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Abstract Most of a cell’s functional processes involve interactions among proteins,
and a key challenge in proteomics is to better understand these complex interaction
graphs at a systems level. Because of their importance in development and disease,
protein-protein interactions (PPIs) have been the subject of intense research in re-
cent years. In addition, a greater understanding of PPIs can be achieved through the
detailed investigation of the protein domain interactions which mediate PPIs. In this
chapter, we describe recent efforts to predict interactions between proteins and be-
tween protein domains.

We also describe methods that attempt to use protein interaction data to infer pro-
tein function. Protein-protein interactions directly contribute to protein functions,
and implications about functions can often be made via PPI studies. These infer-
ences are based on the premise that the function of a protein may be discovered
by studying its interaction with one or more proteins of known functions. The sec-
ond part of this chapter reviews recent computational approaches to predict protein
functions from PPI networks.

1 Introduction

In recent years, the human and other genome sequencing projects have generated
vast amounts of data that identify thousands of new gene products whose functions
and interrelationships are not yet known. The overall molecular architecture of all
organisms is largely mediated both structurally and functionally through the coor-
dination of protein-protein interactions (PPIs). In particular, the disruption of PPIs
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Fig. 1 The framework of contents in this chapter.

may lead to the development of diseases. Thus, correctly identifying the interrela-
tionship between proteins at the systems level is urgent and necessary, since such
knowledge would lead to a better understanding of the functional properties that
define the behaviors of most complex biological systems.

Experimental techniques [82] to detect PPIs or protein functions have their own
limitations, and the resulting data sets are often noisy. Thus, additional approaches
are needed to accelerate the recovery of complex protein-interaction systems. Given
the vast amount of available biological evidence and the representational power of
mathematical models, computational methods are gaining importance. In this chap-
ter, we review three areas to which computational approaches contribute signifi-
cantly (Figure 1). We first introduce methods targeting protein-protein interaction
predictions in Section 2. Then in Section 3 recent advances in identifying domain-
domain interactions are presented. Finally, Section 4 reviews various ways to predict
protein functions from PPI graphs.

2 Prediction of protein-protein interactions

The term “protein-protein interactions” refers to the association of protein molecules
with each other. The associations are interesting from multiple perspectives, includ-
ing ascertainment of specific biological processes and pathways such as signal trans-
duction pathways, as well as the systems-level studies of networks on the cellular
or organism-wide scale. Because direct pairwise PPIs provide the basic building
blocks to carry out the myriad of functions in a cell, comprehensively identifying
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these interactions is essential for understanding the molecular mechanisms underly-
ing biological functions.

Experimental techniques for deciphering protein-protein interactions have been
reviewed by [82]. In general, interactions among proteins can take on many forms
(e.g., have an impact on functions of one another, or occur in a common pathway),
and many proteins only operate in complexes and through physical contact with
other proteins. These factors have prompted the development of various comple-
mentary experimental methods for detecting protein-protein interactions. Tradition-
ally, PPIs have been studied individually through the use of genetic, biochemical
and biophysical experimental techniques (also termed small-scale methods). The
related experiments are generally time-consuming, sometimes requiring months to
detect one PPI. In the last several years, large-scale biological PPI experiments have
been introduced to directly detect hundreds or thousands of protein interactions at a
time. Yeast two-hybrid (Y2H) screens [36, 32, 76, 87] and protein complex purifi-
cation detection techniques using mass spectrometry [24, 23, 32] are the two most
widely used large-scale approaches. However, both methods suffer from high false
positive and false negative rates [56]. For the Y2H method, this is due to insufficient
depth of screening and misfolding of the fusion proteins. In addition, interaction be-
tween ”bait” and ”prey” proteins has to occur in the nucleus, where many proteins
are not in their native compartment. The mass spectrometry based complex identi-
fication methods [24, 23, 32]) may miss complexes that are not present under the
given conditions. In addition, tagging may disturb complex formation and weakly
associated components may dissociate and escape detections. In general, the result-
ing data sets are often incomplete and exhibit high false positive and false negative
rates [56, 15, 100]. Consequently, even for well-studied model organisms, most true
PPIs have not yet been discovered experimentally.

Computationally, protein-protein interaction networks can be conveniently mod-
eled as undirected graphs, where the nodes are proteins and edges represent physical
binding interactions. Initially, this graph is missing many edges (false negatives) and
contains many incorrect edges (false positives). To complement and extend experi-
mental methods, a variety of computational methods have been successfully applied
to predict protein interactions. These approaches may be categorized on the basis of
the types of data they considered when making predictions, as follows:

• Over-represented domain pairs or motif pairs observed in interacting protein
pairs have been studied and used to infer PPIs. We provide more details of
domain-domain interactions in Section 3. Structural information and sequence
evidence about PPI interfaces has been used to predict potential PPIs [21, 13] as
well.

