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Abstract. In this paper, we introduce a novel approach for modeling n-grams
in a latent space learned from supervised signals. The proposed procedure uses
only unigram features to model short phrases (n-grams) in the latent space. The
phrases are then combined to form document-level latent representation for a
given text, where position of an n-gram in the document is used to compute cor-
responding combining weight. The resulting two-stage supervised embedding is
then coupled with a classifier to form an end-to-end system that we apply to the
large-scale sentiment classification task. The proposed model does not require
feature selection to retain effective features during pre-processing, and its param-
eter space grows linearly with size of n-gram. We present comparative evalua-
tions of this method using two large-scale datasets for sentiment classification
in online reviews (Amazon and TripAdvisor). The proposed method outperforms
standard baselines that rely on bag-of-words representation populated with n-
gram features.

Keywords: Sentiment Classification; Large-Scale Text Mining; Supervised Fea-
ture Learning; Supervised Embedding.

1 Introduction

In this paper, we consider the problem of sentiment classification (SC) which is defined
as identifying and extracting subjective information from natural language text. Due to
the widespread use of electronic media and the explosion of online social-oriented con-
tent such as user reviews, sentiment classification [1], has received significant attention
in recent years. This task aims to rate polarity of a given text accurately towards a label,
predicting whether the expressed opinion in the text is positive, negative, or neutral.
SC task can be viewed as an instance of text categorization (TC) task. Notable va-
rieties of TC include single-label, multi-label [2] or taxonomic hierarchy of labels [3].
Both generative approaches [4—6] and discriminative supervised methods have been
applied to TC, and a few semi-supervised attempts [7] as well. Among discriminative
models, support vector machines (SVM) are known for their superior performance in
TC, and SC task [8,9] in particular. Previous works on the discriminative TC com-
monly rely on the so-called bag-of-words (BoW) representation that maps variable
length text into a fixed-dimensional vector, parameterized by a finite vocabulary. The



“bag-of-unigrams” is the most common form of BoW representation utilizing a dic-
tionary of basic words as its vocabulary. Essentially BoW model treats a document as
an unordered collection of word-features, and utilizes the frequency distribution of the
words as the primary evidence for TC.

There has been increasing evidence that short phrases are more effective than single
words (unigrams) for the SC task. For example, the term good often appears in posi-
tive online reviews, but “not very good” is less likely to appear in positive comments.
When using bag-of-unigrams representation, the proximity of “not”, “good” and “very”
in the text is ignored. A proposed remedy is to extend the bag-of-unigrams model by
incorporating n-grams (a contiguous sequence of n words) 3 as features in the vector
space representation of the text [10], i.e. so called “bag-of-n-grams” (BoN). However,
extending the model to incorporate n-grams (for n >= 3) will adversely effect the
complexity of parameter space, since the dimensionality of a BoN vector grows expo-
nentially as a function of n. For instance, extending an English word vocabulary D of
size |D| = 10,000 by including the bigrams (n = 2) and trigrams (n = 3) will add
up to |D|? = 108 and |D|®> = 10'2 additional free parameters, respectively. Feature
selection (FS) techniques [11] are popular methods for dealing with the complexity of
bag-of-n-grams model. The basic idea of FS is to retain a small subset of features, based
on a certain scoring function (statistics), that are suitable for the SC task. Popular FS
methods used in classifying text include Information Gain (IG), Chi-Square Test (CHI),
Mutual Information (MI), Optimal Orthogonal Centroid feature selection (OCFS) [11].
More recently, Jing et al. [12] introduced a generalized framework for popular FS tech-
niques. However, effectiveness of FS methods is often dataset-dependent. Thus, choos-
ing an appropriate FS technique requires empirical validation. Furthermore, estimating
optimal hyper-parameters for each FS method considered will require additional cross-
validation.

Our work is motivated by the idea of utilizing short phrases as features for large-
scale sentiment classification. However, in contrast to BoN model, we propose a dif-
ferent approach to modeling short phrases for SC task. The proposed method projects
n-grams into a latent lower-dimensional space using only unigram features and avoids
FS pre-processing. To be more specific, the embedding of an n-gram is a combination
of the embedding of its composing words. The procedure estimates an embedding of
a unigram feature for every position in the n-gram window. In this way, the parameter
space of our model grows only linearly with n. The embedding of the whole document
is a union of such n-gram embeddings, re-weighted based on their positions in the text.
This is consistent with the hypothesis that spatial occurrence of a phrase can influence
overall sentiment of an article. The parameters of our method are jointly optimized in an
online learning setting through the stochastic gradient descent method [13]. The empir-
ical evaluations demonstrate the proposed model outperforming state-of-art FS method
for the SC task.

