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Abstract:

 

 While many multi-robot systems rely on fortuitous cooperation
between agents, some tasks, such as the assembly of large structures, require
tighter coordination. We present a general software architecture for coordinating
heterogeneous robots that allows for both autonomy of the individual agents as
well as explicit coordination. This paper presents recent results with three robots
with very different configurations. Working as a team, these robots are able to per-
form a high-precision docking task that none could achieve individually.

 

1. Introduction

 

As robots become more autonomous and sophisticated, they are increasingly being
used for more complex and demanding tasks. Often, single robots are insufficient to
perform the tasks. For some types of tasks, such as exploration or demining, multiple
robots can be used to increase efficiency and reliability. For many other tasks, how-
ever, not only are multiple robots necessary, but explicit coordination amongst the
robots is imperative. Our research focus is on the latter class of problems, particularly
those in which the individual robots have vastly different capabilities. For many
tasks, the use of heterogeneous robots is indicated because of the difficulties of con-
structing a single robot that has the needed size, strength, dexterity, etc.

One such application domain is assembly of large-scale structures, such as terres-
trial buildings, planetary habitats, or space solar power structures. Such domains need
both heavy lifting capabilities, as well as precise, dexterous manipulation to connect
parts together. A motivating scenario is that of assembling the steel structure of a
large building. In such cases, a large crane is used to lift beams and move them near
their destinations; a worker near the destination uses hand signals to guide the crane
operator; when the beam is close enough, the worker grabs the end and moves it into
place.

Our short-term research goal is to accomplish that scenario using a team of three
autonomous robots. Our initial assembly scenario is to emplace a long heavy beam
precisely. This task needs both strength and dexterity. Our approach is to coordinate
three robots— an overhead crane, a mobile manipulator, and a roving eye. The crane
provides heavy lifting capability and has a large workspace, but is not precise; the
manipulator provides dexterity and precise control, but is weaker and has a relatively
smaller workspace from a fixed position of the base; the roving eye provides accurate



 

views of the workspace, which are used to guide the other two robots. 

This task has been chosen to highlight issues with heterogeneous robots.
Research issues include techniques for explicit coordination between the robots, dis-
tributed visual servoing, planning and execution techniques that take advantage of the
heterogeneous nature of the robot team, and robust monitoring and exception han-
dling within teams. Longer-term issues include dynamic team formation with large
numbers of robots and high-level, distributed planning for building complex struc-
tures with many parts. In this paper we present our approach and compare it with
work done by other researchers. We discuss two topics, distributed coordination and
distributed visual servoing, in the context of a beam placement task accomplished by
a team of three robots.

 

2. Approach

 

Our approach to coordinating multiple, heterogeneous robots is based on the layered
architectures that are becoming increasingly popular for single-agent autonomous
systems [3], [12], [17]. In our architecture, each robot is an autonomous agent, con-
sisting of a 

 

planning

 

 layer that decides how to achieve high-level goals, an 

 

executive

 

layer that synchronizes agents, sequences tasks and monitors task execution, and a

 

behavioral

 

 layer that interfaces to the robot’s sensors and effectors (Figure 1). As is
customary with single-agent tiered architectures, each layer interacts with those
above and below it. In addition, in our multi-robot architecture, agents can interact
with one another through direct connections at each of the three layers. This type of
layer-specific interaction provides for increased flexibility and efficiency in the way
the robots can coordinate. 

For instance, the behavioral level typically consists of sensor/effector feedback
loops. By allowing connections between the sensor behaviors of one robot and the
effector behaviors of another, we create efficient distributed servo loops, such as the
visual servoing described in Section 6. Similarly, by enabling the robot executives to
interact with one another (see Section 5), we can easily synchronize tasks performed

 

Figure 1. Layered multi-robot architecture. Each robot has three layers that can directly
interact with one another and with the appropriate layers of the other robots.
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by multiple robots, have robots monitor each other’s progress, and even have one
robot handle exceptions raised by another robot. This is particularly important when
the robots must coordinate explicitly to perform complex tasks.

