Mobile Robot Fault Detection based on
Redundant Information Statistics

Juan Pablo Mendoza
The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Jjpmendoza@ri.cmu.edu

Abstract— Detecting and reacting to faults (i.e., abnormal
situations) are essential skills for robots to safely and au-
tonomously perform tasks in human-populated environments.
This paper presents a fault detection algorithm that statistically
monitors robot motion execution. The algorithm does not
model possible motion faults, but it instead uses a model of
normal execution to detect anomalies. The model of normal
execution is based on comparisons between redundant sources
of information; specifically, wheel encoder readings and local-
ization algorithm output are used as the redundant sources
of displacement information. The algorithm was implemented
on a service robot that often navigates in a human-populated
environment without supervision. Experimental results show
that the algorithm can detect even minor motion faults and
stop execution immediately to guarantee safety to the humans
around the robot.

I. INTRODUCTION

As autonomous mobile robots start to populate human
environments, safety during execution is becoming a pri-
mary concern for researchers and developers. This rising
necessity for robustness in unconstrained environments has
made execution monitoring —the problem of recognizing and
indicating anomalies in behavior— increasingly prominent in
the robotics community [6]. An important feature of uncon-
strained, human-populated environments is their richness: in
such complex environments, it is not realistic to assume that
the robot’s designers can foresee every way in which execu-
tion could fail. Therefore, execution monitors that explicitly
require faulty execution models (e.g., motion interference [4]
or wheel failures [10]) are helpful in detecting faults quickly,
but not sufficient to detect unforeseen faults. This work, on
the other hand, does not assume any previous knowledge
of the ways in which execution could fail, but instead only
requires some normal execution model, and uses this model
to detect deviations from normal behavior. Once a significant
deviation from normal behavior has been detected, the robot
can, at the very least, stop immediately until a qualified
operator can fix the problem.

For this paper, normal execution models are created us-
ing redundant information: equivalent information that is
provided by multiple sources. For example, robot location
can be provided by both Wi-Fi signal and visual landmarks.
Information obtained from these multiple sources is approx-
imately equal under normal circumstances, and significant
deviations from this are symptoms of failure in execution.

Manuela Veloso
Computer Science Department
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

mmv@cs.cmu.edu

Reid Simmons
The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

reids@cs.cmu.edu

Fig. 1: The CoBot mobile service robots. CoBot robots
autonomously perform tasks in human-populated environ-
ments, often without any supervision. Autonomous execution
monitoring during navigation is thus essential for the safety
of people around them.

The robotic platform used to test the algorithm presented
in this paper is the CoBot service robot (see Figure 1). The
CoBots are exposed to unsupervised physical interaction with
humans constantly, having navigated among humans more
than 100 km while autonomously completing service tasks
requested on demand by inhabitants of the Gates-Hillman
Center at Carnegie Mellon University [9]. Since the CoBots
often perform these tasks without the supervision of any
member of the developing team, safe autonomous interac-
tion with humans is a high research priority. Each CoBot
is equipped with an omnidirectional four-wheel base for
motion (and encoders for odometry), laser range-finders or
Microsoft Kinects for obstacle avoidance and localization in
the environment and cameras. Under normal execution, many
precautions are taken to ensure safe execution around humans
(e.g., if there is no safe path around a human, the CoBots stop
and ask the human to move, instead of attempting to steer
around him or her). However, these algorithms may fail under
abnormal circumstances, such as malfunctioning obstacle-
detection sensors, leading to potentially unsafe execution.
Prompt detection and recovery from abnormal situations is



thus essential for robustness and safety of the CoBots.

II. PROBABILISTIC FAILURE DETECTION

The monitor described in this paper operates by comparing
equivalent observations (at time ) o;; and oy, given from two
separate sources. During normal execution, the difference
Xx; = 0;1 — 0y between them is expected to be close to O.
However, in real-world applications, with noisy sensors and
actuators, this difference at each time-step is usually not
exactly 0, and even in the limit as time goes to infinity,
the expected difference may be close to but not exactly
0. Because of this, the approach used in this work is
probabilistic in nature, incorporating uncertainty naturally
into the model.