To summarize, the proposed system performs feature selection in a latent space,
promoting phrases that are effective for the SC task. Section 3.3 provides interesting
anecdotal evidence to support this claim. We evaluate the performance of the proposed
method along with standard baselines on two sentiment classification datasets (Ama-

3 We will use “n-gram” and “phrase” interchangeably.



zon*, TripAdvisor’). Our empirical evidence demonstrates that the proposed framework
outperforms baseline methods.

2 Supervised Sequence Embedding

In this section we will present an overview of the proposed deep neural network model
that 1) represents all sliding n-gram windows in a lower-dimensional latent space; 2)
obtains document representation in the latent space, defined as a weighted sum of latent
n-grams, where weights are learned from positions of phrases in the document; and 3)
estimates a classifier in the document-level latent space, biased towards the prescribed
classification task.

Before presenting the proposed “deep” neural network model, an overview of the
notations is in order. Let D denote the underlying word (unigram) dictionary and S
denote the set of all finite length sequences of words from D. Weuse I’ = I'(n) C S
to denote the vocabulary of n-grams in a text corpus. An input text x € S of length
N is an ordered sequence x = (wsy,...,wy), with w; € D. We denote an n-gram
from x, with n < N, starting at its j-th position as v; = (wj;, Wjq1,..., Wjgn—_1)-
We denote vectors or matrices with boldface font (e.g., G or b), and use cursive for
scalar variables and functions (e.g., M or h(:)). We use |.| to denote the cardinality
of a set. Operator X denotes vector or matrix multiplication, while - will be used to
emphasize the multiplication of scalar variables. Let Y = {1,...,C} denote a set of
class labels. X C S denotes a collection of labeled documents (training set), where
X = {(Xizyi)i:17...,L|Xi eX& Y; € y} and ‘Xl = L.

Our model is an alternative to the classification with BoW representation. For text

x = (w;y --- wy), the BoW model uses a unigrams dictionary to produce a |D|-
dimensional vector €y for x:
N
6x = 37 D Cu (1
=1
Here e,,,, also known as “selector”, is the canonical basis vector
=(0,...,0, 1 0)" 2
ewi_()"'a y . 7"'7) ()
at index w;

with a single non-zero entry at w;-th position. It is a common practice to replace the
sole non-zero entry of e,,, with the inverse document frequency of word w;. As a result,
the vector ex in (1) takes the form of TF-IDF weighting.

The BoN extension includes n-grams as additional features [14]. By using all unique
phrases of at most n words from I” as features, we obtain a |I"|-dimensional representa-
tion of x. That is, BoN maps x to | I"|-dimensional representation, with |I'| = O(|D|").
Due to its exploding number of features, BoN normally relies on feature selection meth-
ods to control the number of parameters. Differently, our method models n-grams in the
latent space while recognizing only n-|D| unique features and avoiding feature selection
pre-processing.

http://times.cs.uiuc.edu/-wang296/Data/TripAdvisor.tar.gz

http://www.cs. jhu.edu/-mdredze/datasets/sentiment/unprocessed.tar.gz



We refer to the first two stages of the proposed system as the “Supervised Sequence
Embedding” (SSE). Figure 1 provides an illustration of the SC system. The first pro-
jection step that computes latent embedding of all n-grams in an article is presented
in Section 2.1. The second projection that combines latent n-grams to compute article-
level embedding is presented in Section 2.2. Section 2.3 presents the third step of the
SC system that computes a document-level classifier in the latent space. Our framework
is best described using a multi-layer projection as shown in Figure 1.

(Text Document X\
"the film is palpable evil genius"
w1 W2 W3 Wy ws  We
= - W= B- H- B-

i €y1 €72 1€ys [y
|
Phrase Embedding Py;=G x é,,

P, Pyl Py P,

~ |
El'anh
A v v

Document Embedding

dx = Py, + P2 + Py

Supervised Sequence Embedding

ﬁIILR Classifier

Fig. 1: Sentiment Classification using Supervised Sequence Embedding. We consider
two variations of the method based on the procedure to compute combining weights ;.