Finally, by having the planning layers coordinate, we can flexibly construct multi-
agent plans that try to optimize overall resource utilization. Our approach allows for
this to be done either in a totally distributed fashion, using distributed negotiation
between agents [14] to decide which agents will perform which roles and how the
agents will cooperate, or else in a more global fashion, where agents bid on becoming
“foremen” for particular subtasks. In the latter approach, the foreman agent (which
may itself be one of the robots, and may change depending on the subtask) dynami-
cally negotiates with other agents to form teams and assigns them tasks.

The teams form “commitment groups” with joint intentions that provide the basis
for their coordinated actions [8], [22]. The individual agents can also negotiate with
one another, if necessary, to carry out their assigned tasks. For instance, if two robots
are jointly holding a workpiece, one may request the other to move in order to obtain
increased freedom of motion. In addition to task negotiation, the foreman monitors
progress, adding or replacing team members if problems arise.

 

3. Related Work 

 

Our approach stands in contrast to much of the current work in multi-robot systems.
Most current approaches can be categorized as either “group behavior” or “highly
centralized”. In the “group behavior” approach [2],[5],[6],[11],[13] each agent is
autonomous, but there is usually no explicit coordination among the robots: coordina-
tion (or, more accurately, 

 

cooperation

 

) is an emergent property of the way the behav-
iors of the robots interact with the environment. For instance, in Parker’s ALLIANCE
architecture [13], robots decide which tasks to perform in a behavior-based fashion:
They have “motivations” that rise and fall as they notice that tasks are available or
not. While ALLIANCE can handle heterogeneous robots (robots can have different
motivations for different tasks), it does not deal with the problem of explicit coordi-
nation. In particular, it has not been demonstrated on tasks that 

 

require

 

 multiple
robots.

At the other end of the spectrum, in the “highly centralized” approach a central-
ized planner plans out detailed actions for each robot. For example, a planner might
treat two 6 DOF arms as a single 12 DOF system for the purpose of planning detailed
trajectories that enable the arms to work together in moving some object, without
bumping into each other [10]. While this approach provides for tight coordination, it
does so at the expense of local robot autonomy. In particular, this approach usually
employs centralized monitoring and, if anything goes wrong, the planner is invoked
to replan everything. This approach also suffers from single point failure.

Under our scheme, individual robots can autonomously solve many problems
themselves or by negotiating with each other, without having to invoke a high-level
planner. These characteristics reduce the need for inter-robot communication and
improve overall reliability. As such, our approach is similar to some work in which
coordination strategies are explicitly represented and reasoned about [8],[21],[22].



 

Our architecture also supports dynamic team formation. Coordination occurs
between agents filling specific roles in the structure of the team, and roles can be
dynamically assigned to agents, in a manner similar to [9]. We also plan to use dis-
tributed methods to optimize the assignment of roles to agents, as in [4],[15],[20].

 

4. Testbed 

 

Our experimental testbed is comprised of three robots— a crane, a roving eye and a
mobile manipulator (Figure 2). The crane, called Robocrane, is a 20-foot high,
inverted Stewart platform built by the National Institute of Standards and Technology
(NIST) [1]

 

. 

 

Robocrane consists of a large triangular platform supported by six cables
attached to winch motors. This enables Robocrane to move freely with six degrees of
freedom in a roughly 10 foot cubed workspace. We have added a winch motor on the
platform, which pays out a cable to which an 8-foot long beam is attached. The rov-
ing eye is the robot Xavier, a 4-foot tall, 2-foot diameter synchro-drive robot with ste-
reo cameras mounted on a pan-tilt head [17]. The mobile manipulator is built on top
of a four wheeled robot testbed, called Bullwinkle, which can drive and avoid obsta-
cles using stereo vision [19]. The manipulator itself, which mounts to the front of
Bullwinkle, is a 5 DOF arm designed and built at NASA Johnson Space Center. The
end effector is an electromagnet mounted on springs at the end of the wrist and is
used to attach to the underside of the hanging beam. The three robots communicate
with each other and an off-board workstation using Wavelan radio Ethernet.

