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Figure 1: An example of our approach. (a) The workcell as seen
by one of the 3D sensors. The red region indicates the adaptive
danger zone surrounding the moving robot arm. (b) As the person
enters the workcell, the green region indicates the adaptive safety
zone surrounding the person. (c) When the person gets too close
to the robot, the safety zone and danger zones intersect (shown
with a red circle), and the robot automatically halts. LIGHTEN THE
CONTRAST ON THESE FIGURES TO MAKE THEM EASIER TO SEE

Abstract— Current manufacturing practices require com-
plete physical separation between people and active industrial
robots. These precautions ensure safety, but are inefficient in
terms of time and resources, and place limits on the types
of tasks that can be performed. In this paper, we present a
real-time, sensor-based approach for ensuring the safety of
people in close proximity to robots in an industrial workcell.
Our approach fuses data from multiple 3D imaging sensors
of different modalities into a volumetric evidence grid and
segments the volume into regions corresponding to background,
robots, and people. Surrounding each robot is a danger zone
that dynamically updates according to the robot’s position and
trajectory. Similarly, surrounding each person is a safety zone
that follows the person. A collision between danger and safety
zones indicates an impending actual collision, and the affected
robot is stopped until the problem is resolved. We demonstrate
and experimentally evaluate the concept on prototype industrial
workcell augmented with stereo and range cameras.

I. INTRODUCTION

Current robotic manufacturing practices require that peo-
ple be completely separated from active robots, which is
typically achieved using fences or similar physical barriers.
The idea is that since industrial robots can be large, fast-
moving, and carry heavy or hazardous parts, a collision
between one and a person could result in severe bodily injury
or death.

While separation between robots and people ensures
safety, the practice is inefficient for several reasons. Work-
cells may occupy large amounts of floor space due to the
extensive workspace of the robot, even if only a small
portion of that workspace is actually used. Any time material
needs to be brought into or removed from the workcell, the
robot must be halted while a person enters to deliver or
retrieve the material. Perhaps, most importantly, human/robot
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separation precludes activities involving robots and people
working cooperatively. These limitations result in manufac-
turing processes that require more space, more robots, and
more time than would be needed if robots and people could
work together safely.

Enabling robots and people to work safely in close prox-
imity, can increase the efficiency of robotic workcells. We
envision a workcell where there is no need for safety fences.
If a worker needs to restock materials in a workcell, it would
be safe to do so, and the robot could continue working in
another part of the workcell without interruption.

This paper presents a sensor-based approach for ensuring
the safety of people operating in close proximity of robots
(Figure 1). Our approach uses the real-time fusion of multiple
three dimensional (3D) imaging sensors to create a volu-
metric evidence grid representation of the space within the
workcell. The occupied space is segmented into regions cor-
responding to background, robots, and people. Surrounding
each robot is an adaptive danger zone that is based on the
robot’s position and trajectory. Similarly, an adaptive safety
zone surrounds each person and follows them as they move
about the workcell. To ensure safety, regions that cannot
be observed due to occlusion are also surrounded by safety
zones. A danger and safety zone intersecting indicates that
a robot and a person are too close and that a collision
may occur within the next sensing cycle. In such cases, the
robot stops, or slows down, until the violation is cleared, for
example, by the person moving away.

Sensor-based safety in robotic workcells presents a num-
ber of challenges. Occlusions from equipment as well as
moving robots and people can prevent sensors from fully
perceiving the space. The environments are complex and
dynamic, and may contain previously unseen objects. Sen-
sors must be carefully calibrated and synchronized to allow
them to work together effectively. And, most importantly,
the system must be extremely reliable, since a mistake can
result in injury or death. The primary contributions of this
paper are the development of a sensor fusion algorithm
that addresses these challenges and the implementation and
evaluation of the complete safety system in a prototype
industrial workcell.

II. RELATED WORK

The safe interaction between humans and robots has been
studied extensively since the early days of robotics [8], [15],
[16], [12], [11]. Existing methods can be broadly classified
into post-collision and pre-collision approaches [8]. Post-
collision methods detect a collision as it occurs, and attempt



to minimize the resulting damage. Methods in this category
include detecting collisions through force and torque sensors
on the robot [11], limiting forces through active or passive
compliance [16], limiting the joint robot velocity so that the
damage from a collision is acceptable [8], and cushioning
the blow using padding on the robot. None of these methods
actually prevent a collision, which reduces their usefulness in
safety systems. Pre-collision approaches attempt to prevent
collisions by detecting them in advance. These methods
include proximity sensors either mounted on the robot [12]
or in the environment [18].

