al., <u>Architecting Phase Change</u> Memory as a Scalable DRAM Alternative, ISCA 2009

- PCM is competitive with DRAM in terms of time and power
- Instead of one 2048-byte memory buffer (sense amplifier), have four 512-byte memory buffers

• Mitigates comparatively slow writes

- Instead of writing back the whole buffer back to memory, track modified data by L2 cache blocks or by word
 - Prevents wearout

< 同 > < 三 > < 三 >

Experimental setup

Simulation Environment

• Components: Main memory, wear levelers, attackers Wear leveler

- Intercepts requests to memory
- Can redirect reads and writes made to logical memory (size N) to physical memory (size N×α)

- Generates requests to memory
- Degenerate requests
 - Always write to same logical location
 - Always write to same same physical location (if possible)
- Real requests derived from SPEC benchmarks
 - Turns out they can look pretty degenerate!

Experimental setup

Simulation Environment

• Components: Main memory, wear levelers, attackers Wear leveler

- Intercepts requests to memory
- Can redirect reads and writes made to logical memory (size N) to physical memory (size N×α)

- Generates requests to memory
- Degenerate requests
 - Always write to same logical location
 - Always write to same same physical location (if possible)
- Real requests derived from SPEC benchmarks
 - Turns out they can look pretty degenerate!

Experimental setup

Simulation Environment

• Components: Main memory, wear levelers, attackers Wear leveler

- Intercepts requests to memory
- Can redirect reads and writes made to logical memory (size N) to physical memory (size N×α)

- Generates requests to memory
- Degenerate requests
 - Always write to same logical location
 - Always write to same same physical location (if possible)
- Real requests derived from SPEC benchmarks
 - Turns out they can look pretty degenerate!

Experimental setup

Simulation Environment

• Components: Main memory, wear levelers, attackers Wear leveler

- Intercepts requests to memory
- Can redirect reads and writes made to logical memory (size N) to physical memory (size N×α)

Attacker

- Generates requests to memory
- Degenerate requests

Always write to same logical location

Always write to same same physical location (if possible)

• Real requests derived from SPEC benchmarks

Turns out they can look pretty degenerate!

(4) (3) (4) (3)

Experimental setup

Simulation Environment

• Components: Main memory, wear levelers, attackers Wear leveler

- Intercepts requests to memory
- Can redirect reads and writes made to logical memory (size N) to physical memory (size N×α)

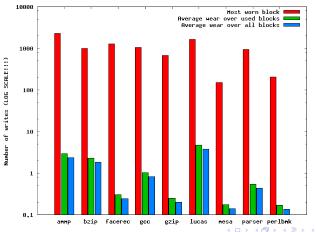
Attacker

- Generates requests to memory
- Degenerate requests
 - Always write to same logical location
 - Always write to same same physical location (if possible)
- Real requests derived from SPEC benchmarks

• Turns out they can look pretty degenerate!

Experimental setup

Simulation Environment

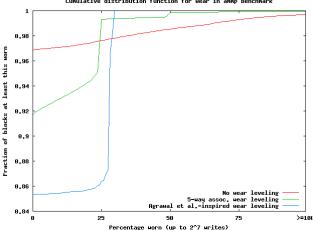

• Components: Main memory, wear levelers, attackers Wear leveler

- Intercepts requests to memory
- Can redirect reads and writes made to logical memory (size N) to physical memory (size N×α)

- Generates requests to memory
- Degenerate requests
 - Always write to same logical location
 - Always write to same same physical location (if possible)
- Real requests derived from SPEC benchmarks
 - Turns out they can look pretty degenerate!

Necessity of wear leveling Effect of wear leveling Overhead of wear leveling

Necessity of wear leveling

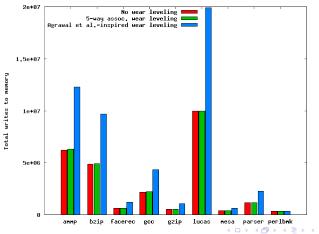

PCM wear over selected SPEC benchmarks

Milo Polte, Robert J. Simmons

Attacking and defending PCM-based main memory

Necessity of wear leveling Effect of wear leveling Overhead of wear leveling

Effect of wear leveling


Cumulative distribution function for wear in ammp benchmark

Milo Polte, Robert J. Simmons At

Attacking and defending PCM-based main memory

Necessity of wear leveling Effect of wear leveling Overhead of wear leveling

Overhead of wear leveling

Overhead of PCM wear leveling

Milo Polte, Robert J. Simmons

Attacking and defending PCM-based main memory

Conclusions and future work

Conclusions

- Relatively straight-forward traces can be surprisingly bad
- Relatively simple wear leveling can be surprisingly effective

Short-term future:

- Tweak existing algorithms
- Reduce overhead

Longer-term future:

- Evaluate timing
- Integrate with the existing MSR simulation infrastructure
- Different approaches: OS? "Write Victim Cache?"

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Conclusions and future work

Conclusions

- Relatively straight-forward traces can be surprisingly bad
- Relatively simple wear leveling can be surprisingly effective Short-term future:
 - Tweak existing algorithms
 - Reduce overhead

Longer-term future:

- Evaluate timing
- Integrate with the existing MSR simulation infrastructure
- Different approaches: OS? "Write Victim Cache?"

Conclusions and future work

Conclusions

- Relatively straight-forward traces can be surprisingly bad
- Relatively simple wear leveling can be surprisingly effective Short-term future:
 - Tweak existing algorithms
 - Reduce overhead

Longer-term future:

- Evaluate timing
- Integrate with the existing MSR simulation infrastructure
- Different approaches: OS? "Write Victim Cache?"

Conclusions and future work

Conclusions

- Relatively straight-forward traces can be surprisingly bad
- Relatively simple wear leveling can be surprisingly effective Short-term future:
 - Tweak existing algorithms
 - Reduce overhead
- Longer-term future:
 - Evaluate timing
 - Integrate with the existing MSR simulation infrastructure
 - Different approaches: OS? "Write Victim Cache?"

< 同 > < 三 > < 三 >