 

5. Distributed Coordination 

 

To perform large-scale assembly tasks, the robots must coordinate their actions. For
instance, the crane and the mobile manipulator must coordinate so the manipulator
has enough freedom to move the beam without having to support much of the beam’s
weight. Similarly, the roving eye and crane must coordinate so that the position of the
beam can be well estimated.

Our approach to the problem of distributed coordination extends work we have
done in single robot task-level control [16],[18]. The basic idea is that agents execute
plans by dynamically constructing 

 

task trees

 

. Nodes in a task tree represent com-

 

Figure 2. Experimental testbed consisting of 6 DOF crane, mobile manipulator, and roving
eye robots.



 

mands (which are primitive behaviors executed by the robot), goals (which are fur-
ther decomposed into subgoals and/or commands), or monitors (which are
periodically executed). Tasks within the tree are partially ordered, with temporal con-
straints between them. For instance, one can constrain goal 

 

B

 

 to start after goal 

 

A

 

ends, which implies that no subtask of 

 

B

 

 can start until all the subtasks of 

 

A

 

 have
completed. Tasks can also raise exceptions and terminate other tasks. Temporal con-
straints and goal decomposition strategies are encoded using the Task Description
Language (TDL), a superset of C++ that has explicit syntax to support creating task-
level control programs [18].

For this work, we are extending TDL to deal with synchronization of multiple
agents. The idea is to distribute the task tree representation so that each of the robots
maintains only a part of the complete tree (that portion dealing with their own goals
and actions). Temporal constraints can be associated between nodes on different
robots. For instance, one can encode that task 

 

A

 

 on robot 1 must start 10 seconds after
task 

 

B

 

 on robot 2 starts. The extensions made to TDL also enable robots to monitor
each other’s execution, handle exceptions raised by others, and terminate tasks of
other agents.

The multi-agent version of TDL forms an infrastructure for coordination— it
allows expression of the necessary synchronization constraints. However, it does not
address what coordination needs to take place to do the task. This is the responsibility
of the planning layers. Consider, for instance, the following scenario for the task of
connecting a beam at a given location: A call is put out for a foreman to manage this
task, which could be filled by an agent that has sufficient knowledge and available
computational resources. The chosen foreman would put out a request for an avail-
able crane, a roving eye or two and, possibly, a mobile manipulator, depending on the
precision needed for the particular task at hand. Agents can participate in more than
one task— for instance, a roving eye with a pan-tilt head could conceivably assist in
two different assembly subtasks, if they are within proximity. Once a team is chosen
and roles assigned, the agents coordinate amongst themselves. For instance, the rov-
ing eye and the crane coordinate to exchange information, and the crane and mobile
manipulator coordinate to decide which will move when, and by how much.

While the scenario described above illustrates our longer-term goals for multi-
agent coordination, our current implementation uses a fixed set of three robots, a
fixed “foreman” agent, and fixed task assignments (Figure 3). The foreman agent
decides which robot should be moving the beam at which times. It initially tasks the
crane to move the beam to the vicinity of the emplacement point, which the crane
does based solely on encoder feedback. This gets the fiducials on the beam within the
roving eye’s field of view. The foreman then sets up a behavioral loop between the
roving eye and crane robots to servo the beam to near the emplacement point (Section
6). The foreman monitors the progress and, when the difference between the desired
and observed poses of the fiducials is within the resolution of the crane’s motion, it
tasks the roving eye and the mobile manipulator to servo the arm to grasp the beam.
When the arm indicates that it is in contact with the beam, the foreman initiates the
task of having the roving eye and mobile manipulator coordinate to servo the beam to
the emplacement point, which completes the task. The foreman also handles some



 

simple task failures. For instance, if the arm loses contact with the beam, the foreman
restarts the arm-grasp-beam task. In the near future, if the mobile manipulator finds
itself at the limits of its workspace, it will negotiate directly with the crane robot to
provide it more slack on the beam.