Independently of robot safety applications, the problem of
detecting and tracking people has been extensively studied
in the computer vision community [14], [5], [21], [6],
[19]. Vision-based methods using cameras work reasonably
when people are well-separated, minimally occluded, and
in neutral poses [5]. Pose estimation methods can address
person detection when people are bending over or reaching
out [21], [6]. These methods are not yet reliable enough for
robot safety systems. Three-dimensional sensing can detect
people in arbitrary poses, and the recently introduced Kinect
system has proven to be fairly reliable for human pose
estimation [19].

Most of the aforementioned methods have yet to be widely
adopted by industry. Industrial robots usually achieve safety
through separation, either through physical barriers (e.g.,
fences) or virtual barriers (e.g., laser-based light curtains).
Advances in robotic controllers enable fine-grained pro-
gramming of static safety regions, allowing closer human-
robot interaction [1], [7]. The recently introduced SafetyEye
system uses stereo vision to detect moving objects inside a
safety region, reducing the need for fencing [18].

Our approach is most similar to the SafetyEye system,
but is unique in several ways. We combine multiple sensors
having different modalities, which reduces the problem of
occlusions; we explicitly model the background and the
robot, which enables detection of people even in changing
environments; and we construct dynamic danger zones based
on the robots position, trajectory, and capabilities, which
provides a more precise boundary on the safe region.

III. SENSOR FUSION FOR HUMAN SAFETY

In order for people to work safely in the proximity of
industrial robots, their positions within the workcell must be
constantly monitored, regardless of what they are wearing
or doing. Full-field, 3D sensors, such as range cameras or
stereo vision systems, are well-suited for detecting people
in 3D space. Our approach employs multiple 3D sensors,
of different modalities, placed strategically throughout the
workcell. The sensors must be intrinsically calibrated so
that the 3D data is geometrically accurate and extrinsically
calibrated so that the measurements from each sensor can be
referenced in a single coordinate system.

Our safety monitoring system begins by converting the
data from each sensor into a probabilistic 3D evidence
grid, which represents occupied, unoccupied, and unknown
regions. The individual evidence grids from each sensor
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Figure 2: Range data from (a) range cameras and (b) stereo vision
systems is first (c) converted into point clouds and then (d) into
probabilistic evidence grids, which are then fused together.

are fused together into a single evidence grid. Prior to
workcell operations, with no people present and the robot
in a known position, a fused evidence grid is generated and
used to estimate a background model. During operations,
the robot’s geometric model and kinematic parameters are
used to build a poseable voxel-based robot model, which
enables the system to remove the robot from the foreground.1

Any remaining occupied foreground voxels are clustered
into blobs, and blobs of sufficient size are considered to be
potential people. Using the robot’s known joint positions and
velocities, which are assumed to be available, the robot is
surrounded by a danger zone, which represents the maximum
distance the robot can travel within one sensing cycle, plus
the robot’s stopping distance. A somewhat larger warning
zone provides additional security. Similarly, the volumes
encompassed by a person is expanded into a region called a
safety zones, which is the maximum distance the person can
move within a sensing cycle. If any part of a person’s safety
zone volume intersects with the robot’s danger (warning)
zone, the robot will be commanded to halt (slow) its motion.
This enforced restriction on the robot’s motion stays in effect
until the safety violation is cleared when the person moves
away. The next subsections describe each part of the system
in more detail.

A. Sensors and Sensor Placement

Our system can be used with data from an arbitrary
number and type of 3D imaging sensors. Our testbed uses
stereo cameras and range cameras, each of which has com-

1For simplicity, we describe the approach using a single robot. The
extension to multiple robots, which we have done, is straightforward.



plementary advantages and disadvantages.2 Stereo sensors
have the advantage that a variety of cameras, baselines, and
lenses can be configured to achieve resolution and range
accuracy as needed for a given application. The sensing range
is limited mainly by the acceptable level of range uncertainty,
which increases quadratically with distance. Stereo requires
good illumination, and computes accurate range only in
regions with sufficient texture. Repeated patterns can induce
range estimation errors as well.

