
Trikebot Java Programming Primer
A complete step-by-step guide to creating a simple example program.

Here’s a step-by-step example to help you familiarize yourself with the environment we 
will be working with and the Java language.  Doing this example all the way through should 
banish most of your questions on programming.

This guide will describe precisely the steps needed to make a really useless Java program 
using the code base we have prepared and command-line Java tools (which you should already 
have installed).  Try this example, and then you can work from there to create programs that 
actually do something!

1. First, obtain the source.tar.gz file either by downloading it from the web site or copying it off 
the CD.  Unzip it using WinZip.  Open up the folder and note all the .java files inside.  
We’ll only be modifying two of them, UserWindow.java and UserThread.java.  
UserWindow.java is responsible for creating the window where you will be able to add 
your own custom commands, and UserThread.java does the actual work of those 
commands, running them in a separate thread, so you can still use the interface while 
running your own commands.

2. Open the text editor.  I recommend using Jext; it is an easy-to-use editor written in Java and 
designed especially for working with Java code.  If you prefer, you can use WordPad,  a 
primitive text editor that comes with Windows, or you can use XEmacs, a port of a Unix 
editor which has many potentially powerful features but which can also be confusing and 
frustrating.

3. Open UserWindow.java and UserThread.java.
4. The program itself is actually a simple shell that opens up all the windows that do interesting 

things. It creates a bunch of windows, known as frames in the Java code.  Most of the 
windows contain parts of the graphical interface for controlling your robot by hand from 
your computer and for viewing what the robot’s sensors are viewing.  One of them 
contains empty text fields and a bunch of buttons that do nothing.  It’s here for us to add 
the features that we want, without having to worry about how to create a GUI.  For now, 
we’ll be building a really simple calculator program that adds two numbers and gives us 
the result.

5. Bring up a command-line window by selecting “Run” from the start menu and then typing 
“cmd”; this brings up a command-line window.  Make use of the cd command to get to 
the directory with the code in it; this is most easily done by typing “cd ” (note the 
space) and then dragging over to the command line window the folder with the code in it, 
which will enter the full path name to that folder on the command line.  Once at the 
source folder, type “javac!*.java” to compile all the Java files.  This will produce 
lots of .class files containing the executable code.  Now type “java!Shell” to launch 
the interface.  Lots of windows should come up; this is how we will control the robot.  
Quit the program, and now type “java!UserWindow”; this will launch just the 
window that we’ll need to modify for this exercise.  Note that there are buttons and text 
fields labeled “Action 1” through “Action 10” and “Data 01” through “Data 20”, 



respectively.  Click on the buttons; notice how none of them do anything.  Click in one of 
text fields; notice how you can type anything you want there.  We can also place values 
there via Java code.

6. Go back to the editor and do a search in UserWindow.java for “CHANGE BUTTON TEXT 
HERE”, without the quotes.  You should a find section near the beginning of the file.  
After this text comes the code that sets the label for each of the buttons.  By changing the 
text in the quotes, you can rename the buttons to something more appropriate.  Let’s 
rename the first button to “Add”; change text “Action 1” to “Add”.

7. Right below that previous section is very similar code that sets the labels for the twenty text 
fields.  Again, we’ll just be changing the names inside the quotes.  Let’s change “Data 01” 
into “Addend 1”, “Data 02” into “Addend 2”, and “Data 03” into “Sum”.  Go ahead and 
compile and run the program again, to see what effect these changes have had.

8. Now, we’re going to make it so that clicking the Add button actually adds the two addends and 
displays the result in the Sum field.  Go back to the source code, and do a search in 
UserThread.java for “CHANGE BUTTONS TO ACTUALLY DO THINGS HERE”, 
again without the quotes.  You should find a section partway into the file.  In that section 
are ten functions with named Action1 to Action10, and they get called when you click 
that button.  Don’t change their names; that would keep them from working.  We’ll be 
creating new functions that actually carry out the behaviors we want, and then just adding 
one line of code inside the Action functions to call our new functions.  Since the button 
that we renamed “Add” is button 1, we’ll be modifying Action1 for starters.  We’ll make 
it so that Action1 calls Add, which is a function we will now write:

private void Action1()
{

Add();
}

9. The numbers that we enter will go into the textfields, and thus they will be text as far as the 
computer is concerned.  We can’t add text, so we have to convert them to numbers first.  
To read the contents of each text field, we have to access the window containing it, which 
has already been conveniently assigned to the variable theWindow, then give its name, 
which will be of the form TextField1, and call the getText() method to get the 
current contents.  But, this gives us the contents as a String.  We’ll go ahead and store 
them in a String Object, like so:

String string1;
string1 = theWindow.TextField1.getText();

We can do likewise for the second input field.

String string2;
string2 = theWindow.TextField2.getText();



10.  To get these strings into a form we can add, we will use the parseInt(String) method 
of the Integer class.  Integer (with a capital “I”) is an Object that wraps a value of 
type int (with a lower-case “i”) which is just a naked number.  Only Objects and 
Classes can have methods, and Java allows neither global variables nor global functions, so 
all functionality has to be in a method.  Functions which deal with Objects of certain 
types but which do not act on an already existing Object are best implemented as static 
methods, meaning that we call them on an entire Class instead of a single Object.  
parseInt() is a static method; it returns a new Object of type Integer containing 
the number expressed in the String we passed it.  We’ll store this in a plain old int 
that we declare.  Putting this all together, we have the following:

int add1;
add1 = Integer.parseInt(string1);

and

int add2;
add2 = Integer.parseInt(string2);

11.  Adding these two numbers is easy:

int returnval;
returnval = add1 + add2;

12.  Now, we just need to convert that number back into a String to display it in one of the 
text fields.  Again, we will use a static method, this time of Class String.  
String.valueOf(int) gives us a string containing a textual representation of the 
number we pass in, like so:

String returntext;
returntext = String.valueOf(returnval);

13.  To output the String, we use the setText(String) method of the text field that we 
want to output to:

theWindow.TextField3.setText(returntext);



14.  Putting it all together, we have:

private void Add()
{

int returnval, add1, add2;
String string1, string2, returntext;
// Get first value and convert to a number
string1 = theWindow.TextField1.getText();
add1 = Integer.parseInt(string1);
// Get second value and convert to a number
string2 = theWindow.TextField2.getText();
add2 = Integer.parseInt(string2);
// Perform Addition and output result
returnval = add1 + add2;
returntext = String.valueOf(returnval);
theWindow.TextField3.setText(returntext);

}

15.  Of course, if we want to be more efficient, we can do it all in one statement:

private void Add()
{

theWindow.TextField3.setText(String.valueOf(
Integer.parseInt(theWindow.TextField1.getText()) + 
Integer.parseInt(theWindow.TextField2.getText())));

}

In either case, go ahead and compile and run the code to see how it works.

16.  Congratulations, you now know how to read parameters, output results, and control when 
things happen!

The End