• Various genomic methods infer protein interactions based on the conservation of
gene neighborhood (Figure 2), conservation of gene order, gene fusion events, or
the co-evolution of interacting protein pair sequences [83, 55].

• An attractive alternative approach is to integrate various types of evidence from
multiple sources in a statistical learning framework. A number of classification
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methods have been explored and multiple ways of using biological evidences
have been studied in this framework [6, 8, 38, 102, 97, 68, 72, 79, 61, 99].

• High-throughput PPI experiments for elucidating protein-protein interactions
have been applied to model organisms in recent years. Unfortunately the derived
data sets are noisy and incomplete [56]. Multiple computational techniques have
been proposed to improve the data reliability [5, 85, 10].

In the next sections, we describe in detail methods that fall into the latter three
categories.

As mentioned above, interactions among proteins can take on many forms. Most
previous computational works either predict direct physical interactions between
proteins, or to identify if two proteins operate in the same complex, or to predict
if two proteins are functionally linked to each other. The readers should keep this
distinction in mind for the following methods. Qi et al. [67] performed a systematic
comparison between these tasks and found that the task of identifying co-complex
relationship seems to be easier than the other two tasks, with respect to the feature
evidence they used.

2.1 Genomic Inference with Context

Accurate and large-scale prediction of protein-protein interactions directly from
protein sequences is one of the important challenges in computational biology. Re-
viewed in [83] as “genomic inference methods” (including gene neighbor, gene
fusion, and phylogenetic profile approach), this category uses genomic or protein
context to infer functional associations between proteins.

Gene neighborhood: The idea of the gene neighborhood approach is shown in
Figure 2. We can see that genes P1, P2 and P3 are neighbors across three different
genomes. From this association, we infer that their protein products are likely to as-
sociate with one another. The gene neighborhood approach provides strong signals
for functional association between gene products within and across species [55], but
this approach is arguably less well suited for specifically detecting physical interac-
tions.

Fig. 2 PPI prediction by gene neighborhood approach (modified from Figure 1 in [83])
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Gene fusion: The gene fusion approach [53], infers protein interactions from
protein sequences in different genomes. It is based on the observation that some
interacting proteins/domains have homologs in other genomes that are fused into
one protein chain. Figure 3 gives an example of “gene fusion.”

Fig. 3 PPI prediction by gene fusion (modified from Figure 1 in [83])

Phylogenetic profile: The phylogenetic profile method [65] is based on the ob-
servation that interacting proteins need to be present simultaneously in order to per-
form their functions. Therefore, the repeated co-occurrence of a pair of proteins
across different organisms provides evidence that they interact. As shown in Fig-
ure 4, a phylogenetic profile is constructed for each protein as an N-dimensional
vector, where N is the number of genomes under consideration. The presence or
absence of a given protein in a given genome is indicated with a 1 or 0 at each
position in the profile. Proteins’ phylogenetic profiles can then be linked using a
bit-distance measure, with linkage indicating physically interaction or functional
assocation [65, 83]. This approach can also be used for protein domains, where a
profile is constructed for each domain.

Fig. 4 PPI prediction by phylogenetic profile strategy (modified from Figure 1 in [83])

2.2 Classification from Multiple Types of Evidence

Studies in this category make use of a classification algorithm to integrate diverse
biological datasets (Figure 5). A classifier is trained to distinguish between pos-
itive examples of truly interacting protein pairs and negative examples of non-
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interacting pairs. Many different research groups have independently suggested us-
ing supervised learning methods for predicting protein interactions. However, the
data sources, approaches and the species they worked on have varied widely. Ac-
cording to these differences, we categorize previous works into four groups: super-
vised classifiers on protein pairs, kernel based network reconstruction, direct mod-
eling of PPI data sets, and inter-species PPI prediction.

2.2.1 Supervised Classifiers on Each Protein Pair Separately

By transforming multiple biological data sources into a feature vector represent-
ing every pair of proteins, the task of predicting pairwise protein interactions can
be formalized as a binary classification problem. Each protein pair is encoded as
a feature vector where features may represent a particular information source such
as related mRNA expressions, domain composition, or evidence coming from ex-
perimental methods. There are many possible ways to encode evidence sources into
feature attributes and it is an important factor for the reliability of the computational
predictions [67]. For instance, pearsons correlation values between two genes could
be used as features on selected gene expression sets. Alternatively, feature attributes
could describe how likely two proteins interact in other species [55].