Range cameras (also known as flash lidars) are less sen-
sitive to ambient light, since they are active sensors and use
their own modulated infrared (IR) illumination. The cameras
can measure range on featureless surfaces as well. On the
downside, range sensors are often slower than stereo cameras
and have difficulty imaging highly reflective or IR-absorbent
surfaces, because either no energy is returned or the detector
is saturated. The sensors can also interfere with one another
because stray returns from the IR signals of other sensors
can cause spurious range measurements. Finally, like other
active range sensors, range cameras suffer from the “mixed
pixel” effect, which occurs when a single pixel images
two surfaces located at different ranges (typically at object
boundaries). These mixed pixels translate into phantom 3D
points that appear where no surface actually exists. In our
implementation, explicit mixed-pixel filtering and redundant
sensors mitigate this problem.

To fully perceive a workcell, sensors must be placed
at various locations around the space. The best sensor
placement depends on the geometry of the environment, the
number of sensors, and their capabilities. Intelligent sensor
placement is important since regions that are unobserved due
to occlusion or being outside every sensor’s field of view
could potentially contain a person. Sensors with overlapping
fields of view help reduce the possibility of occlusion. We
developed a simulation tool to quickly evaluate the quality
of a proposed sensor placement. The tool allows placement
and configuration of an arbitrary number of sensors and
then casts rays – according to the sensor geometry – into
a volumetric voxel grid, recording the number of sensors
that observe each voxel. In practice, the intuitive notion of
placing sensors high in the corners, pointing downwards, and
oriented orthogonally or with opposing fields of view gives
the best coverage and redundancy.

B. Sensor Calibration

Each sensor must be intrinsically calibrated, and the col-
lective sensors must be extrinsically calibrated with respect
to the workcell’s coordinate system. In our implementation,
we use the factory calibration for the the sensors’ intrinsic
parameters. For extrinsic calibration, we estimate the relative
pose between sensors using a custom-built calibration cube
with a regular pattern on each face (Figure 3). During
calibration, the cube is placed so that pairs of sensors can
see one of its faces. Fiducials mounted on the floor are used

2Other 3D imaging systems, such as structured light cameras or the Kinect
sensor, could also be employed, with minimal additions to the system needed
to convert their output into an evidence grid.

to estimate the pose of the sensor network in the workcell’s
coordinate system.

In addition, the data acquisition of all sensors must be syn-
chronized in order to fuse the data successfully. Without such
synchronization, fast-moving objects would be misaligned
between sensors, causing blurring when the data is fused.
We have developed software and hardware approaches to
improve overall sensor synchronization.

C. Evidence Grid Data Fusion

At each time step, data from each sensor is encoded in a
3D evidence grid and combined with the evidence grids from
the other sensors. The fused evidence grid helps attenuate
sensor noise, by combining information, and facilitates rea-
soning about the effects of occlusions that block a sensor’s
field of view, since any area unseen by the sensors could
potentially contain a hidden person.

The range measurements from a given sensor are first
transformed into a point cloud using the sensor’s intrinsic
parameters. The details of this process are sensor-dependent,
but are either well-known (for stereo vision) or straightfor-
ward (for range cameras). Next, the points in the point cloud
are added to a 3D evidence grid [13]. The space within
the workcell is discretized into a fixed sized 3D grid of
voxels. Each voxel stores the log-likelihood of the probability
that it is occupied. Cells are initialized to 0.5 probability,
which represents the “unknown” state. Points are added to
the evidence grid by tracing a ray from the sensor’s center
of projection through the workcell, applying a sensor-specific
evidence model along the line. See [2] for details.

The individual evidence grids are fused together into a
single, unified grid that extends over the entire volume of
the workcell. Since each voxel stores the log-likelihood
probability, the grids can be combined simply by adding
the corresponding voxel values. Evidence of occupancy from
one sensor will strengthen evidence of occupancy from a
second sensor (the same holds for unoccupancy). If one
sensor reports a value of occupancy but another reports a
value of unoccupancy, the two values will tend to cancel out
and shift the cell towards the unknown value since the data
is otherwise inconsistent. For efficiency, we have added the
option to fuse grids hierarchically and in parallel, first fusing
groups of evidence grids, then fusing groups of groups, etc.