2.1 Latent n-gram Embedding

We formally define the projection step for latent phrase embedding. The formation of
n-grams is carried through a sliding window of length n. As illustrated in Figure 1,
setting n = 3, the first n-gram is (w1, wa, w3), second n-gram (ws, w3, wy), etc. Given



a phrase of n adjacent words, we first represent it using n word selectors. Specifically,

given v; = (wj, wjt1,...,Wjtn—_1), define
5 T T T T
e’Yj = [ewj ) ewj+1 PR 7ewj+n,1] ) (3)

where the notation [-] denotes the concatenation of single word selectors into an n - | D|-
dimensional vector for each n-gram ;. The embedding of the y; is then defined as:

p, =G xé,,, (4)

where G € RM*™IP is the projection matrix which maps €,, into a latent space with
dimension M. It is important to note that M is a hyperparameter, while parameters of
G are estimated during the learning process using backpropagation.

Since each n-gram is encoded as a sparse vector with n non-zeros in &, we can
treat (4) as an operation decoupling the embedding parameters for word w; based on its
position with the n-gram «y;. Matrix G maintains n latent embedding vectors for every
word w; € D depending on its position inside the n-gram. That means one embedding
for each possible position within the n-gram for w;.

2.2 Latent Document Embedding

We use the n-gram embedding to form a vector representation for a text document. The
number of phrases in each document is variable depending on its length N. We need a
function to compress the information from these n-grams into a fixed length document
embedding vector. While there are many possibilities for the combining function, the
mean(-) function has been verified by our previous work in [15] to provide a good
summarization of a document in the latent space. In this work, we also propose to use a
weighted sum function and to learn the weights for each «; € x, based on its position
in the text. These weights are used to combine latent embedding of -y; into a document-
level representation. Specifically, we define latent embedding of document x in the
latent space as:

N
G(x) =dx = > _ q; X h(py,), (5)
j=1

where dy, € RM, x = (wy,...,wy), and h(-) = tanh(-)®. We model the weight of
every -y, using the following mixture model. Let v; € x, |x| = N and j indicate the
position of an n-gram in x, and define the weight associated with ; as:

K
1 . . j

,-:—E sigmoid ( a -—+b>, 6)

QJ kal g < k N k

where ay, by are parameters to be learned, () = Zjvzl gj, K specifies the number
of mixture quantities, and sigmoid(-) is a non-linear transfer function. In the rest of
this manuscript, we refer to the model with uniform weights q; = % (i.e., combining
function is mean(-)) as SSE, while SSE-W is used to denote the model with spatial

® The non-linear function tanh(-) converts the unbounded range of the input into [—1, 1].



re-weighting defined in (6). In spatial re-weighting in SSE-W model, it attempts to
capture longer “trends” within each document. In this, our work is similar to the work of
Lebanon et al. [16]. The authors propose a novel semi-parametric generative model for
an unsupervised embedding of documents as smooth curves in R!P!, while preserving
spatial information for phrases within a document.

2.3 Classifier

In our evaluations we use Multinomial Logistic Regression (MLR) to carry out SC.
Given the document embedding dy, and C' candidate classes, 3, represents the coetfi-
cient weights for the i-th candidate class. Furthermore, the predicted class label can be
calculated as follows:

exp(B; x dy)

g(x) = arg max @)
ie{1.0} 1+ Zke{l,,c} exp(,@;— x dx)
This classifier can be trained by minimizing the loss function:
T
ex - x dy,
Lxy=— % log DBy, x dx) ®)

T
erxy Lt 2jen.oyexp(B) xdx,)

This latter loss is called “negative log likelihood” in literature.

The proposed supervised embedding method is implemented as a perceptron net-
work composed of four activation layers as shown in Figure 1. We take advantage of
the backpropagation process to train this layered network and use stochastic gradient
descent (SGD) method for estimating the parameters [13]. For a training set X, instead
of calculating true gradient of the objective with all training samples, SGD computes
the gradient with a randomly chosen training sample and updates all parameters ac-
cordingly. SGD optimization method is scalable and proven to rival the performance of
batch-mode gradient descent methods when dealing with large-scale datasets [17].