Fig. 5 PPI prediction by classification with multiple evidence

A number of proposed methods belong to this group, including naive Bayes clas-
sifiers [38] , decision trees [102], kernel based methods [97, 6], random forests
[52, 68], logistic regression [4, 52], and the strategy of summing likelihood ratio
scores to predict PPI confidence in human [72, 79, 71] or in yeast [48]. Multiple
classifiers were compared for PPI predictions in yeast [67]. Random forests and sup-
port vector machines (SVMs) were found to achieve the best performance among
them.

These approaches used different types of data, different supervised classifiers and
generally treated each protein pair independently for the interaction identification.

The popular STRING database [55] is a successful example of an application of
this supervised learning methodology. The authors identified functionally associated
protein pairs by computationally integrating known protein-protein associations, co-
expression pairs, literature mining and pairs transferred across organisms. The re-
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sulting STRING database integrates and ranks predicted PPIs, by benchmarking
them against a common reference set with the modified sum of likelihood approach.
The most recent version of STRING [41] covers about 2.5 million proteins from
630 organisms. The authors claim that this provides the most comprehensive view
of PPIs currently available.

Most of the above scoring methods use a set of likely true positives to train the
predictive model. However, a single positive training set may be biased and not rep-
resentative of true interaction space. To address this concern, Yu et al. [101] demon-
strated a method to score protein interactions by using multiple independent sets
of training positives to reduce the potential bias inherent in using a single training
set. Defining negatives can also be problematic, since the absence of an edge in an
observed network does not necessarily imply that the edge does not exist in the true
network. Several studies attempt to define a set of high-confidence non-interacting
proteins [40, 39]; however, such methods are likely to yield their own biases [7].
Thus, the simpler approach of selecting negatives uniformly at random is generally
preferred [28, 6, 103, 69].

2.2.2 Network Reconstruction with Kernel Methods

As mentioned above, multiple data evidence used for PPI predictions are in dif-
ferent formats (e.g. numeric values for gene expression, letter strings for protein se-
quences). A natural choice for this data integration task is kernel methods [6], which
unify the data representation as special matrices called kernels (Figure 6(b)). Kernel
methods have been applied successfully on the protein interaction prediction tasks in
recent years. The problem of PPI predictions could be framed as the following net-
work reconstruction problem (Figure 6). The input is a graph G = (V,E, Ē), where
V is a set of nodes representing each protein, and E, Ē ⊂ V ×V are sets of known
edges and non-edges, respectively, corresponding to protein pairs that are known to
interact or not. This PPI graph is represented as an adjacency matrix in Figure 6(a)
which contains known interactions (black boxes), known non-interactions (white
boxes) and pairs with unknown status (gray boxes). In Figure 6(b), kernel methods
build kernel matrices (graphs) based on features of proteins or protein pairs. The key
question then is to reconstruct those ”?” entries in the input PPI graph (gray boxes
of Figure 6(a)) based on the kernel graph(s) (Figure 6(b)). Here we describe three
interesting papers in this group.

Pairwise kernel between protein pairs: Ben-Hur et al. [6] and Gomez et al.
[27] proposed the pairwise kernel approach to use a standard kernel method (such
as SVM) for PPI predictions. Treating each protein pair as a data example, a pairwise
kernel function computes the similarity between two pairs of proteins. Thus, with n
proteins, the resulting kernel matrix (an example in Figure 8(b)) contains n4 entries.
One way to construct such a kernel is to build them on top of an existing kernel
between individual proteins. For example, given a kernel matrix K with each entry
describing the inner product between two proteins, the pairwise kernel could be built
for the four proteins in Figure 8(a) as follows:
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Fig. 6 PPI predictions through kernel methods (modified from Figure 1 of [99]). (a) PPI network
is represented as an adjacency matrix which includes: known interactions (black boxes), known
non-interactions (white boxes) and pairs with unknown status (gray boxes). (b) Kernel matrix built
from a certain feature evidence, with a darker color describing larger value.

K′((v1,v2),(v3,v4)) = K(v1,v3)K(v2,v4)+K(v1,v4)K(v2,v3) (1)

The motivation is that protein pair (v1,v2) is similar to protein pair (v3,v4) if the two
proteins v1 and v2 are similar to proteins v3 and v4, or vice versa. Later, Martin et
al. [54] proposed a similar way to make use of protein properties for PPI prediction
task, but with a tensor product kernel.

