Deep Learning for Character-based
Information Extraction

Yanjun Qi!, Sujatha Das G2, Ronan Collobert?, and Jason Weston*

! Department of Computer Science, University of Virginia, yanjun@virginia.edu
Machine Learning Department, NEC Labs America
2 Computer Science Department, Penn State University, sujatha.das@gmail.com
3 IDIAP Research Institute, Switzerland, ronan@collobert.com
4 Google, New York USA, jaseweston@gmail.com

Abstract. In this paper we introduce a deep neural network architec-
ture to perform information extraction on character-based sequences,
e.g. named-entity recognition on Chinese text or secondary-structure de-
tection on protein sequences. With a task-independent architecture, the
deep network relies only on simple character-based features, which ob-
viates the need for task-specific feature engineering. The proposed dis-
criminative framework includes three important strategies, (1) a deep
learning module mapping characters to vector representations is included
to capture the semantic relationship between characters; (2) abundant
online sequences (unlabeled) are utilized to improve the vector repre-
sentation through semi-supervised learning; and (3) the constraints of
spatial dependency among output labels are modeled explicitly in the
deep architecture. The experiments on four benchmark datasets have
demonstrated that, the proposed architecture consistently leads to the
state-of-the-art performance.

1 Introduction

In this paper, we focus on the information extraction (IE) tasks which aim to
automatically extract information about pre-specified types of events, entities or
relationships from unstructured or semi-structured machine-readable documents
of sequences. The sequence data we target in this paper refers to the general
family of character-based natural language strings. For instance, it could be
Chinese text or Japanese text in which no space exists to mark word boundary
between characters. Not limited to natural languages, the target sequence could
also be a protein sequence which describes the primary structure of a protein
using a linear string of amino acid letters.

Several IE tasks have been identified as important for end applications such
as information retrieval or text summarization. For instance, the syntactic-level
part-of-speech (POS) tagging, the semantic-level named entity extraction (NER)
and the word segmentation (WS) tasks are the fundamental building blocks (Ta-
ble 1) for processing Chinese [6]. Similarly, the functional tagging of each amino
acid on the protein sequences is the core endeavor of computational biology. One
classic task, secondary structure (SS) prediction [7] aims to predict each amino
acid’s secondary structure label which provides useful intermediate information
for a protein’s three-dimensional structure. All these tasks could be treated as

2 Yanjun Qi, Sujatha Das G, Ronan Collobert, and Jason Weston

Characters| s, K 5 J=3 5] 1% HH R
WS B I E B E B E B E
POS B-NR I-NR E-NR B-NN E-NN B-VV E-VV B-NR E-NR
NER B-PER I-PER E-PER O O (0] (0] B-LOC E-LOC

Table 1. An example of information extraction tagging on a sample sequence of Chi-
nese text. Three character-based IE tasks are included, (1) WS: word segmentation;
(2) POS: part-of-speech tagging and (3) NER: name entity recognition.

a labeling of each atomic element (e.g. Chinese character, or amino acid) in the
sequence, into one of the multiple classes for the task of interest.

Differently from Romance language with words as the basic unit, Chinese
text has no space to mark word boundary between characters. Tagging Chinese
through assigning labels to characters (Table 1) has been shown to be a simple
but effective formulation [9]. While early studies were mostly based on hand-
crafted rules, recent systems have used supervised machine learning techniques
such as, Hidden Markov Models (HMM), Maximum Entropy (ME) Models, Sup-
port Vector Machines (SVM), and Conditional Random Fields (CRF). The top
systems from SIGHAN bakeoff competitions [6] were mostly based on the CRF
and ME models. Analogous to Chinese text, the primary representation of a
protein sequence includes a linear string of letters where each letter represents
a certain amino acid and the string has no special letter to mark the boundary
between functional segments. Many automated SS prediction methods have been
described in the scientific literature [7], including for instance, neural networks,
HMM and dynamic Bayesian networks. However, the above-mentioned systems
mostly relied on rich sets of task-specific and hand-crafted features, which require
time-consuming feature engineering and are hard to adapt to similar tasks.

Lately, “deep learning” [4] grows to bring in a lot of attentions and has won
many pattern recognition contests. Our paper is motivated by a recent work from
Collobert et al. [2] who demonstrated that a unified deep neural network architec-
ture provides the state-of-art performance on multiple English Natural Language
Processing (NLP) tasks using simple task-independent features. We adapt and
modify this architecture to provide a unified framework for character-based IE
tagging tasks by learning a hierarchy of representations given very basic inputs of
character features. Three important components are employed in our framework,
including vector representation learning of characters, semi-supervised language
modeling and sentence-level training of output label dependencies.

