Appears in: Proceedings of IEEE Intelligent Vehicles 1995

Abstract

SHIVA:

Simulated Highways for Intelligent Vehicle Algorithms

Rahul Sukthankar, Dean Pomerleau and Charles Thorpe

Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3891

Internet: {rahuls|pomerlealcet}@ri.cmu.edu

Road Segment
Number of lanes: 3
Surface: PAVED
Lane markings: ...

Road Segment
Number of lanes: 2
Surface: PAVED
Lane markings: ...

+|o| Lanes

N |- |o|Lanes

SHIVA (Simulated Highways for Intelligent Vehicle Road Slices ... Road Slices: ..
. 1D: 37 ID: 41
Algorithms) addresses deficiencies present in exist-
ing microscopic traffic simulators with:
1. Realistic sensor modeling.
2. Support for communicating vehicles. =
3. A variety of driver models. | [B]

4. Efficient integration with real robots.

SHIVA runs on Sun Sparcstations (under X) and SGI
workstations (using Inventor). Class hierarchies for
vehicles, sensors and displays allow users to develop
algorithms for specific vehicle/sensor configurations
and to debug them with graphical viewing tools.
Simulated scenarios can be interactively displayed
online in 3-D. Off-line execution is also available if
only statistics (such as throughput) are desired.

1. Introduction

Intelligent vehicles must make tactical-level deci-
sions to safely drive in mixed traffic environments.
SAPIENT [9], a reasoning system under develop-
ment at Carnegie Mellon, will integrate strategic-
level goals and sensor-based constraints in real-
time. Since repeatable testing of different algo-
rithms in rare and potentially dangerous traffic sce-
narios is necessary before SAPIENT can drive on
real roads, we have developed a custom simula-
tor for this task. SHIVA (Simulated Highways for
Intelligent Vehicle Algorithms) mirrors many as-
pects of the Carnegie Mellon Navlab [10] environ-
ment, enabling algorithms developed in simulation
to be implemented on the robot with little modifica-
tion. Accurate sensor modeling (with noise and oc-
clusion) encourages developers to create algorithms
that will work on real robots. Asynchronous vehicle-
to-vehicle communication and driver models (with
reaction delays) are also available.

Figure 1: Road Segment Architecture.

2. System Architecture

SHIVA is implemented in C++ using the object-
oriented paradigm. The major classes are described
below:

2.1. Roads

Highways are organized as groups of connected
RoadSegments, where each segment is a stretch of
road with arbitrary shape, but a fixed number of
lanes (See Figure 1). Segments connect to other
segments on a lane by lane basis, allowing us to
model any given highway topology. Each segment
also contains information relevant to that stretch of
road (e.g. lane marking information, speed limits
and surface type). Special types of road segments
(e.g. straight sections) are derived from the base
class RoadSegment.

A RoadSegment’s geometry is contained in its list
of RoadSlices. Each “slice” (See Figure 2) is a line
cutting across the lanes at right angles to the road
and is represented by an origin point (centered in the
left-most lane) and an offset vector pointing across
the road, with magnitude equal to the local lane
width. The spacing between adjacent RoadSlices

Roadpositiol

Tane 2
Offsat: +03
ID: 13
Text()
previ)
cur_pos()
N =T e Road Slice
AN Origin: (32.0, 17.5)
Offset: (2,63, 263
Laneo Width: 4 meters
D: 1969
Lanel ; ‘ 1
Road Slice
Lane2 Origin: (25.0, 18.0)

Lane3 ID: 1970

.

Figure 2: Road Slices and Iterators.

may vary according to the expected traffic speed and
local curvature of the road. It is important to note
that although the road is represented discretely, ve-
hicles in SHIVA may have arbitrary poses — in fact,
under the control of a bad road tracking algorithm
they may leave the road entirely. The road coordi-
nates of a point are represented by its closest slice
and lateral displacement. Thus the global (Carte-
sian) position of a given road point is given by:

P = origin, +1 x offset, (1)

where s is the slice associated with the point and [
is the lateral displacement (in lane units). Relative
road coordinates are used for reasoning once cars
observed by the on-board sensors are mapped into
appropriate lanes.

The RoadPosition class is an iterator that pro-
vides a transparent interface between the road repre-
sentation and other SHIVA objects such as sensors.
A RoadPosition instance, once placed at a given
slice and lateral displacement, can advance or retreat
as needed — crossing segment boundaries seamlessly.
This lane-tracking feature is used by road-following
sensors (See Section 2.2.2) to provide steering in-
formation for simulated vehicles. The notion of a
real-numbered lane displacement (rather than an in-
tegral “lane number”) allows intelligent lane track-
ers to function during lane changes and is a feature
lacking in many existing road simulators [2].