Figure 3: A custom-built calibration cube is used to estimate the
extrinsic parameters of the sensors.
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Figure 4: A 2D illustration of the process of converting mea-
surements into evidence grids. (a) The data points (red dots) are
converted into voxels (yellow squares); (b) The resulting evidence
grid, where the darker the square, the more likely that it is occupied
(gray regions are unknown); (c) The fusion of multiple evidence
grids reinforces the presence of obstacles (darkest regions).

(a) The initially static background
of the workcell containing objects
that are expected to be immovable.

(b) The red voxels show the back-
ground model learned by the system.

(c) The full evidence grid after an-
other box and a mannequin have
been added.

(d) Foreground evidence grid cre-
ated by subtracting the background
model from the full grid.

Figure 5: The process of separating background from foreground.

D. Background Subtraction

Our system uses a background model to represent aspects
of the environment that are stationary and will not (or
cannot) move (Figure 5(b)). The background model is created
automatically upon initialization, the only requirement being
that moving objects (e.g., people) must not be present.
At runtime, at each time step the background model is
subtracted from the fused evidence grid to determine the
foreground voxels (Figure 5(d)). The foreground consists of
all objects that entered the workspace since the background
model was initialized. The space associated with the robot
is treated separately, as described in the next subsection.

The most straightforward definition of background would
be to use voxels in the evidence grid with sufficient evidence
of being occupied. For safety purposes, however, we must
also consider unknown regions. Some unobserved regions
are perfectly safe. For example, the inside of a box cannot

Figure 6: Example robot models with voxel representations.

be observed by the sensors, yet it is unlikely that a person
is hiding inside the box and will suddenly burst out and
collide with a nearby robot. On the other hand, the region
behind a screen might also be unobservable, but in this
case, person could easily be standing within this occluded
space. To address this problem, we developed the concept of
accessibility analysis [4]. A region is considered accessible
if a path exists between a known accessible region to an
unknown region without passing through an occupied region.
A closed box would be inaccessible, so the interior voxels
would be considered part of the background. However, the
area behind a screen would be considered accessible, and
therefore part of the foregrond, since one can access the
occluded region by going around the side of the screen.
Details of the approach can be found in [4].

E. Robot Modeling and Danger Zone Generation

The robot is not part of either the background or fore-
ground – it is not static, but it also should not be treated as
an unexpected object. In particular, voxels associated with
the robot must be removed from the foreground; otherwise,
“phantom” foreground objects would appear co-located with
the robot, causing the robot to stop due to a false alarm.

Each robot is explicitly modeled using a voxel-based
approximation (Figure 6). Since robots are articulated, each
rigid part is modeled separately, which allows the model to
be updated in real time based on the pose of the robot. The
modeling process is performed once at initialization. The
CAD models of each of the robot’s parts are converted into
triangular surface meshes. Next, we use a modified form
of spatial occupancy enumeration via divide and conquer
to convert the meshes into voxel grids [10]. In particular,
we recursively subdivide each triangle into four using the
midpoints of each edge until the triangle edge lengths are
smaller than the target voxel grid cell size. In this way,
a binary occupancy grid of the model can be computed
directly from the vertices of the up-sampled triangle mesh.
For improved model accuracy, we use a voxel grid with twice
the resolution of the fused evidence grids. Assuming the
input mesh is watertight, the resulting occupancy grid will
be watertight (in a 6-connected sense), and we use a simple
flood-fill algorithm to mark any interior voxels as occupied.
The corners of the occupied voxels are then used to form
point clouds for each robot part.

At runtime, the point clouds for each part are positioned
according to the robot’s pose, and a new, combined occu-



Figure 7: Robot motion prediction. Joint positions and velocities
are used to dynamically and efficiently predict the space where the
robot could be during a given time interval. The color of the voxel
cloud indicates the minimum time for the arm to reach a given
position, with red being the shortest and yellow the longest.

pancy grid is generated representing the robot in its current
position. This combined occupancy grid is overlaid with the
current fused evidence grid to subtract out voxels that are
attributed to the robot. The same process is applied to tools or
other payload objects that a robot may currently be holding.