2 Method

The proposed framework provides a unified end-to-end system that, given a
string of characters, it provides several layers of feature extractions and predicts
labels for each character. Table 1 provides a sample sequence of Chinese text
and three sample IE outputs. Features relevant to the target IE task are learned
automatically by backpropagation in the deep layers of the network model.

2.1 Learning Character to Vector Representation

The deep neural network is characterized by two specialized layers: (1) a charac-
ter embedding layer and (2) a segment/window feature extraction layer, followed

Deep Learning Framework for Character Based Information Extraction 3

"vi"vﬂ

Fig. 1. An embedding module to learn vector representations for each input character.

Input Sentence:

f— = —]

by a series of classical neural network layers. The whole neural network architec-
ture is displayed as Figure S1 in Supplementary [1] . The very first layer projects
each character into a real-valued vector, in a M-dimensional latent embedding
space (Figure 1). Here M is a hyperparameter to be chosen by the user. Within
a finite character dictionary D, each character ¢; € D is embedded into the fea-
ture space using a M x |D| projection matrix W, such that W¢,, the column
vector of W at the index of ¢;, is the vector representation corresponding to
character ¢;. Thus, using the first layer of this architecture, an input charac-
ter sequence {ci, ca, ... ¢, } is transformed into a series of real valued vectors
{We,, Weyy ... We, }. The parameters of the projection matrix W are learned
automatically as part of the neural network training through back-propagation.
The encoding weights in W are randomly initialized from a centered, uniform
distribution. The resulting embedding after training is optimal for our target IE
task, in the sense that it optimizes the objective cost on the training set for the
specific task. Essentially this first embedding module is a special convolution
neural network layer which applies the same projection W on each character in
D regardless the position of characters in text sequences.

The second layer performs a sliding window operation on the character se-
quence which aggregates the output of the first layer into blocks corresponding
to a fixed window of size k. To label a complete sentence, we slide the window
along the sentence, labeling one character at a time. This means each charac-
ter in the sequence is described through itself and its neighboring characters.
The remaining layers comprise a standard, fully connected multi-layer percep-
tron network with L layers of hidden units. Each hidden layer [learns to map
its input to a hidden feature space (through parameter U'), and the last layer
V utilizes a softmax function to map its input to the output tag (label) space.
This layer’s outputs are ensured to be positive and sum to 1, thus we can in-
terpret the outputs of the whole network as probabilities for each class [2]. Es-
sentially the network includes the following set of parameters to be estimated,
6 ={w,Uut,u?, . U1 ut}.

Assuming we are given a set of training examples {(Z,,Yn)}n=1...N, Tn TEP-
resents a window of characters, y,, describes the label of middle character in a,,,
and f(x,) represents the predicted output of @, by the whole network. Then
the deep model is trained to find the best @ by minimizing the negative log-
likelihood (NLL) loss, i.e. E(O) := 25:1 NLLo(f(2y),yn) over the training
samples. E(O) is optimized using backpropagation through Stochastic gradient

4 Yanjun Qi, Sujatha Das G, Ronan Collobert, and Jason Weston

descent (SGD). In SGD, a random example (x,y) is sampled from the training
set and then a gradient descent step is applied to update the network parameter
O as: O < 6 — /\%7 where A is the learning rate hyperparameter.

2.2 Improving Representation Learning with Unlabeled Sequences

Manually labeling character-based sequences, i.e. to obtain tag label for each
character, could be quite time-consuming, since it requires very detailed annota-
tion on the character-level (Table 1). Information hiddlen inside unlabeled text
has been shown to be helpful for supervised IE tagging [2]. Thus, we employ
to add a so-called semi-supervised ”language modeling” (LM) task [2] using un-
labeled character sequences (abundant from internet, e.g. Wikipedia Chinese
corpus, or Swissprot protein sequence database).