Formally, the method for detecting faults is the following:
Given a set of comparison observations X = {x;,x2,...,x7}
with sample mean X, the algorithm estimates the probability
that the true mean u of the underlying model lies within
some acceptable interval [u_,u.] around 0. That is, the
algorithm calculates P(u— < p < uy). To do this, one can
first define a standardized variable Z:

X—p

o?
n

Z= , )

where o2 is the variance of X and n is the size of X.
The standardized problem then becomes that of calculating
P(Z- <Z<Z,), where Z_ and Z, are calculated analo-
gously to Z from p, and p_ respectively. Given that these
variables are in standard form, the desired probability can
be obtained straightforwardly from the standard cumulative
normal distribution function ®(z):

=P(Z< ) (Z z) @
=®(Zy)-2(Z-)

After calculating this probability, detecting failures in
execution is reduced to choosing a threshold probability
Prhresh below which it is too unlikely that the observed data
still fits the expected model.

III. REDUNDANT INFORMATION IN THE COBOT

The CoBots have several sensors and algorithms from
which redundant information can be obtained to monitor their
execution. The algorithm presented here can be used on any
element of the following non-exhaustive list of redundant
information:

Location and displacement. Several sensors and algo-
rithms can provide information at each timestep about
the robot’s location or displacement. Currently, the
commanded velocity, wheel encoders, laser range-finder
and Microsoft Kinect are used to localize the robot using
an augmented particle filter [1], [2]. Each one of these,
including the output of the localization algorithm itself,
can be used as a source of location or displacement
information. The CoBots also have infrared detectors

for identification of pre-specified landmarks in the en-
vironment, which can provide this information as well.
Furthermore, streams of images from the RGB cameras
could be used to obtain location or displacement infor-
mation, with algorithms such as visual odometry [5] or
visual landmark recognition [8], although these are not
currently implemented on the CoBots.

Time to task completion. The knowledge base of the
CoBots include an estimate of how long each of its
tasks is expected to take [3]. This knowledge can be
computed both at the higher levels (e.g., how long it
takes to fetch an object from a certain office) as well
as the lower levels (e.g., how long it takes to traverse
a particular segment in its navigation planning graph).
This expected knowledge can be compared to the actual
measured time of task completion to look for faults in
execution.

Expected object locations. One of the CoBots’ algorithms
[7] for finding objects in their environment queries the
internet to infer the probability that a certain object will
be found in a certain space (e.g., the probability that
coffee is found in the kitchen). While searching for these
items in their environments, the CoBots could compare
the inferred probability returned by this algorithm to the
actual experienced frequency with which it finds such
objects, to find abnormal situations (e.g., if someone is
actively hiding all the coffee from the CoBots).

One of the most immediate safety concerns for the CoBots
is the need to be confident that the robots are moving as
expected while navigating among humans, without running
into problems such as wheel motor or encoder malfunctions,
collisions against imperceptible obstacles, getting lost, and
others. Many of these motion failures can lead to dangerous
situations (e.g., robots drifting to unsafe territory or attempt-
ing to drive through unperceived objects), and therefore
this paper focuses on detection of motion failures. (Once
a motion failure has been detected, the simplest safe action
is taken: the robot stops immediately.) The monitor in this
paper was thus trained to detect failures in displacement data,
and the two redundant sources were the wheel encoders and
the output of the localization algorithm. These sources of in-
formation were chosen because their output can be relatively
simply used to obtain displacement at each timestep.

To obtain displacement (in robot x, y, and heading 6
coordinates) from the wheel encoders, the displacement of
each of the four encoders is mapped to x, y and 6 using
a least squares solution. To obtain displacement from the
localization algorithm, x, y and 6 displacement in world
coordinates (obtained by comparing locations at consecutive
timesteps) are transformed to robot coordinates by applying
the appropriate rotation. Figure 2a shows the resulting normal
execution displacement data as obtained from these two
sources. Notice that the noise in this data is very significant,
and therefore a statistical approach to fault detection is
necessary.