2.2. Vehicles

The variety of vehicles on the highway is best rep-
resented by a hierarchy. In addition to the obvious
physical attributes (including pose and velocity), all
SHIVA vehicles contain the following subsystems:

e Controller: (See Section 2.2.1)
e Sensors (See Section 2.2.2)
e Driver model: (See Section 2.2.3)

Additionally, automated vehicles may possess the
ability to communicate asynchronously with other
similarly equipped vehicles (See Section 2.2.4).

The subsystems described below each have their
own class hierarchies, providing an open-ended
structure which can be extended to suit the simu-
lation needs. We also expect to be able to replace a
given simulated subsystem with its real counterpart
with minimal modifications to other code.

2.2.1. Controller

SHIVA’s simulated controllers have the same inter-
face as the real controller in the Navlab II project.
This ensures that the simulated vehicles only request
actions that are feasible on a real vehicle, and also
allow control algorithms developed in simulation to
run on the Navlab vehicles without modification.
The following commands are recognized:

1. Steering: expressed as a curvature (analogous
to steering wheel angle).

2. Velocity: given as a target velocity, to be main-
tained once reached.

3. Query: returns current steering and/or velocity.

A hierarchy of controllers (mirroring the vehicle hi-
erarchy) allows specific vehicle characteristics to be
expressed cleanly. In the current implementation the
controllers check actions against vehicle limits (ac-
celeration constraints etc) but do not model vehicle
dynamics.

2.2.2. Sensors

Since most existing simulators model sensors at a
very abstract level, their vehicles are able to drive
with unrealistically complete knowledge about the
environment. For example, Niehaus[5] assumes that
cars can directly (and perfectly) sense other vehi-
cles’ accelerations. Other simulators assume trans-
parent vehicles [7] or curve-free highways [3, 5]. Al-
though simulators are always forced to trade realism
for performance, it is important to ensure that the
algorithms developed in simulation can successfully
operate with real inputs.

SHIVA sensor characteristics include both sensor
types (e.g. lane trackers, car detectors, GPS) and
level of detail (e.g. abstract, realistic, noisy). The
following sections deal briefly with some of the sim-
ulated sensors.

Lane Trackers

Lane tracking is a challenging robotics problem [6]
but one that is largely taken for granted in those
highway simulations where lane tracking and lane

occupancy are equated. Such “slot-car” simula-
tions cannot capture behaviors such as corner cut-
ting which affect decision making in real life, and
also view lane changes as instantaneous events.
Simulated vehicles communicate with SHIVA’s lane
tracking sensors in the same way that the Navlab
communicates with the ALVINN [6] road follower:
the sensors return information about the local road
curvature through pure-pursuit points.

Positioning

SHIVA simulates two types of positioning sensors:
GPS and dead-reckoning. Both sensors return the
vehicle’s position in global coordinates, but differ
in their noise characteristics: GPS returns readings
that are corrupted by Gaussian noise (invariant over
time) while dead-reckoning returns measurements
that become more inaccurate with distance traveled
(differential errors accumulate with vehicle motion).

Car Detection

SHIVA models both abstract and realistic car de-
tection sensors. The abstract sensors automatically
perform obstacle-to-lane mapping and return posi-
tion, velocity and vehicle-id of a vehicle within the
sensor’s field of view. An option to corrupt these
measurements by Gaussian noise is available — but
since the noise is injected only in the last step, the
output is not equivalent to that obtained from a real
sensor model (where error rates for p and 6 can be
specified independently).

The realistic sensors are similar to scanning 1-D
lighthouse range sensors — returning an array of
distances to objects in the field of view. Associated
with each range sensor is a covariance matrix con-
taining error rates for 6 (the scan angle) and p, the
measured distance to the object. Sensors can be
mounted in different places on the vehicle and over-
lapping fields of view can be used to reduce errors
if needed. Range readings can be segmented into
obstacles to give approximate size and position rel-
ative to the sensor. Mapping these obstacles onto
an internal local lane model enables the vehicle to
sense whether other vehicles are in the same or ad-
jacent lanes. Velocities are not directly returned —
they must be extracted by tracking obstacles from
frame to frame and measuring the changes in their
position over time. Since the range readings are
corrupted by noise, filters (e.g. Kalman) for po-
sition and velocity may be needed. Higher order
derivatives (acceleration etc) cannot be reliably ex-
tracted from noisy range measurements. Because
this processing is computationally significant when
many sensors are involved, most scenarios involve
small numbers of realistic range sensors (on the ve-

Figure 3: Pinch Scenario

hicles of interest) supplemented by large numbers of
abstract sensors.