2.4 Related Methods

The proposed SSE embedding has its roots in a previous model known as “Lookup Ta-
ble Convolution” (LTC) [18, 15]. LTC constructs a low-dimensional latent embedding
for all v; € x by first projecting each word into a latent space, followed by a second
projection step to obtain the latent embedding of each n-gram. Specifically, each word
w; € D is embedded into the m-dimensional feature space using a word lookup table:

LTE(wJ) =E x €w; = ij, (9)

where the j-th column of the matrix E € R™*IP| denotes the embedding vector
of the word w;. Given an n-gram -y;, the word lookup table applies the same op-
eration to each word inside the n-gram sliding window, producing the vector z.;, =
[EIJ_., E;,';H s EIJ, . 1]—'—,. with [-] denoting the concaten?tion of sipgle word em-
bedding into an n - m-dimensional vector. The latent embedding for «y; is then defined
as

Py, =Fxz, =Fx[E, B, .. E, 7, (10)

W17 P T Widn—1



where projection matrix F € RM*"'™ mapg Z-, into the M -dimensional latent space.
This two-step embedding procedure encodes each n-gram in a latent space without the
explicit construction of all n-grams. Collobert and Weston [18] empirically validated
LTC on six Natural Language Processing (NLP) tasks. Our previous work [15] adopted
LTC for sentiment classification.

We emphasize the difference between this work and [15]. First, instead of modeling
a lookup table layer followed by a convolutional layer as done in LTC, SSE models
the parameters of the latent n-gram embedding directly using matrix G in (4). Second,
the SSE-W model uses spatial re-weighting of n-grams, while uniform weights (i.e.,
mean(-) combining function) are used in LTC (and SSE). This improves the perfor-
mance in many cases as our experimental evaluations in Section 3 suggest. In addition,
the experimental results suggest the SSE model achieves higher SC accuracy, compared
to the LTC method described by (9) and (10). Furthermore, training an LTC model us-
ing backpropagation requires many vector multiplications to calculate gradients 9L /OE
and 9L /0F due to the multiplicative coupling of E and F'. In contrast, in training SSE
models, these computations are largely avoided.

In general, performing dimensionality reduction in the original high-dimensional
feature space is a common practice for various classification methods. Popular unsu-
pervised latent embedding methods on text documents includes Latent Semantic Index-
ing (LSI) [19], or its probabilistic extensions, probabilistic LSI (pLSI) [20], and Latent
Dirichlet Allocation (LDA) [21]. However, biasing parameters of the embedding to-
wards specific classification task has not received much attention until recently, such as
LTC from [18] and the work of learning to rank with joint word-image embedding in
[22].

Our work is also related to the “Deep learning” architecture which has received
increasing attention in recent years. Deep architectures have been used to learn com-
plicated functions in natural language processing and computational vision [23]. Each
layer in the architecture encodes features at different levels of abstraction, defined as a
composition of features computed at the previous layer. Glorot et al. [24] utilize a deep
learning model to extract the representation of each text review in an unsupervised fash-
ion using stacked Denoising Auto-encoders. With the learned high-level feature repre-
sentation the authors claim to achieve state-of-the-art performance for domain adaption
tasks on sentiment classification data. Socher et al. [25] use recursive neural networks
to perform simultaneous parsing and classification of both text and image data. In addi-
tion, multi-layered neural networks are successfully used for learning language models
that estimate conditional probability distribution for word sequences [26, 27].

Another relevant domain to our work is the “string kernel” framework. String ker-
nels and their extensions have been very popular discriminative choices for the protein
classification problem, where sequences of amino acids are represented as strings [28,
29]. These kernels map a variable length string into a low-dimensional dense feature
space using BoW strategy. Similar approaches have also been applied to text cate-
gorization before: see e.g., [30]. A critical component in the string kernel research is
the implementation of inexact matching between short sequence segments. These ap-
proaches give rise to a family of mismatch kernels [28]. Similarly, the SSE method
allows for inexact phrase matching that takes place in the latent space.



3 Experiments

We evaluate the performance of the proposed SSE method on SC task with binary and
multi-class setting. For binary classification setting, we only consider positive (1 and 2
stars) or negative (4 and 5 stars) sentiment in the reviews. For multi-class setting we use
four available labels (1,2,4 and 5 stars) to evaluate text classification on Amazon and
TripAdvisor datasets. In addition, since TripAdvisor contains neutral reviews, we also
consider a SC task with five category labels for this dataset.

