Learning Preferences with Millions of Parameters by Enforcing Sparsity

Presenter:

Xi Chen¹, Bing Bai², Yanjun Qi², Qihang Lin¹, Jaime G. Carbonell¹

- 1. Machine Learning Department, Carnegie Mellon University
 - 2. NEC Lab America

Motivation

- Ranking: match a query to document (find documents that are most relevant to the query)
- Most of the current methods use hand-coded features
- Our Goal: learning to rank directly from words

[B. Bai et al. 09]

Vector Space Model (query/document as vector)

$$q, d = [w_1, \dots, w_{\mathcal{D}}] \in \mathbb{R}^{\mathcal{D}}$$

D: vocabulary size

 w_i : normalized weight (tf-idf) of *i*-th word

Cosine similarity (relevance of a document to a query)

$$f(q,d) = q^T d$$

- Does not deal with synonyms
- No machine learning

Basic Model

Similarity Score (relevance of documents to a query)

[D. Grangier 08] [B. Bai et al. 09]

$$f(q,d) = q^{\top} W d = \sum_{i,j} W_{ij} (q_i \cdot d_j)$$

 W_{ij} : relationship/correlation between q_i and d_j

- ❖ Goal: Learn W matrix
- **Generalization ability:** $W \in \mathbb{R}^{\mathcal{D} \times \mathcal{D}}$ \mathcal{D} : vocabulary size $\mathcal{D} = 10,000, \mathcal{D}^2 = 10^8$ free parameters to model
- * Memory issues: $\mathcal{D} = 10,000$: W needs 1GB Memory
- \bullet Computational cost: q^TWd

W: Sparse Matrix!!!

Training Framework

Data:

Tuples \mathcal{R} : query q, related doc. d^+ , unrelated doc. d^- .

Learn W such that:

$$f(q, d^+) = q^\top W d^+ > f(q, d^-) = q^\top W d^-$$

Margin rank loss:

$$L_W(q, d^+, d^-) = \max(0, 1 - q^T W d^+ + q^T W d^-)$$

Model:

$$W^* = \underset{W}{\operatorname{arg\,min}} \frac{1}{|\mathcal{R}|} \sum_{(q,d^+,d^-) \in \mathcal{R}} L_W(q,d^+,d^-) + \lambda ||W||_{\mathcal{L}}.$$

Training Algorithm

Stochastic (sub)Gradient Descent:

$$\nabla L_{W^t}(q, d^+, d^-) = \begin{cases} -q(d^+ - d^-)^\top & \text{if } q^\top W^t(d^+ - d^-) < 1\\ 0 & \text{otherwise} \end{cases}.$$

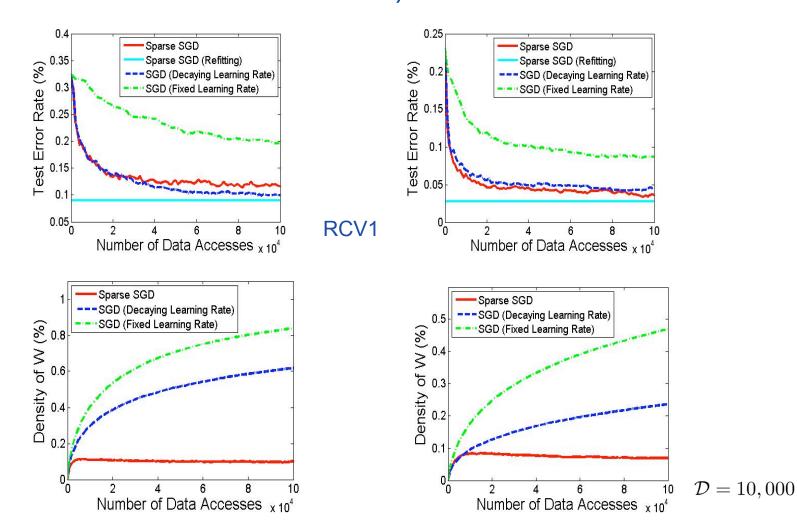
$$W^{t+1} = W^t - \eta_t \nabla L_{W^t}(q, d^+, d^-)$$
 $\eta_t = \frac{C}{\sqrt{t}}$: decaying rate $\eta_t = C$: fixed rate

Mini-batch Shrinkage Strategy (every T iterations):

$$\begin{split} \widehat{W}^t &= \operatorname{argmin}_W \frac{1}{2} \|W - W^t\|_F^2 + \lambda \sum_{k=t-T+1}^t \eta_t \|W\|_1 \\ &\Longrightarrow \widehat{W}_{ij}^t \to 0 \end{split}$$

Refitting Step (Reduce the bias of ℓ_1 regularization):

Fixing zeros elements and training the remaining elements without L1-regularization


Experimental Results

Ranking Performance (multi-class classification data, relate doc. are in the same class)

20 News

(20NG)

Group

Experimental Results

20NG

	MAP	Test Error (%)	Memory (MB)
Identity	0.185	32.3	0.2
Diagonal	0.190	31.8	0.2
SGD (fixed learning rate)	0.258	19.7	1294
SGD (decaying learning rate)	0.399	9.9	943.1
Sparse	0.360	11.4	154.2
Sparse (refitting)	0.426	9.0	154.2

RCV1

	MAP	Test Error (%)	Memory (MB)
Identity	0.380	23.0	0.2
Diagonal	0.390	22.3	0.2
SGD (fixed learning rate)	0.451	8.7	717.2
SGD (decaying learning rate)	0.453	4.6	360.2
Sparse	0.463	3.6	105.4
Sparse (refitting)	0.501	2.9	105.4

Experimental Results

Learned word-relationship from Sparse W (20 News Group)

Query word	Most related document words
atheism	keith atheists god caltech
clinton	government health people gay
cpu	mac drive scsi card
graphics	tiff image color polygon
handgun	gun weapons militia fbi
hockey	game espn colorado team
religions	god bible christian jesus