2.2.3. Driver Models

In SHIVA, the “driver model” refers to the vehicle’s
decision making algorithm. With appropriate algo-
rithms, automated and manually driven vehicles can
both be modeled. However all driver models must
operate on incomplete (possibly noisy) information
and execute in real time. Although there are no in-
trinsic differences between automated and manual
vehicles, the latter can be characterized as possess-
ing longer reaction delays and incomplete sensing
fields (blind-spots). Automated vehicles may also be
able to communicate (See Section 2.2.4) with other
similarly equipped vehicles.

In initial versions of SHIVA, driver models were
independent of sensor configuration, enabling run-
time changes of drivers and sensors. Our expe-
rience showed that the flexibility that is gained
through such freedom is outweighed by the disadvan-
tages. The current version of SHIVA tightly couples
sensor configurations with driver models (See Sec-
tion 2.2.5).

2.2.4. Communication

Communication between similarly equipped intel-
ligent vehicles is made possible through an asyn-
chronous message passing system. Each vehicle has
an incoming message buffer and a transmitter which
can send to vehicle(s) within range. This allows au-
tomated vehicles to send intentions in advance of
acting, reducing the risks of collision. For exam-
ple, the classic “pinch maneuver” (See Figure 3) is
averted if Car A broadcasts its intention of shift-
ing left before beginning the lane change maneuver.
Car B can decide not to change right given this
information. Without communication, both cars
could decide to change into the same lane simulta-
neously (and at least one would need to abort the
lane change to avoid collisions).

[= sHva
Sia]
siof
=i

(| e ||~ V|

= _
Rotx Roty ™ 11| Zoom

Figure 4: Overhead view

2.2.5. Vehicle Types

Vehicle types are derived classes with compatible
configurations of subsystems. Rather than forcing
each subsystem to rely only on the methods de-
clared in the base classes, individual subsystems
can take advantage of the specific features in the
other subsystems on the same vehicle. Thus vehi-
cles with communication should have driver models
which expect to send and receive messages, while
cars with human drivers will have blindspots and
should reason accordingly. SHIVA guarantees that
driver models and vehicle configurations are compat-
ible through C++’s type-checking mechanism.

3. User Interface

SHIVA’s design decouples the simulation and the
user interface without resorting to offline animation
(in contrast to SmartPATH [3]). The display types
are all derived from an abstract base class World
which contains lists of RoadSegments, Vehicles and
simulation parameters. Different display implemen-
tations can show the current state of the simula-
tion as desired (bird’s eye view, road side view etc).
SHIVA currently supports three interfaces: a tty in-
terface, an X based interface and an SGI interface.
SHIVA’s SGI interface provides a number of differ-
ent displays including an interactive overhead view
(See Figure 4), a driver’s eye view (See Figure 5)
and a vehicle tracking view (See Figure 6). Users
may examine selected vehicles’ attributes using con-
figurable InfoBoxes.

Figure 5: Driver’s eye view

Figure 6: Vehicle tracking view

4. Comparisons with Existing Simulators

While microscopic ground vehicle simulators have
been in use for over thirty years, no existing simu-
lator provides all of the features needed for devel-
oping intelligent vehicle systems. Some (e.g. NET-
SIM [11]) lack detailed models of lane changing; oth-
ers use very simplified road models (e.g. Smart-
PATH [3]) or model sensors at a very abstract level
(e.g. Pharos [8]). The University of Iowa simula-
tor [1] has a very realistic user interface but is de-
signed primarily for observing the actions of a hu-
man driver in scripted scenarios.

Many of SHIVA’s advantages are seen clearly in
tactical-level driving situations. Consider the com-
mon scenario of merging into traffic (See Figure 1).
Our vehicle (labeled A) must find a gap in traffic, ac-
celerate to the correct speed and change lanes. For
a robot with existing sensor technology, this prob-
lem is challenging. However in a simulator that
gives Car A direct access to the positions, veloci-
ties and accelerations of other vehicles, the task is
relatively straightforward. Algorithms developed in
such simulations tend to rely on measurements that
are unavailable in real implementations. SHIVA en-
ables designers to face these difficulties in simulation
by providing (at the most detailed level) realistic
rangefinder images which require significant process-
ing before attributes such as position or velocity can
be determined. Algorithms [4] which require perfect
and complete measurements cannot operate in this
environment. We have implemented a robust gap-
finder in simulation and successfully tested it on im-
age sequences obtained from Navlab II’s rangefinder.
We hope to demonstrate a merge scenario on the
Navlab once longer range sensors with faster scan
rates are available.

If Figure 1 were a snapshot of an on-ramp to
an intelligent highway, Car A might communicate
with Cars B or C before merging. Simulators such
as SmartPATH [3] implement communication be-
tween vehicles in dedicated automated lanes but
have no provisions for situations involving both au-
tomated and manual traffic. SHIVA does not ad-
vocate a specific AHS concept and allows users to
simulate any given mix of communicating and non-
communicating vehicles. We are interested in inves-
tigating the effects of optional communication (e.g.
Car A may request Car B to change left to open a
gap) in mixed traffic environments.