Amazon dataset contains customer reviews of 25 various categories of goods in-
cluding apparel, automotive, baby, DVDs, electronics, magazines, and tools and hard-
ware. TripAdvisor dataset contains customer reviews for various hotels across the globe.
While TripAdvisor corpus provides rating scores for various aspects (e.g., rooms, lo-
cation, cleanliness), we only consider overall ratings for this dataset. These are con-
sidered some of the largest sentiment classification datasets currently available. For
Amazon we use 257,900 samples for training and 110,562 samples for testing, while
55,306 and 10,078 samples from TripAdvisor were used for training and testing, re-
spectively. The development sets contain 10,000 and 5,000 samples for Amazon and
TripAdvisor, respectively. In this work, we report classification results obtained using
train-development-test splits for Amazon and TripAdvisor datasets. These dataset splits
are available for download from our website’. It is important to note that the empirical
evidence reported in this work are not directly comparable to the results we reported
in [15], as we use different splits for Amazon and TripAdvisor datasets. However, to
be fair, we make available online the SA results for the proposed SSE method, bench-
marked on the split used in our previous publication [15].

Amazon and TripAdvisor datasets contain user-generated reviews where an overall
sentiment for each review is quantified with an integer 1 through 5 (a.k.a the 5-star Lik-
ert scale). A sentiment score of 1 star corresponds to the lowest (negative) sentiment,
while the score of 5 stars corresponds to the highest (positive) sentiment. TripAdvisor
dataset contains neutral reviews (rated with 3-stars), while neutral reviews were omit-
ted during the construction of Amazon dataset by their authors. For both datasets, a
balanced version of the data splits (i.e., training / testing / development) is created that
contain equal number of positive (4 and 5 stars) and negative (1 and 2 stars) reviews.

Table 1 provides the number of unique phrases for n € {1,2,3,5} found in the
training sets. Clearly, when n > 2, a feature selection technique is necessary, not
only to improve the classification accuracy but also to keep the optimization tractable.
For both datasets, we follow the method used in [31] to limit the vocabulary size by
retaining n-grams with the highest mutual information (MI) shared by the binary labels
(positive or negative). For the Amazon dataset, we use training split to select 25,000
grams per category, then concatenate the phrases to form the vocabulary used in the
experiments. For TripAdvisor dataset, we also use an MI-based procedure to limit the
vocabulary size to 500,000 n-grams computed for the entire training corpus.

For one of the baseline methods we use a linear SVM classifier, which is trained
on BoN document representation. We obtain BoN representation with TF-IDF and n €
{1,2,3,5}. We restrict our evaluation to the linear kernel because of the corpus size and

7
http://mst.cs.drexel.edu/datasets/ECML2012



the number of features used in describing each document. Prior research showed linear
SVM achieving state-of-art performance on SC tasks (see e.g., [8] or [9]). In addition,
we use a linear perceptron classifier trained on BoN as another baseline. We believe the
latter choice is relevant, since the main objective of this work is to test the merit of the
proposed SSE against the BoW model populated with n-grams.

Table 1: Unique phrase counts |T'| for each dataset. Numbers are in thousands.

[n-gram size[ Amazon|TripAdvisor RCV1 23k[RCV1 380k]

n=1 448 158 124 262
n=2 6,446 1,175 2,400 6,364
n=3 23,400 5,172 9,535 30,377
n=>5 78,864 21,741 35,118 262,586

We use SVM and Pre to denote the SVM and linear perceptron classifiers, respec-
tively. The BoN representation will be denoted with BoW-ng, while |T'| denotes the
number of unique phrases (in thousands) for the training sets. We use LTC for refer-
ring to the Lookup Temporal Convolution method presented in [15]. We denote the
proposed SSE method with mean(-) used for combining function as SSE. SSE method
with spatial re-weighting of n-grams defined in (6) is identified as SSE-W. The rest
of this section is organized as follows. We provide important implementation details in
Section 3.1. Sentiment classification results are discussed in Section 3.2. Section 3.3
provides anecdotal evidence that selecting phrases with highest prediction responses
from a trained SSE model can be used for “sentiment summarization”. We also provide
an illustration of the estimated spatial weights for trained SSE-W model. In addition
we demonstrate that SSE-W can be augmented with an alternative combining function
g; that captures strength of sentiment in text, but not polarity. Finally, in Section 3.4
we present topic categorization results on Reuters dataset [32] to demonstrate that SSE
model is applicable to text categorization tasks other than SC.

3.1 Implementation Details

In our implementation we used the following formulation of TF-IDF. For every n-gram
v; € x where document x € &, the weight for v; was calculated using the formula:

thdf(vy;,x, X) = ﬁ - tf(v;,%x) - idf(y;, X'), where idf(y;, &) = log %,
and tf(~y;, x) returns the number of times term -y; appears in x.