The combined point-cloud model is also used for generat-
ing the danger zone surrounding the robot. At a given instant,
the danger zone encompasses the region that the robot could
occupy at any time in the next ∆t seconds, the ∆t depends on
the sensor framerate, latency of the sensing system, and time
required to halt the robot (in our case, on the order of 400 ms,
total). While a more accurate danger zone can be achieved
using the robot’s precise trajectory, such information is
often difficult to obtain from commercial robots. Instead, we
assume only that the current joint positions and velocities
are provided, along with fixed accelerations.

We have developed an algorithm for predicting the danger
zone for a multi-jointed manipulator in real time (Fig-
ure 7) [3]. The method, briefly summarized here, can be
applied to any robot with no cyclic kinematic chains. Given
the current position and velocity and maximum acceleration
of each joint, the range of possible joint positions that can be
achieved in ∆t seconds can be determined in closed form.
The algorithm builds a sequence of binary occupancy grids,
starting with the free end of each kinematic chain. The point-
cloud model of the last link is swept through the range of
possible values of the last joint, creating a binary occupancy
grid for that link. This grid is then converted back into a point
cloud and added to the model of the previous link, and the
sweeping process is repeated up the kinematic chain to the
robot’s base, at which point the combined binary occupancy
grid represents the desired danger zone. The same process
can be used to create a slightly larger warning zone as well.

It is interesting to note that the dynamic danger zone is
typically asymmetric. If the robot is moving in a particular
direction, the danger zone will extend further in the direction
that it is currently moving. This means that it may be safe
for a person to move immediately behind a robot, provided
that the robot has sufficiently low limits on its joint velocities

and accelerations.

F. Person Detection and Safety Zone Generation

Ideally, the safety zone surrounding a person would be
computed in a manner analogous to the robot danger zone.
However, people are not as predictable as robots, and esti-
mating the detailed body pose of a person is a challenging
problem (although [19] shows promising results). Instead,
we create a safety zone simply by expanding the volume
occupied by each potential person in the scene.

The system considers any connected group of foreground
voxels of sufficient size to be a person. While it would
be possible to explicitly recognize people, it is safer to
conservatively assume that any large foreground object is
a person, rather than to risk a missed detection and potential
injury. Our approach can detect potential people regardless
of their body pose or the direction they are facing.

The first step is to find all the connected components of the
foreground voxels. Components with fewer than a threshold
Np voxels (10, in our case) are too small to be people,
more likely to be noise, and are therefore discarded. The
remaining components get surrounded by safety zones. Each
safety zone represents space where a person could possibly
move in ∆t seconds, in any direction, where the maximum
velocity of the movement is determined from existing safety
standards, such as the R15.06 robotic industrial specifica-
tion [17]. Given this extent, each component is expanded
using morphological dilation.

G. Collision Detection

The danger and warning zones of the robots and the safety
zones of the people are updated at each time step as the
robots and people operate and move about the workcell. The
zones are checked for collisions. If a safety and warning zone
intersect, the robot is slowed down and the people in the
workcell are alerted with a warning. If a safety and danger
zone intersect, the robot is halted and a safety violation alert
is sounded. When the person causing the warning or violation
moves out of the way, the alarm ceases and the robot resumes
its normal operation. For handling multiple robots, we keep
track of which warning/danger zone belongs to which robot,
so that the system can slow/halt the correct robot and leave
the others to continue working.

IV. EXPERIMENTAL VALIDATION

We ran experiments to characterize both the individual
sensors and our approach to sensor fusion. The experiments
were run in a testbed consisting of an aluminum cross-bar
sensor frame 4m on a side and 2m high (Figure 5). Two
Swissranger SR4000s and two Tyzx G3 EVS stereo cameras
are mounted in the four corners of the testbed to provide the
widest possible overlapping coverage of the area. The testbed
is equipped with two networked Intel Core i7 920 quad-core
CPUs @ 2.67GHz workstations running 64-bit Ubuntu Linux
10.04LTS. All computers and sensors are connected through
a wired gigabit Ethernet network.