Simulating different types of intelligent vehicles
(with different sensors, different algorithms etc) is
generally impossible in most simulators since vehi-
cles are hard-coded. SHIVA allows users to simulate
any number of vehicle configurations simultaneously:
for example, Car A in the figure may be a vehicle
with communication, Car B may be a human driver

with intelligent cruise control, and Car C a human
operated vehicle without a rear view mirror. Thus
if Car A, after making unheeded requests for a suit-
able gap, were to aggressively merge into the space
between B and C, Car B would slow down, while
Car C would not react to A at all.

Lane changing implementations in simulation gen-
erally ignore the role of the lane tracker. Since
changing lanes on curved roads is non-trivial, many
simulators model either discrete lane changes (e.g.
Niehaus [5]) or straight roads only (e.g. Smart-
PATH [3]). SHIVA recognizes the road following
algorithm as a sensor and implements lane chang-
ing as either:

e a combination of two lane tracker outputs (as-
suming a passive road follower which tracks only
1 lane).

e a direct output from an intelligent lane tracker
(that takes lateral offsets as inputs).

SHIVA’s modules for lane tracking and lane chang-
ing correspond closely to their real counterparts
both in behavior and in interface.

5. Conclusion

Simulated testbeds are essential in the development
of intelligent highway systems for economic and
safety reasons. SHIVA addresses deficiencies in ex-
isting simulators by adding realism to sensors and
ensuring that actions in the simulated environment
accurately map to vehicle maneuvers. SHIVA has
been used to develop a number of vehicle control al-
gorithms and will be used to simulate tactical level
scenarios for SAPIENT. SHIVA’s close ties to the
NAVLAB project make it an ideal development plat-
form for algorithms that need to be ported from sim-
ulation to real-life with minimal modification.

Future versions of SHIVA will allow users to edit
vehicle and sensor configurations using a graphical
user interface. Similar tools for roadway design and
scenario specification are also planned. Extensions
to the interactive interface will enable human oper-
ators to control simulated vehicles and interactively
create simple scenarios for the computer controlled
vehicles.

Mixed-traffic scenarios with communicating vehi-
cles will be a primary focus of our investigations. We
will use SHIVA to examine the impact of loosely-
coupled cooperation among intelligent vehicles on
highway throughput by varying the proportion of
communicating cars in different scenarios.

6.

Acknowledgements

The authors wish to thank John Hancock, who de-
veloped SHIVA’s SGI interface and Alonzo Kelly
who wrote the X interface’s display primitives.

References

[1]

M. Booth, J. Cremer, and J. Kearney. Sce-
nario control for real-time driving simulation.
In Proceedings of 4th Eurographics Animation
and Simulation Workshop, September 1993.

J. Cremer, J. Kearney, Y. Papelis, and R. Ro-
mano. The software architecture for scenario
control in the Towa driving simulator. In Pro-
ceedings of the 4th Computer Generated Forces
and Behavioral Representation, May 1994.

F. Eskafi and D. Khorramabadi. SmartPath
user’s manual. Technical report, University of
California, Berkeley, December 1993.

Simin Nadjm-Tehrani. Analysis of the overtak-
ing scenario: Specification of an autonomous
car and a driver support system. Technical Re-
port LiTH-IDA-R-91-07, Department of Com-
puter and Information Science, Linkoping Uni-
versity, Linkoping, Sweden, 1991.

A. Niehaus and R. F. Stengel. Probability-
based decision making for automated highway
driving. IEEE Transactions on Vehicular Tech-
nology, 43(3):626-634, August 1994.

Dean A. Pomerleau. Neural Network Percep-
tion for Mobile Robot Guidance. PhD thesis,
Carnegie Mellon University, February 1992.

Douglas A. Reece. Selective Perception for
Robot Driving. PhD thesis, Carnegie Mellon
University, May 1992.

Douglas A. Reece and Steven A. Shafer. An
overview of the Pharos traffic simulator. In
J. A. Rothengatter and de Bruin R. A., editors,
Road User Behavior: Theory and Practice. Van
Gorcum, Assen, 1988.

Rahul Sukthankar. Situational awareness for
driving in traffic. Thesis Proposal, October
1994.

Charles E. Thorpe, Martial Hebert, Takeo
Kanade, and Steven A. Shafer. Vision and
navigation for the Carnegie Mellon NAVLAB.
IEEF Transactions on PAMI, 10(3), 1988.

Shui-Ying Wong. TRAF-NETSIM: How it
works, what it does. ITE Journal, 60(4):22-27,
April 1990.