This step relies on the key observation that individual characters carry signif-
icant semantic information hidden in the unlabeled data. This translates to the
basic idea that the target LM task will learn to force two character pieces with
similar semantic meanings to have closer representations and two pieces with
dissimilar meanings to have distant representations in a learned feature space.
Intuitively, all length-k character windows from an unlabeled corpus could be
labeled as positive examples, and negative fragments are generated by randomly
substituting the middle character in each window. Thus, each pair of these (pos-
itive, negative) segments build up a corpus of dissimilar character pieces. A
deep network, similar as the one for IE tagging, is then built to learn the rep-
resentations based on the pairs of dissimilar segments from the above corpus.
Again, the character embedding layer and all parameters of the subsequent net-
work layers are automatically trained by backpropagation. Unlike supervised IE
tagging using NLL loss, the LM task is trained with a margin ranking cost:
Y oses 2oeep Max (0, 1 — f'(s) 4 f'(s®)) where S is the set of positive character
segments, and s¢ is a pseudo-negative segment where its middle character has
been replaced by a random character ¢ in the dictionary D. f'(-) represents the
output of the deep network architecture for LM task, which indicates a func-
tion that projects its input segment to a value output. The output scalar value
describes how likely a given character segment exists in the unlabeled corpus
in our setup. Essentially, we are learning the network weights to rank positive
character segments above synthetic negative segments. Then we utilize a popular
deep learning strategy—pretraining, to connect the unsupervised LM task and
the supervised tagging tasks. That is, parameter © learned from LM is used as
the initialization for parameter @ for supervised IE.

2.3 Discriminative Training of Sentence-Level Label Dependency

So far, our deep framework uses a labeling-per-character strategy without ex-
ploiting the dependencies among the targeted tag labels. This assumes that the
output label for each position in a character-based sequence can be predicted
independently from nearby positions. Empirically, this assumption fails largely
for IE tagging. For example, clearly some tags are less likely to follow another
set of tags (Table 1) (e.g. O tag is less likely to follow B-PER tag for NER),

Deep Learning Framework for Character Based Information Extraction 5

and certain groups of tags are highly likely to appear as neighbors (e.g. B-PER
and E-PER for NER). Thus we models the dependencies between target tags
through discriminative forward training [2]. Basically it scores a whole candidate
sentence by aggregating the predicted scores of each involved character and also
weighting the scores by a transition matrix [A]; j. This parameter [A]; ; captures
the degree of likelihood for jumping from ¢ to j tags in successive characters.
Similar to ©, weights of A are also automatically trained by backpropagation.
The sentence tagging layer with A parameter is put on the top of the basic model
f(-), achieving a revised deep model f”(-). The final tagger f”/(-) is trained to find
the best tag path which optimizes each whole training sentence’s output score.
The prediction of the tag path is efficiently implemented through a Viterbi-like
algorithm (space limit; details in [2]).

3 Experiments

Data: We demonstrate the power of deep learning architecture on four bench-
mark data sets for character-based IE tagging, (1), WS on Chinese tree bank
(CTB) data (LDC2007T36) [8]. (2), POS on the Chinese tree bank (CTB) data
[8]; (3), NER on “CITYU” data from SIGHAN3 bakeoff[6]. (4), CB513, the
standard protein SS benchmark, is used [3] for the SS evaluation. All data de-
tails of the four sets (e.g. sample size, encoding of output tags, et al.) are in
Supplementary [1] due to page limitation.

Metric: For WS, we compute the character-level precision, recall, and equally
weighted F-measure (only F1 reported). When evaluating POS and NER, we
compute overall phrase-level precision, recall, and F1l-measure (only F1 reported).
For the protein SS task, we use the standard “Q-score”, which represents the
accuracy evaluated at the amino acid level.

Setup: The evaluation of WS and POS is carried through 10-folds cross vali-
dation. Following the same setup as (Zhang&Clark 2008) [10], we have evenly
partitioned CTB into ten groups, and used nine groups for training and the
rest for testing. The NER evaluation is carried through the benchmark provided
train-test split. The SS evaluation follows the standard seven-folds cross vali-
dation on this set. The Torch [2] deep learning toolbox is used for coding the
architecture.

Hyperparameter: Furthermore, the deep framework requires the specification of
multiple hyperparameters. This includes the size k of the character window,
the size h of the hidden layers, and the learning rate A\. We considered k €
{3,5,7,9,11,13}, h € {80,100, 120, 150,200}, and A € {0.001,0.01,0.03,0.05,0.1}.
The parameter for the embedding layer, M, was chosen from {15, 30,50, 70}. The
hyperparameter selection was based on the cross-validation results on training.
The semi-supervised language model was trained using the freely available Chi-
nese wikipedia corpus and the swissprot protein sequence database.