As a continuation of this work, the authors in [70] predicted co-complexed
protein pair (CCPP) relationships using kernel methods from heterogeneous data
sources. They show that a diffusion kernel [46, 84] based on random walks on the
full network topology yields good performance in predicting CCPPs from protein
interaction networks (for more details about this kernel, see Section 4.5) . In their
setting of direct ranking, a diffusion kernel performs much better than the mutual
clustering coefficient. Alternatively, when using SVM classifiers, a diffusion kernel
performs much better than a linear kernel. One recent work from Vert et al. [92]
explored a closely related approach called the “metric learning pairwise kernel”
to convert the problem of direct inference based upon similarities between nodes
joined by an edge on the PPI graph to the task of distance metric learning.

Note that the pairwise kernel strategy also belong to the group of methods in
Section 2.2.1. Those methods use feature values to describe each protein pair. With
an inner product between these features vectors, we could generate a pairwise kernel
matrix. Of course, the way to calculate the kernel matrix in equation 1 is more
general, since the pairwise kernel could incorporate data from individual proteins
(using a pairwise kernel) and protein pairs.

Supervised reconstruction with a kernel between proteins: Because the com-
putational cost for the above pairwise kernel is high, Yip et al. [99] and Yamanishi
et al. [97] proposed to work directly with kernels defined on individual proteins.
Given such a kernel K (between proteins) and a cutoff t, the method simply predicts
interactions for each pair of proteins for which K(vi,v j)≥ t.
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Fig. 7 PPI predictions by the
supervised network inference
(modified from Figure 1(c) of
[99]). Partial complete adja-
cency matrix required by the
supervised reconstruction ap-
proach, which needs complete
knowledge of a submatrix
(upper-left).

To make use of the training examples, supervised algorithms were presented to
reconstruct the kernel matrix based on a sub-matrix of known interactions. Assum-
ing that the sub-network of the adjacency matrix is totally known (as shown in Fig-
ure 7), the goal is to modify the kernel similarity between proteins (as defined by
the kernel) to some values that are more consisitent with the partial sub-matrix.
Subsequently, simple thresholding is performed on the resulting similarity values
to predict PPIs [99]. Yamanishi et al. [97] presented a method in this style to infer
protein interaction networks using a variant of kernel canonical correlation analysis
(originated from spectral clustering theory). The goal was to identify features from
the input kernel (built from the genomic/proteomic evidence) and features from the
diffusion kernel that were derived from the known PPI submatrix, so that two fea-
tures have the highest correlation under certain smoothness requirements.

Kernel matrix completion: Similar to the above supervised network reconstruc-
tion, Kato et al. [43] also assume a partially complete adjacent matrix (Figure 7).
They formulated supervised network inference as a kernel matrix completion prob-
lem, where the inference of edges boils down to estimation of missing entries of a
kernel matrix. The goal is to make the resulting matrix closest to a spectral vari-
ant of the kernel matrix as measured by the KL (Kullback-Leibler) divergence. An
expectation-maximization algorithm is proposed to simultaneously infer the miss-
ing entries of the adjacency matrix and the weights of multiple datasets (a weight is
assigned to each type of dataset and thereby to select informative ones). The algo-
rithm iteratively searches for the filled adjacent matrix that is closest to the current
spectral variant of the kernel matrix, and at the same time, the spectral variants of
the kernel matrix which is closest to the current filled matrix. When convergence is
reached, the predictions are thresholded from the final complete adjacency matrix.

Local model: Each of the above approaches builds a global model to predict new
edges over the network based on the partial knowledge of the network to be inferred
(Figure 8(b)). This single model may not be able to separate all cases of interacting
pairs from non-interacting ones, if there are different subgroups of interactions [99].
For instance, protein pairs involved in transient interactions may use a very different
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Fig. 8 Global and local modeling for PPI network reconstruction (modified from Figure 2 of [99]).
(a) An interaction network, with solid black lines representing known interactions, red dotted edges
representing known non-interacting edges and blue dashed lines representing those protein pairs
with unknown interaction status. (b) Global model based on pairwise kernel approach, where each
edge is treated independently. (c) Local model for protein v2. Different node colors indicate dis-
tinctive evidence status, for instance, different cell compartments that the proteins reside in.

strategy compared with those involved in protein complexes. These two types of
interactions may belong two separate subgroups that cannot be fitted by one single
model.