 

6. Distributed Visual Servoing 

 

An important step in our research has been to develop a technique for distributed
visual servoing. The roving eye uses a pair of cameras to track fiducials that are
placed on the beam, the mobile manipulator arm, and the destination site (Figure 4). 

The roving eye moves in order to maintain the best view of the fiducials. It pans
and tilts the cameras and drives around the workspace to keep the targets in sight and
centered in the image, and it moves back and forth to ensure that the targets fill most
of the cameras’ fields of view. Stereo is used to compute the 6 DOF pose of each
object marked with fiducials, and the differences between the poses of the objects are
used to compute manipulator motion commands. Figure 5 illustrates the data flows
between modules. The visual servoing runs as a set of distributed behaviors, imple-
mented using the Skill Manager from the 3T architecture [3]. Information flow
between modules is implemented using message passing.

 

Figure 3. Robot agents for the assembly task. Agents can communicate directly with each
other, or through a foreman  agent. In the future, the crane and mobile manipulator will be
able to negotiate directly with each other.

Figure 4. Tracking fiducials by the roving eye robot (left). Fiducials (right) are mounted on
the fixed structure, on the beam being emplaced, and on the mobile manipulator.
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6.1. Servo Control

 

The roving eye needs to communicate to the crane and mobile manipulator how to
move the beam in order to position it properly. Since none of the robots knows any-
thing about the others’ positions, they must communicate information solely in terms
of the task space (i.e., the relationship between the beams, or the beam and the arm).
The Manipulation Manager module (a component of the “foreman” agent) is used to
perform geometric transformations between task space and manipulator space. It uses
the pose differences between the objects, combined with knowledge of goal posi-
tions, to compute the end-effector motion needed. This motion transform is sent to
the appropriate robot agent, which uses its own kinematic model to determine how to
move to achieve the desired transform.

The servoing process starts with the roving eye providing information to the
crane. It continues until the crane is close enough to the destination, where “close
enough” is based on how accurately the crane can be expected to move the beam and
how close the beam must be before the arm can grasp it for the final positioning.
After the crane moves the beam close to the goal position, the arm is visually servoed
to grasp the beam. The grasping motion of the arm works similarly to the crane
motion. The roving eye tracks the end-effector of the arm and the horizontal beam
held by the crane. The Manipulation Manager computes desired end-effector motion
from this combined with knowledge of the desired grasp point on the beam. The arm
motion uses a dynamic look-then-move scheme, in which position commands are
given to the arm, but they can be interrupted by new ones before they complete. This
allows for smooth arm motion combined with the safety that the arm will stop if it
does not receive new motion commands for some reason. This servo loop stops when
the gripper (an electromagnet) contacts the beam and sticks to it.

In the final phase of the task, the arm moves the beam to dock with the stationary
beam. The grasped beam hangs from the crane by a cable, which provides compli-
ance but also complicates motion since the arm does not have full control of the
beam. It can effectively control only the position of the end of the beam, but not its
orientation. In addition, if the angle between the beam and the arm’s end-effector is
too large, the magnet will not be able to hold the beam. Therefore for this subtask the
roving eye tracks three objects: the positions of the stationary beam, the moving

 

Figure 5. Data flow between the distributed visual servoing modules.
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beam, and the arm end-effector. The Manipulation Manager computes end-effector
motions which will move the end of the beam to the correct position while keeping
the angle of the end-effector matched to the angle of the grasped beam. This servo
loop stops when the end of the moving beam has been placed into a slot atop the fixed
beam. This currently operates with about 5mm accuracy in the placement of the
hanging beam.