Result Comparison: Table 2 summaries multiple variations of the proposed ar-
chitecture and the performance comparison to the state-of-the-art systems. We
systematically test the incremental combinations of multiple strategies: (1). “c1”:
character to vector embedding; (2). “lm”: unsupervised “language model” of

6 Yanjun Qi, Sujatha Das G, Ronan Collobert, and Jason Weston

Configuration / Task WS- POS- NER- SS-
Chinese |Chinese |Chinese |Protein*

l.cl 94.73 86.74 80.61 74.5

2. cl4+Im 95.57 86.93 81.79 74.8

3. cl4-vit 95.38 88.41 85.81 77.6

4. cl+Im+vit 96.07 88.81 86.99 77.8

5. cl+lm+c2 95.98 88.48 83.51 ~

6. cl+1m+c2+4-vit 96.62 89.39 87.24 ~

7. cl+lm+c2+vit+ws ~ 93.27 88.88 80.3*

Previous Best 95.9 [10] |91.9 [10] 89.00 [6] [80.0 [5]

Previous Second Best 95.1 [10] |91.3 [10] 88.61 [6] ~

Table 2. Performance comparison on four character-based IE tagging tasks. Different
combinations of the proposed strategies are compared (in percentage %). “*”: for SS
task, we also add the classic PSI-Blast feature in all combinations. For the 7" setup,
SS is added with a multitasking strategy [7], instead of “ws+c2”.

character. (3). “vit”: sentence-level label dependency; (4). “ws”: word segmen-
tation added as discrete features [2]; (5). “c2”: another embedding extraction
layer for learning vector representations for character bigrams. It is clear that
the final system (with the combination of all strategies) has improved over the
state-of-the-art performance on WS and POS and has achieved the state-of-the-
art predictive level for NER and SS tasks (detailed discussion in [1]).
Conclusion: We have proposed a deep learning framework for character-based in-
formation extraction on Chinese and protein sequences. As a flexible and robust
prediction system, this architecture has achieved the state-of-art performance on
four benchmark data. Our methodology could easily be adapted to additional
character-based tagging tasks, such as Japanese NER.

References

—_

. ¢ Supplementary. http://www.cs.cmu.edu/~qyj/zhSenna/ (Dec. 2013)
2. Collobert, R., Weston, J., Bottou, L., Michael, Kavukcuoglu, Kuksa: Natural lan-
guage processing (almost) from scratch. JMLR 12 (2011) 2493-2537
3. Cuff, J.A., Barton, G.J.: Evaluation and improvement of multiple sequence meth-
ods for protein secondary structure prediction. Proteins 34 (1999) 508-519
4. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with
neural networks. Science 313(5786) (2006) 504—507
5. Kountouris, P.; Hirst, J.D.: Prediction of backbone dihedral angles and protein
secondary structure using support vector machines. BMC Bioinf. 10(437) (2009)
6. Levow, G.A.: The third international chinese language processing bakeoff: Word
segmentation and named entity recognition. In: Proceedings of the Fifth SIGHAN
Workshop on Chinese Language Processing. Volume 117., Sydney: July (2006)
7. Qi, Y., Oja, M., Weston, J., Noble, W.S.: A unified multitask architecture for
predicting local protein properties. PLoS ONE 7(3) (03 2012) 32235
8. Xue, N., Xia, F., Chiou, F.D., Palmer, M.: Penn chinese treebank: Phrase structure
annotation of a large corpus. Natural Language Engineering 11 (2005) 207-238
9. Xue, N., et al.: Chinese word segmentation as character tagging. Computational
Linguistics and Chinese Language Processing 8(1) (2003) 29-48
10. Zhang, Y., Clark, S.: Joint word segmentation and pos tagging using a single
perceptron. In: Proceedings of the 46th Annual Meeting of ACL. (2008) 888-896

Supplementary for ECIR 2014 Paper “Deep Learning for
Character-based Information Extraction
on Chinese and Protein Sequence”

Yanjun Qi Sujatha Das G

1 System

Figure 1: The basic deep learning system for
character-based IE tagging.

Input Sentence:

Index:

{Sequential Feature Extraction H

iClassic Neural Network Layers

|‘ Linear 7|
| HardTanh ¢ [
| Linear | —— _‘l
=
| HardTanh]
|’ Linear _‘l
[Softmax — v £c)
{Output Label Dependency Modeling ;

2 Experiments

2.1 Data Sets:

Table 1 summarizes some statistics of the datasets
we used in experiments. (1) The CTB data we
used for WS and POS is from Chinese Tree-
bank 6.0 (LDC2007T36), released in 2007, encom-
passes 2,036 text files, containing 28,295 sentences,

Ronan Collobert

Jason Weston

781,351 words and about 1.3M Chinese characters.
(2). The CITYU NER data was from SIGHAN3 [6],
which includes around 1.8M NE-labeled Chinese
characters. (3). The CB513 data for SS task con-
sists of 513 unrelated proteins with known 3D struc-
ture. Totally the CB513 includes about 84k amino
acid characters labeled with SS target tags [8].