We used the LIBLINEAR® SVM toolkit. For each SC task, the penalty parameter
C was set using grid search with C = {278,277 ... 210 2111 "performed on the
development set. Then the reported classification error was computed on the testing set
with the optimal penalty parameter found. Perceptron-based methods (LTC, SSE, SSE-

W and Prc BoW) were implemented using the Torch5® machine learning library. A

http://www.csie.ntu.edu.tw/-cjlin/liblinear/

http://torch5.sourceforge.net/



development set was used to select the best model during the training of all perceptron
classifiers. During the training procedure the model was evaluated at regular intervals
on the entire development set, and the best performing model was retained. After the
training was completed, this model was used to compute the classification error rate for
the testing set, which is the number reported in all of our experiments below.

The perceptron classifiers were trained with a fixed learning rate 0.05. The dimen-
sionality of the latent space for all perceptron-based methods was set to M = 50 in all
the experiments. We set these parameters according to our prior experience in design-
ing perceptron-based classification systems, and did not subject them to the empirical
selection in this work. We selected the length of the latent phrase for SSE and SSE-W
methods (i.e., size of n-gram) after evaluating SVM classification performance with
BoN and n € {1,2,3,5}. These results are presented in Table 2. We selected n = 5
when modeling latent phrases in SSE and SSE-W methods. Finally, we fixed K = 3
in (6), which was motivated by our assumption that phrases appearing in the beginning
or at the end of each text are the most effective at predicting text labels. The results
presented in Section 3.3 support this hypothesis.

Table 2: Macro-average classification error rate for SVM with BoN, where n €
{1,2,3,5}. Macro-average error rate is calculated as mean of per-label classification
error rates. 2 - x denote binary classification setting, while 4 - x and 5 - * identify multi-
class setting with four and five categories, respectively. The numbers marked with f
(or 1) are statistically significantly better than SVM BoW-1g with p < 0.0001 (or
p < 0.01).

Amazon TripAdvisor
2% | 4% 2-*\ 4% \ 5.k
SVM BoW-1g[[10.68] 35.78 [ 8.97 [ 35.41 [ 46.41
SVM BoW-2g||6.60 |28.26 |7.60% |33.68% |44.68*
SVM BoW-3g|6.397(27.98" ||7.46%|33.50%| 45.12
SVM BoW-5g||6.487(28.027|7.53%|33.45%| 46.41

Method

3.2 Classification Results

Table 3 presents SC results using macro-average error rate, defined as mean of per-
label classification error rates. For completeness of presentation, we also provide micro-
average classification error rates in Table 4, computed over all test samples regardless
of their labels. It is worth noting that splits for Amazon and TripAdvisor are balanced
in terms of binary sentiment polarity, thus binary classification error rates in Table 4
match the macro-average results from Table 3. In the five experiments conducted SSE-
W method outperforms the SVM baseline. However, only in the multi-class setting
SSE-W method results in statistically significant improvement over SSE model, with
p < 0.0001 for Amazon and p < 0.01 for TripAdvisor datasets. In case of binary



1 7 ] 5-gram | Weight

08 A is an extremely good book 3.58
R is just a good book 3.19
0.6 book is a good buy 2.94
4 overall a very good book 2.84
04 AA a book is a good choice 2.81
02 CIN AA book is a very good 2.76
AAA R book is still very good 1.70
0 Aapad a good book just because 1.15
0 10 20 unless good books are just 1.05

(a) SSE-W with spatial weights (6) (b) SSE-W with weights ¢; = G x é,,

Fig.2: (a) Ilustration of spatial weights in SSE-W model trained on the Amazon
dataset. The values of the spatial weights were computed for a “synthetic” text with
25 words. The weights are scaled into range [0, 1] for illustration purposes. (b) Se-
lect 5-grams and their combining weights. The weights are computed using the model
q; = G x €,, trained on Amazon dataset with binary classification setting.

classification on Amazon, improvement of SSE-W over SSE is only statistically sig-
nificant with p < 0.4. These results suggest that spatial re-weighting of phrases only
becomes relevant when predicting sentiment on the Likert scale with multiple labels.
Also, when predicting binary sentiment, the presence of certain phrases, regardless of
their positions within the text, is sufficient for the task.

Table 3: Macro-average classification error rate. Macro-average error rate is calculated
as mean of per-label classification error rates. 2 - x denote binary classification setting,
while 4-% and 5-* identify multi-class setting with four and five categories, respectively.
The numbers marked with t (or 1) are statistically significantly better than SVM BoW-
3g with p < 0.0001 (or p < 0.01).