A. Individual Sensor Experiments

The first set of experiments was to determine how well
each sensor type can detect people, under different condi-
tions. We examined people performing a variety of actions,
wearing a variety of clothing. For each type of sensor (stereo
and range camera), we performed seven actions (crouching,
jumping jacks, bending to touch toes, walking across work-
cell, running across workcell, reaching for an object, and
lying down), both facing and perpendicular to the sensor, and
with three different clothing: camouflage, Navy staff uniform
(khaki top and black pants), and all black. We used the same
person for each trial, and he was instructed to perform the
actions the same way each time, as closely as possible.

The images collected were then manually labeled to
highlight the person. An analysis program then tallied the
number of valid range measurements associated with each
labeled pixel, both for the interior and perimeter of each
person. Although it may be that some data were labeled as
valid, but had the wrong range value, our experience with the
sensors indicates that, except for mixed pixel effects along
the perimeter, this is not much of a problem, in practice.

The graphs in Figure 8 show the results for just the
perimeter (edge) pixels, just the interior pixels, and all body
pixels. Figure 8a presents the data as a function of clothing
type (with all actions aggregated), while Figure 8b presents
the data as a function of action (with all clothing aggregated).
The error bars are one standard deviation from the mean.
The results indicate that the range camera (SR) is fairly
insensitive to clothing type, although it has fairly large
variance. On the other hand, the stereo (Tyzx) is extremely
sensitive to clothing differences: for the camouflage clothing
(see Figure 9a, where red indicates missing pixels), stereo
actually performs significantly better than the range camera
(Figure 9c), while for black clothing (Figure 9b) it performs
much worse. The results also show that the performance
along the perimeter is similar for both sensors, regardless
of clothing type.

Analyzing the data by action (Figure 8b), we see that, for
the range camera, slower motions (bend, crouch, reach, lie)
are significantly better than faster motions (jump, run, walk),
with running being by far the worst. This is not surprising, as
the range camera has a relatively long exposure time, which
exacerbates motion blur, which in turn adversely affects the
performance of the range camera (Figure 9c). For the stereo,
on the other hand, the exposure time is quite short, and so
motion blur does not play as big a role (Figure 9a). Thus,
for stereo, all the actions have similar rates of missed pixels
(the faster motions are a bit worse, but not significantly so).

To more fully understand the distribution of missed pixels,
we investigated the distribution of holes (connected clusters
of missed pixels) in order to distinguish missing pixels that
are primarily near the perimeter (e.g., missing heads or
hands) from holes in the interior (e.g., caused by insufficient
texture). Specifically, we calculated both the sizes of the
holes and their distances from the perimeter of the body. The
results (space precludes including the graphs) show that, for
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Figure 9: Missed pixels (red) overlaid on image data for jump
action; (a) Camo and Tyzx; (b) Black and Tyzx; (c) Swissranger

(a) (b)

Figure 10: (a) Ideal model box voxels in red generated in virtual
environment. (b) Live sensor box voxels in blue projected into the
virtual environment.

both sensor types, most of the holes are fairly small (1-3
pixels in extent), although the tails of the distribution are
quite large, with about 0.5% of the holes being larger than a
third of the body size (see, for instance, Figure 9c). The range
camera has over 90% of the holes touching the perimeter, and
none more than 5 pixels from the perimeter, while the stereo
has only 70% of the holes touching the perimeter, and 8%
of the holes are more than 5 pixels from the edge, including
2.5% that are more than 15 pixels away. Such placement of
holes is actually somewhat safer than those that are on, or
very near, the perimeter, since safety violations occur when
the most distal part of the person intersects with a robot’s
danger zone. If the holes are interior, they will typically be
surrounded by other parts of the body that will make contact
first, so the absence of occupied voxels in the interior of
objects is not as much of a concern.

B. Fusion Experiments

The second set of experiments was to evaluate the quality
of the fused occupancy grid generated by multiple sensors.
We tested the performance of the fusion algorithm in both
static and moving cases. The experimental apparatus con-
sisted of a box placed on a cart that could be pulled by
an iRobot ATRV Jr. [9] mobile robot. A dedicated tracking
system was developed that used a SICK LMS 219 planar
LIDAR [20] to estimate the position of the box. We chose to
use a box target for these experiments because ground truth
could easily be generated by rendering a simulated box in
a virtual environment that could be voxelized and compared
against the voxels returned by the sensors (Figure 10). In the
first experiment, ten sets of data were recorded where the box
and cart were placed in a static position for 10 seconds. After
each set of data was collected, the cart and box were moved
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Figure 8: Missed pixels (a) by clothing (b) by action

30cm down the path. In the second experiment, the robot
was commanded to pull the cart at 30cm/s.