Table 1: Summary of datasets used in experiment

Dataset/Task #Chars | #UniqueChars | #Sent
POS(CTB) 1,288,840 4,447 28,295
WS(CTB) 1,287,159 4,696 28,295
NER(CITYU) | 1,816,417 4,678 43,734
SS (CB513) 83,707 25 497

The setup for WS and POS tasks used the 10-folds
cross validation (CV), following the same configura-
tion in (Zhangé&Clark 2008) [9]. We have evenly par-
titioned CTB into ten groups, and used nine groups
for training and the rest for testing. The partition of
CTB is provided in Table 2 The train-test split for
NER task was from SIGHAN3. The setup for SS task
is the same as the standard seven-folds cross valida-
tion on CB513 data. The evaluation metrics are aver-
aged per cross-validation test fold in all CV setting.

For the first three tasks related to Chinese text, we
construct a list of characters from all three Chinese
datasets to form a dictionary of 11951 characters. We
convert all non-Chinese characters (such as English
words) to lowercase and represented all numeric to-
kens by “NUMBER”. As shown in the performance
comparison table, we also try to learn the vector rep-
resentations for the character bigrams for Chinese IE.
The dictionary of character bigrams is constructed
similarly as the character unigram dictionary. We just

Page 1

Table 2: The ten folds uniform partition of CTB
(LDC2007T36) for POS and WS tasks.

Fold Index | Start | End
1 0001 | 0203
2 0204 | 0525
3 0526 | 0767
4 0768 | 1054
5 1055 | 2126
6 2127 | 2329
7 2330 | 2532
8 2533 | 2735
9 2736 | 2938

10 2939 | 3145

rank all the possible bigrams in the three datasets and
use the top (most frequent) 30, 000 from the list. For
the last SS task, it uses a small dictionary containing
only the possible amino acid letters.

2.2 Output Tag Label:

Table 3: Summary of Output Labels

Task #Labels | Example Tags

NER 14 B-LOC, I-LOC, S-ORG
POS 107 S-NR, B-NN, E-VV, B-DT
WS 5 B,LE,S

CB513 4 H,B,C

Table 3 gives the number (second column) of tar-
get labels used for each task. We employ the IOBES
coding scheme for WS, POS and NER tasks. This
makes WS task has 5 different tag classes, NER has
14 different tagging labels, and similarly, POS tag-
ging has 107 different target classes to predict for.
The label of CB513 data utilizes a 3-letter alphabet
{H, B, C} in the standard way (H = alpha helix, B
= residue in isolated beta bridge and C' = Coil).

2.3 Hyperparameter:

The deep framework requires the specification of
multiple hyperparameters. This includes the size k
of the character window, the size h of the hidden
layers, and the learning rate \. We considered k €
{3,5,7,9,11,13}, h € {80,100,120, 150,200},

and A € {0.001,0.01,0.03,0.05,0.1}. The param-
eter for the embedding layer, M, was chosen from
{15,30,50,70}. The hyperparameter selection was
based on the cross-validation results on training. The
semi-supervised language model was trained using
the freely available Chinese wikipedia corpus [1] and
the swissprot protein sequence database [2]. For the
three tasks related to Chinese IE, we obtained the
best results through setting & = 3, h = 150, the
embedding size M = 50, the learning rate for f(-)
as 0.05 and the learning rate for the output depen-
dency modeling as 0.01. For SS task, the preferred
hyperparameter setup is k = 13, M = 15, h = 85.
The software and methods were implemented us-
ing the Torch5 [3] machine learning library. Torch
is implemented in C and Lua scripting language. In
our basic model, for simplicity, we restrict the classi-
cal NN part of our deep neural network to one single
hidden linear layer and one output linear layer.