To fully define a monitor based on these observations, pa-
rameters 62, U, iy and pyjesn must be defined for each of



0.1 R 0.1 — 0.1 A
Source: localization Source: localization Source: localization
—— Source: encoders —— Source: encoders —— Source: encoders
0.08 3 0.08 0.08
— —~ —
S S S
- = =
+« 0.06 = +« 0.06
c c c
£ £ &
o 0.04 © © 0.04
Q Q Q
< «© «©
o 0.02 o o 0.02
X7 K] K]
o o o
0 0
-0.02 . . -0.02 : -0.02 - .
0 5 10 15 0 10 15 0 5 10 15

Time (s)
(@

5
Time (s)

Time (s)
©

Fig. 2: Encoder and localization-based displacement data. (a) shows the first 15 seconds of data during normal execution,
while (b) and (c) show similar periods with € = —0.1 and € = —0.4 respectively. Note that there is no obvious difference
between € =0 and € = —0.1 from visual inspection, but at € = —0.4, the abnormal behavior is more clear

the dimensions (x,y, 8). For this paper, these parameters were
chosen to be equal for each of the dimensions for simplicity,
although this does not need to be the case. Also, parameter
values were chosen to be conservative towards autonomy
—i.e., they were chosen with the goal of minimizing false
positive fault detections. For the experiments in this paper,
62 =0.001 was chosen as a conservative approximation of
the measured o = (0.00019,0.00005,0.00012) for (x,y,0)
respectively. Similarly, g— = —0.001 and p; = 0.001 were
chosen as conservative approximation of the measured long-
term error during normal execution (the measured value was
u = (—0.0007,—0.0003,—0.0004). Finally, piesn = 0.01
was chosen to be low enough so that no false positives were
detected during normal execution.

IV. EXPERIMENTS AND RESULTS

To test the execution monitor’s performance, a wheel
encoder malfunction was artificially induced. During each
timestep of the CoBot’s navigation, the reported displace-
ment of one of the four encoders (always the same one)
deviates from the true encoder displacement reading by
a pre-specified fraction € of the true displacement. For
example, € = 0 represents normal execution, while € = —0.1
represents a situation where three of the wheel encoders work
normally, but the fourth one reports 0.9d, where d is the
true displacement of the fourth wheel. Figures 2b and 2c
show the displacement data from wheel encoders as well as
localization algorithm output for two values of €. For the
experiments in this paper, all values of & where less than
0; however, preliminary tests suggest the monitor can detect
faults with € > 0 as well.

Different values of & were tested to determine how de-
tection times would vary as a function of how subtle the
fault to be detected was. For each € value, 10 tests were
run to find the average time to detection. For each test, the
robot was instructed, at a high level, to autonomously move
to different destinations in the building, avoiding obstacles
and interacting with people as usual. During each test, every
time a new wheel encoder observation was received, P(_ <

U < uy) was calculated as shown in Equation (2), using all
the observations received by that time. If P(u_ < pu < puy)
fell below p;pesn, a fault was detected. Results are shown
in Figure 3. As is shown in the figure, and consistent
with intuition, the time required to detect faults increases
significantly as the tested fault gets more subtle and thus
more observations are necessary to be confident that they
were not produced by the expected model. Some faults more
minor than € = —0.05 (e.g., € = —0.01 was tested) are not
detectable by the monitor, since these subtle faults maintain
the true deviation p within the acceptable margin [y, 1]
even as time approaches infinity.

V. FUTURE WORK

While the monitor presented in this paper has shown
promising detection results for detection of one type of
unmodeled failure, two directions for future work seem clear.

A first direction to expand this work is to test the monitor
on several different faults. One of the key strengths of the
monitor presented here is that it does not explicitly model
faults, but instead it uses information redundancy to assess
normality. This means that other kinds of motion failures
(e.g., collisions, getting lost) should also be detectable by this
monitor. Preliminary tests were conducted to test whether
this monitor could detect collisions against imperceptible
obstacles; on average, collisions were detected 1.98 seconds
after the collision started (significantly slower than the 0.65
seconds in [4], but without explicitly modeling the fault).
Showing detection of multiple kinds of unmodeled faults is
essential to show the flexibility of this monitor.