The visual servoing runs as a set of behaviors distributed over the robots. The rov-
ing eye continually tracks the fidicuals (at about 3 Hz) and the Manipulation Manager
calculates motion commands for the crane or the arm, as appropriate. The crane and
the arm each obey these commands as often as they can. The crane can not yet move
continuously, so it makes discrete moves one at a time, ignoring new commands until
the previous one finishes. The arm can move continuously, so it adjusts its motion
with every new command. An executive module implemented using TDL (a part of
the Foreman), manages the process by starting, monitoring, and stopping these
behaviors.

The bar coded fiducials used on the beams allow unique identification of several
fiducials (8 in the current scheme), and is quite robust to background noise. The
tracking starts with an adaptive threshold, to correctly separate black and white even
if some fiducials are in shadow and some in strong light. Next, connected compo-
nents are found which have the same centroids, thus picking out the “bullseyes” on
each end of each fiducial. Each pair of bullseyes are used as the endpoints for a bar
code scan line, and the pairs with valid bar codes between them are kept as fiducials.
3D data is found by triangulating the positions of the corners of the bullseyes and fit-
ting a model of the object’s fiducials to this sensed data.

 

6.2. Roving Eye Motion

 

Control of the roving eye motion is accomplished with three behaviors: panning to
keep the fiducials centered in the images, moving forward or backward to keep the
cameras as close as possible to the fiducials, and lateral motion to move to face the
fiducials as directly head-on as possible. Running concurrently, these behaviors keep
the roving eye directly in front of the fiducials and close enough to see them well, but
not so close that they are in danger of moving outside the field of view of the cam-
eras. The behaviors are diagrammed in Figure 6 (a) and the resulting motion is
depicted in Figure 6 (b).

The roving eye behaviors receive information from the vision system in the form
of “eye motion hints”. These consist of the bounding box of the fiducials in the
images and the average angle of the surface normals relative to the camera pointing
angle. The bounding box of the fiducials is used by the panning behavior to keep the
edges of the fiducials as far as possible from the edges of both fields of view simulta-
neously. This bounding box is also used by the forward motion behavior that drives
the roving eye towards or away from the fiducials. If any side of the bounding box is
too close to the edge of the frame, the roving eye backs away. If all sides are too far
from the edges of the frame, it drives forward. The lateral motion behavior uses the
average of the fiducial surface normal angles projected onto the ground plane. It
moves the robot left or right to be most directly in front of the fiducials. This is



 

important since the fiducials are planar: when viewed from an angle that is too steep,
tracking will fail.

The three roving eye behaviors combine to produce smooth motion when the
vision updates are fast enough relative to the driving speed of the roving eye. Figure 6
(a) shows how the lateral motion and forward motion behaviors’ outputs are com-
bined in a vector sum. These vectors are defined relative to the orientation of the cam-
eras so that when the panning behavior turns the cameras, the directions of the
vectors from the other behaviors change accordingly. Lateral robot motion moves the
fiducials off-center in the images, triggering the panning behavior. Together these two
effects generate smooth motion in a spiral arc.

 

7. Conclusions 

 

We have demonstrated preliminary results for the coordination of a team of heteroge-
neous robots performing an assembly task. The roving eye provides higher servoing
accuracy more consistently for a larger workspace than a fixed camera system. The
roving eye has greater robustness to tracking failures because of its ability to stay
aligned with the fiducials. Accurate camera calibration has not been necessary
because visual servoing provides relative positions of the fiducials— errors due to
calibration affect all measurements roughly equally. Currently, our implementation
with a Manipulation manager falls short of the ideal distributed three layer architec-
ture (Figure 1). In the near future, we will distribute the functionality of the Manipu-
lation Manager amongst the behavioral layers of the multiple agents to remove a
bottleneck from the high bandwidth behavior-level communication. In this scenario,
each robot will be more autonomous as well, since each will calculate its own motion
rather than being commanded by the Manipulation Manager.
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Figure 6.  (a) The three motion behaviors of the roving eye robot. (b) The resulting motion of
the roving eye.
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