Amazon TripAdvisor
2. 5[ 4% ||2- 4[4 %] 5%
SVM BoW-3g[[ 6.39 [ 27.98 [[7.46]33.50[ 45.12
Prc BoW-3g || 6.55(26.45(|7.54|34.73| 43.58
SSE 5.691(25.30"(|6.90(34.22|42.88*
SSE-W  ||5.63(24.61"(|7.01(32.25|40.54"
LTC 705 - |8.49| - -

Method

3.3 Illustrative Examples

We now present several illustrative examples obtained using SSE and SSE-W models
trained on the sentiment datasets with multi-class 4 - x setting. Table 5 shows three non-



Table 4: Micro-average classification error rate. Micro-average error rate, computed
over all test samples, regardless of their labels is reported. The numbers marked with
T (or 1) are statistically significantly better than SVM BoW-3g with p < 0.0001 (or
p < 0.01).

Amazon TripAdvisor

2.x| 4% 2-*[4~*[ 5. x
SVM BoW-3g][ 6.39 [ 23.45 [[7.46]32.00[ 43.07
Prc BoW-3g || 6.55|23.00%||7.54|33.94 43.05
SSE 5.691(22.40"(/6.90(33.90| 42.21
SSE-W  ||5.637(22.05"(|7.01|31.41/|40.76*

Method

overlapping 5-grams with highest weights obtained from selected TripAdvisor reviews.
The weight for each phrase v, is set using Enaxc},ﬁj X ¢(y;), where ¢(vy;) denotes
ie{l...

latent embedding of ;. The trained SSE model for TripAdvisor is used to compute
embedding of each phrase ; separately.

We also present sample illustration of spatial weights obtained from the SSE-W
model trained on the Amazon dataset with binary classification setting. The values of
the spatial weights were computed for a “synthetic” text with 25 words. The weights
are scaled into range [0, 1] for illustration purposes. Please refer to Figure 2a for the il-
lustration. We note the obtained weights have a straightforward interpretation — phrases
or sentences that appear in the beginning or at the end of each review are more likely to
express strong sentiment that defines the polarity of the review.

In addition to spatial information, weights g; in (6) can be computed with other
models. For example, latent projection layer from (4) can be used to compute weights
g; directly from the sequence features. In this case, another projection G is estimated,
where G ¢ R/l and q; = G x €. To illustrate our point, we use the SSE
model trained on the binary Amazon dataset to initialize the modified SSE-W model.
The modified SSE-W model is then trained on the Amazon dataset, while keeping the
projection parameters G unchanged. We then use weights ¢; = G x €,, to sort all
5-grams from the Amazon’s testing set. Figure 2b lists several top-scoring 5-grams that
we have selected from the sorted list of the 5-grams that contained words “good” and
“book”. We note that this model captures only sentiment strength and the obtained list
contains phrases that carry both positive and negative sentiment. The estimated weights
qj, presented in Figure 2b, support this argument. For example, one can argue that “is
an extremely good book™ carries stronger (positive) sentiment than “book is a good
choice”, which in turn has stronger sentiment than “a good book just because”.

3.4 Topic Categorization

In addition to SC task we consider topic categorization using Reuters dataset (RCV1)'.
The original Reuters Corpus (RCV1) contains train-test split of 23,149 and 781,265

10'We use raw text features, instead of stemmed words as used in the original RCV1 publication.



Table 5: Summarization for select TripAdvisor reviews, obtained as the top three non-
overlapping 5-grams. The trained TripAdvisor SSE model with multi-class 4 - x setting
is used to calculate phrase weights.

lReview Text H Rating \ 5-gram \Weight‘
disappointing choice this is one of the worst large hotels i have ever is one of the worst 34.1
visited . the suite i had was filthy , and the food from room service * avoid this place at all 313
was barely edible ( the caesar salad was dangerously inedible ) . .

there is no wifi . two lamps do not work . feels like a decrepit ocean was barely edlble ( the 286

liner . despite the view and the location , i would avoid this place at
all cost .

noisy air conditioning on NUMBERnd floor ! ! we stayed one

night in the sand villa , in a room on the NUMBERnd floor staff was pleasant and helpful 30.6
overlooking the pool . the room was comfortable . there was a loud . . DR '
rumbling noise , seemingly from something like a big central air *k noisy air COl’ldlthIllIlg on 22.1
conditioner , that continued all night . it was about as loud as a plane .