As a second direction for future work, notice that one of
the biggest limitations of the monitor, as presented in this
paper, is that all faults are considered to happen globally. At
each timestep, all the observations accumulated throughout
the current run of the robot are grouped into a single statistic,
which is then analyzed to determine its normality. This global
assumption works well for faults that do not depend on the
robot’s state, but other faults (e.g., collisions or getting lost)
are very much localized in specific sets of states of the



450

400} 396. i
350 1
300 1
2501 1
2001 1
1501 1

1001 1

Time to fault detection (s)

al
o
T
L

”g 55 72, 152

-0.5 -0.4 -0.3 -0.2 -0.1 0
Encoder output error

(a)

Time to fault detection (s)
3 8 5 g

[y
o
T

-0.5 -0.4 -0.3 -0.2 -0.1 0
Encoder output error

(d)

Fig. 3: Time to fault detection as a function of the chosen fractional error €. (a) shows all the experimental results, while
(b) leaves out € = —0.05 for ease of visualization of the rest of the data. Error bars mark one standard deviation of the data.

robot (e.g., a particular location, velocity or time). This may
be part of the reason collision detection times were slower
than in previous work. The authors are currently working
on an extension of the monitor that will gather observations
from particular areas of the robot’s state space to find areas
in which faults have occurred. Aside from such a model’s
obvious advantage of being able to detect localized faults
more effectively, it will also contribute to the problem of
fault isolation: the robot will be able to communicate not
only that a fault has happened, but also in what region of
the state space of the robot the fault happened (e.g., a fault
happened in a certain area of the building, or only when the
robot was going at a certain speed). Such a monitor would
be significantly more helpful in the areas of fault isolation,
and would allow for more useful fault communication to a
human operator.

VI. CONCLUSION

This paper presented a probabilistic algorithm for fault
detection during robot motion execution. The algorithm does
not need a model of possible faults, but it instead looks
for deviations from normal execution to detect failures. The
algorithm thus does require a model of normal execution
to be provided. For this paper, the model of normal execu-
tion was based on comparing equivalent information from
redundant sources to find statistically significant differences
between them, indicating a fault. Specifically, displacement
data derived from wheel encoder output is compared to
displacement data obtained from a particle filter-based local-
ization algorithm to find statistically significant discrepancies
that indicate a fault in execution.

Experimental results show that the algorithm can consis-
tently detect faults and safely stop when the robot has a
malfunctioning wheel encoder, with malfunctions as small

as 5% off normal wheel encoder values. Further work will
focus on two aspects: testing the monitor for detection of

other safety-critical situations, such as collisions and getting
lost, and expanding the algorithm to be able to detect and
communicate localized faults, and not only global ones. Such
further work will demonstrate the general applicability of the
algorithm as a fault detection and isolation model.

REFERENCES

[1] Joydeep Biswas, Brian Coltin, and Manuela Veloso. Corrective
gradient renement for mobile robot localization. In Proceedings of
IEEE Int. Conf. on Intelligent Robots and Systems, pages 73 — 78.
IEEE, September 2011.

[2] Joydeep Biswas and Manuela Veloso. Depth camera based indoor
mobile robot localization and navigation. In Proceedings of the IEEE
Int. Conf. on Robotics and Automation (to appear). IEEE, 2011.

[3] Brian Coltin, Manuela Veloso, and Rodrigo Ventura. Dynamic user
task scheduling for mobile robots. In Proceedings of the the AAAI
Workshop on Automated Action Planning for Autonomous Mobile
Robots at AAAI 2011, August 2011.

[4] Juan Pablo Mendoza, Manuela Veloso, and Reid Simmons. Motion
interference detection in mobile robots. In Proceedings of IEEE Int.
Conf. on Intelligent Robots and Systems (to appear), 2012.

[5] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry.
2012 IEEE Conference on Computer Vision and Pattern Recognition,
1:652-659, 2004.

[6] Ola Pettersson. Execution monitoring in robotics: A survey. Robotics
and Autonomous Systems, 53(2):73-88, 2005.

[71 Mehdi Samadi, Thomas Kollar, , and Manuela Veloso. Using the web
to interactively learn to find objects. In Proceedings of the Twenty-
Sixth AIIl Conference on Artificial Intelligence, 2012.

[8] Stephen Se, David Lowe, and Jim Little. Mobile robot localization
and mapping with uncertainty using scale-invariant visual landmarks.
International Journal of Robotics Research, 21:735-758, 2002.

[9] Manuela Veloso et al. Symbiotic-autonomous service robots for user-
requested tasks in a multi-floor building. Under submission, 2012.

[10] Vandi Verma, Geoff Gordon, Reid Simmons, and Sebastian Thrun.
Particle filters for rover fault diagnosis. In IEEE Robotics & Au-
tomation Magazine special issue on human centered robotics and
dependability, 2004.