The results of both the static and the moving experiments
are shown in Figure 11. Figure 11a presents the false positive
results (perceiving voxels where there is, in fact, no box)
and Figure 11b presents the false negative results (missing
voxels that should be there). We note that, due to discrete
voxelization and errors in our position estimates, “ground
truth” may differ by a voxel. Thus, to calculate the numbers
of false positives and false negatives, we used a distance-
weighted exponential function to assign accuracy scores for
both false positives and false negatives as follows:

Dist(v,G) = min(d(v, v′)∀v′ ∈ G)

Score(v,G) = eln(0.95)∗Dist(v,G)4

Where the Score function assigns a voxel a real value
between 0 and 1, v is a voxel from a binary grid that is
filled, and G is the set of all voxels. The scoring function
chosen treats being one voxel away as 95% as good as being
the same voxel, and drops off very rapidly after that.

To find the total detection rate, we iterate through the grid
and calculate a score for each voxel detected and divide that
by the maximum score possible, as follows:

Acc(G1 → G2) =

∑
v∈G1

Score(v,G2)

|G1|
FalsePositiveRate = 1−Acc(Gsensor → Gmodel)

FalseNegativeRate = 1−Acc(Gmodel → Gsensor)

False positives are obtained by comparing each voxel in
the sensor grid against the nearest matching voxel in the
model grid. False negatives are obtained by comparing each
voxel in the model grid against the sensor grid. These values
are subtracted from one to obtain the failure rate of both
detections.

As can be seen in the Figure 11, the false positive and
negative rates are highest when the cart is at the beginning of
the track, since in that position one side of the box cannot be
seen. As the box position changes along the track, the error
rates drop significantly until the entire box is in view and
then hovers between 5% and 10%. The effect of a moving

box can be seen as a slightly larger error, ranging from 5%
to 15% for the false positive calculations but staying in the
5% to 10% range for the false negative calculations.

The individual sensor experiments are correlated with the
fusion experiments in that the latter are considered the “best
case” situation for an object that can be detected by the
sensors. The expected response for sensor fusion on a real
person (for which ground truth is difficult to obtain) is a
function of the expected response from each of the individual
sensors combined with the worst-case 10% false positive and
false negative rates, as shown by the fusion experiments.

It is important to note that the occupancy grid that we
used in this experiment is only the base representation used
by the overall system. Thus, even if there are holes in the
middle or along the edges, they will likely be “filled in”
by the morphological operations that create the safety zones.
Thus, in our evaluations with real people, we have found that
given a reasonably-sized safety zone that takes into account
RIA [17] standards for human motion, the humans can be
fully enclosed by the grid and thus protected at all times.

V. SUMMARY AND FUTURE WORK

This paper presented a real-time, sensor-based system that
is intended to ensure the safety of people operating in close
proximity to robots in industrial workcells. Our approach
fuses data from multiple 3D sensors, of different modalities,
into a volumetric evidence grid that is used to identify the
locations of people and robots. Safety and danger zones
surround the people and robots, respectively, and are each
expanded to a size that will fully enclose them based on their
maximum speeds and the cycle time of the system. Intersec-
tions between these two zones signal a possible impending
collision, and the robots are commanded to slow and/or halt
their motions, as needed. We have fully implemented this
approach and have demonstrated their feasibility with a set
of controlled experiments.

Currently, our implementation assumes that all foreground
objects could potentially be people and extends safety re-
gions around all of them, as this is the most conservative
and safe option. For the future, we will seek to actively
discriminate between human and non-human objects as well
as to identify activities that the human is performing. We will
use this higher level information to be more efficient with



(a) (b)

Figure 11: (a) False positive % and (b) false negative % for the fusion experiments. X axis is distance along the track; Y axis is percentage.
for both graphs, solid lines are the rates for the static experiments; Dots are the rates for the moving experiments.

the creation of safety zones where stationary and inanimate
objects can become part of the static background if no person
is actively working with them.

We believe that this type of technology will have a
profound impact on how robots are integrated into factory
settings. We look forward to a future where robots and people
will work together, effectively and safely.
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