during flight - - certainly not , but not pleasant either . the staff was would not Stay there again 20.6

pleasant and helpful , but because of the noise i would not stay
there again .

very nice experience the frenchmen fs a very nice place to stay . the the only bad thing i 17.3
rooms were decorated nicely and the courtyard with the jacuzzi and * % kk jacuzzi and pool were beautiful 16.7
pool were beautiful . above all , the staff was probably the . .

friendliest i * ve ever encountered . very outgoing and pleasant . the is a very nice place 16.3

only bad thing i could say about it is that the rooms were just a
little small , but for a single person or a close couple , it was fine .

stylish and great staff i stayed at the hotel globus in may the Staff were all fantastlc 268
NUMBER as a single female traveller . the room was small but very || % % % % styhsh and great staff 1 22.1
stylish and spotless . the staff were all fantastic and very friendly . .

good breakfast and excellent location for the railway station and gOOd breakfast and exce]lent locatlon 206

easy reach of all florence * s attractions . i * m going back to florence
in december and will be staying there again .

documents, respectively. The documents in the RCV1 corpus are categorized with 103
topics. The main focus of our research is the development of text classification methods
that can efficiently handle large-scale data. Thus, we also create a new split for RCV1
with 380,000 training samples. Following the procedure of Lewis et al. [32] we select
documents with IDs between 2,286 and 383,792 for training in the new split. We de-
note the split with the original (smaller) training set with RCV1 23k, while the split
with larger training set is denoted by RCV1 380k. To obtain a development set for both
splits of RCV 1, we randomly sample 10,000 documents from the corresponding testing
sets. We restrict our evaluations to the four topics with the largest number of positive
examples in the entire Reuters Corpus: CCAT (ALL Corporate-Industrial) GCAT (All
Government and Social), MCAT (ALL Securities and Commodities Trading and Mar-
kets) and C15 (Corporate and Industrial Performance). For RCV1 dataset we limit the
vocabulary size to the 500,000 most frequent n-grams selected using training set only.

Table 6 presents text categorization results for RCV1 dataset. SSE-W method out-
performs the SVM baseline in all but one experiment. In addition, SSE-W does not
improve classification over the SSE model for the MCAT topic, and the classification
improvements are rather small for the CCAT and GCAT topics. On the other hand, the
improvement of SSE-W over the SSE method is statistically significant with p < 0.0001
in the case of C15 topic. We speculate these results can be attributed to the nature of
the topics considered. Indeed, MCAT, CCAT and GCAT are high-level topics in RCV1,
with each assigned to news articles that describe broad range of concepts. Furthermore,



Table 6: Macro-average classification error rate for RCV1 dataset. Macro-average error
rate is calculated as mean of per-label classification error rates. The numbers marked
with t (or 1) are statistically significantly better than SVM BoW-2g with p < 0.0001
(or p < 0.01).

RCV1 23k RCV1 380k
CCAT[GCAT[MCAT[ Cls CCAT[GCAT[MCAT[ cis
SVM BoW-2g[[5.8215.42[5.60 [ 7.62[[4.07[4.47]3.95 [ 4.93
SSE 5.74 |4.791|4.41%|6.217 || 4.29 |3.8173.42| 5.76
SSE-W ||5.71%|4.70" |4.45%|5.50" || 4.15 |3.817|3.471|4.28"

Method

C15 identifies articles only related to corporate and industrial performance, thus allow-
ing SSE-W model to identify the spatial distribution of the effective phrases, that C15
articles exhibit.

4 Conclusions and Future Work

This work presents a supervised method (SSE) for the latent embedding of n-grams.
The experimental results show improved text classification performance over the base-
line classifiers trained on BoN models. In addition, the proposed extension to the model
(SSE-W) incorporates the relative position of the phrases when forming latent represen-
tation of a document. SSE-W model improves sentiment classification accuracy over
SSE model that uses uniform weights (g; = %).

We limit our empirical evaluation in this work to document-level text classification,
focusing on sentiment analysis problem. We believe the SSE model can also be applied
to sequence classification in general, where a sequence is an ordered list of events that
can be described using a finite set of features. In the future work, we plan to investigate
the merit of the proposed system for various sequence classification tasks. For example,
the task of classifying protein sequences [33] or query log sequences to identify human
users [34]. In addition, we plan to consider applying the framework to other modalities
where BoW representation is used. For instance, object recognition in images is another
promising direction of our future work.
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