2.4 Result Comparison

As pointed out by Table 2 in the main draft, the
proposed architecture includes three strategies, us-
ing which we assume to improve the ability of tag-
ging character sequences through, (1) learning em-
bedding representation for characters in the deep
framework, (2) including the semi-supervised “lan-
guage model” (“Im”) task, and (3) discriminative
training of sentence-level label dependency (termed
as “vit”, since the prediction step uses viterbi algo-
rithm). Accordingly, we systematically test the in-
cremental combinations of these strategies the Ta-
ble 2 of the main draft . The first configuration
“c1”) provides the performance of the most basic
setup where only the embedding of character uni-
grams is utilized. The second configure “cl+lm”
adds “language model” component on the top of “c1”
case, which clearly improves the tagging ability on
all tasks. For instance, WS tagging gets improved F1
measure from 94.73% to 95.57% (about 1 percent in-
creasing). The third configuration “c1+vit” describes
the result when combining the unigram embedding
and discriminative training of tag dependencies (us-
ing “vit” term to label this component). The “tag de-
pendencies” strategy dramatically improves the tag-
ging ability on all three tasks. Especially on Chi-
nese NER, the “cl+vit” configuration achieves the

Page 2

F1 score 85.81%, a big jump from 80.61% when us-
ing “c1” embedding alone. Furthermore, the 4, con-
figuration “cl+lm+vit” improves even more when
combining the three strategies of character embed-
ding, language modeling and tag dependency train-
ing. In the fifth “cl+lm + c2” and the sixth con-
figuration “cl+lm + c2+vit”, we added another em-
bedding feature extraction layer for representing the
character bigrams (the same operation as unigram
embedding, just on each character bigram). Com-
pared to the state-of-the-art results in the last two
rows, our sixth model has already beats the best
WS result provided in [9] with about 0.7% improve-
ments. For POS task, our final model is the seventh
configuration “cl+c2+Im+vit+ws” which combines
all the three functional components plus using word-
segmentation as features. Note that the word seg-
mentation is added as one extra new discrete features
(i.e. again with a new embedding layer). This clearly
beats the top system [9] (with the same 10folds CV
setup) in the literature. For the NER task, the sev-
enth configuration beats the second top system, and
is slightly lower than the best ranked system from
SIGHAN3 [6]. For SS, the seventh configure does
not have WS features (of course) and also does not
use the character bigram features. Instead, it adds a
multitasking strategy which has been proposed in [7].
The extra strategy clearly improves our system even
more, which makes SS predictions reach the state-of-
the-art performance [5].

3 Discussion

We have described a deep learning framework
for multiple character-based information extraction
tasks. Our work experimentally proves the power
of this architecture and its multiple important tech-
niques. Lastly, we just realize that there is a recent
paper from Zheng et al. [10] that uses a very simi-
lar method as our paper. The method is almost the
same as Collobert et al [4]. Different from Collobert
et al [4] using words as the basic units, our paper and
Zheng et al. [10] use character as the primary basic
unit. Zheng et al. [10] focused primarily on Chi-
nese POS and WS. Different from [10], our frame-
work has been further extended to Chinese NER and
SS tasks. Our experimental results also improve the
state-of-art on POS and WS.

References

[1] Chinese wikipedia,
wikipedia.org.

http://zh.

[2] swissprot protein sequence databas, http://
www.uniprot.org/downloads.

[3] Torch. http://torch5.sourceforge.
net/.

[4] Ronan Collobert, Jason Weston, Léon Bot-
tou, Michael, Kavukcuoglu, and Kuksa. Natu-
ral language processing (almost) from scratch.
JMLR, 12:2493-2537, 2011.

[5] P. Kountouris and J. D. Hirst. Prediction
of backbone dihedral angles and protein sec-

ondary structure using support vector ma-
chines. BMC Bioinf., 10(437), 2009.

[6] Gina-Anne Levow. The third international chi-
nese language processing bakeoff: Word seg-
mentation and named entity recognition. In
Proceedings of the Fifth SIGHAN Workshop
on Chinese Language Processing, volume 117.
Sydney: July, 2006.

[7] Yanjun Qi, Merja Oja, Jason Weston, and
William Stafford Noble. A unified multitask
architecture for predicting local protein proper-
ties. PLoS ONE, 7(3):e32235, 03 2012.

[8] Burkhard Rost and Chris Sander. Combining
evolutionary information and neural networks
to predict protein secondary structure. Pro-
teins: Structure, Function, and Bioinformatics,

19(1):55-72, 1994.

[9] Yue Zhang and Stephen Clark. Joint word seg-
mentation and pos tagging using a single per-
ceptron. In Proceedings of the 46th Annual
Meeting of ACL, pages 888—896, 2008.

[10] Xiaoqing Zheng, Hanyang Chen, and Tianyu
Xu. Deep learning for Chinese word segmen-
tation and POS tagging. In Proceedings of
the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 647-657,
Seattle, Washington, USA, October 2013. As-
sociation for Computational Linguistics.

Page 3