Accordingly, Bleakley et al. [8] introduce a novel method that uses a local model
to allow for flexible modeling of subgroups of interactions. A local model is built
for each protein, using the known interactions and non-interactions of this protein as
the positive and negative examples. The resulting classification rule predicts edges
associated with a single protein. Thus, each pair of proteins receives two predic-
tions, each from the local model of either protein. In Figure 8(c), the method built a
local model for protein v2. Because node v1 is similar to node v3, this local model
classified pair (v2,v1) as negative. Since each node has its own local model, the ap-
proach only needs a kernel defined on proteins, rather than a kernel between pairs
of proteins.

Local model with training set expansion: The accuracy of computational tech-
niques proposed for PPI network reconstruction is consistently limited by the small
number of high-confidence examples. Specifically, for the local model approach, the
uneven distribution of positive examples across the potential interaction space, with
some objects having many known interactions and others few, makes it hard to pre-
dict new interaction partners for those proteins having very few known interactions
reliably. To address this issue, Yip et al. [99] proposed two semi-supervised learning
methods by augmenting the limited number of gold-standard training instances with
carefully chosen and highly confident auxiliary examples.

• The first method, prediction propagation is similar to self-training methods [80]
described in the the machine learning community. This method uses highly con-
fident predictions from one local model as the auxiliary examples of another.
This propagation strategy uses the learning from information-rich regions in the
training network to help make predictions in information-poor regions.
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• The second method, kernel initialization, takes the most similar and most dissim-
ilar proteins of each protein in a global kernel (between proteins) as the auxiliary
examples. Similar to prediction propagation, adding these new examples into the
training sets boosts the performance of the local modeling approach.

2.2.3 Inter-species PPI prediction

All of the above studies aim to predict PPIs within a single organism (termed intra-
species PPI prediction ), with most studies focusing on yeast or human. Recently,
researchers have begun to extend computational methods to predict PPIs between
species (termed inter-species PPI prediction ).

Of particular interests are host-pathgen PPIs. For any host-pathogen system, it
is important to understand the mechanism by which a pathogen can infect its host.
One method of infection is via protein interactions, where pathogen proteins target
host proteins (as described in Figure 9). Developing computational methods that
identify which PPIs enable a pathogen to infect a host has significant implications
in identifying potential therapeutical targets.

Fig. 9 Protein-protein inter-
actions in host-pathgen sys-
tems (modified from Figure 1
of [88])

Davis et al. [16] studied ten host-pathogen protein-protein interactions using
structural information with a comparative model: the host/pathogen protein pairs
that share similarity to protein complexes with known structures are used to build 3-
D structural models of putative complexes, and the modelled pairs are then filtered
by functional and genomic experimental information. The technique was applied
to ten pathogens and assessed by three independent computational procedures. The
results suggest that this method is complementary to experimental efforts in eluci-
dating networks of hostpathogen protein interactions.

Later, Tastan et al. [88] extended the supervised learning framework to predict
PPIs between HIV-1 viruses and human proteins. A random forest based classifier
was used to integrate multiple biological data types, achieving state-of-the-art per-
formance for this task.

Similar to host-pathgen PPI, several recent papers identify interactions between
drugs and target proteins. This is a key area in genomic drug discovery. The au-
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thors in [96] formalized the drug-target interaction inference as a supervised learn-
ing problem on a bipartite graph, where the model extended the metric embedding
approach [1] to integrate chemical and genomic spaces into a unified space.

2.3 Modeling Experimental PPI Data Sets Directly

Genome-wide, high-throughput PPI experiments for elucidating protein-protein in-
teractions have proven to be one of the most important tools in recent years. How-
ever the quality of currently available PPI data sets is unsatisfactory, which limits
its usefulness to some degree. A crucial step in analyzing proteomics PPI data is to
separate the subset of credible interactions from the background noise. Various com-
putational techniques have been proposed for inference of reliable protein-protein
interactions directly from experimental interaction results. In the following, several
interesting ones are covered.

Von Mering et al. [56] were among the first to discuss the problem of accurately
inferring protein interactions from high-throughput data sources. The proposed solu-
tion [56], which used the intersection of direct high-throughput experimental results,
achieved a very low false positive rate. However, the coverage was also very low.
Less than 3 percent of known interacting pairs were recovered using this method.

Later, Bader et al. [5] applied logistic regression to estimate the posterior prob-
ability that a pair of proteins will interact. Only statistical and topological descrip-
tors were used to predict the biological relevance of protein-protein interactions ob-
tained from high-throughput PPI screens for yeast. Other evidence, such as mRNA
expression, genetic interactions and database annotations, were subsequently used
to validate the model predictions. They demonstrated that it is possible to define a
quantitative confidence measure based entirely on screening statistics and network
topology. The main assumption underlying the confidence measure is that nonspe-
cific interactions are highly likely to be technology-specific [5]. This type of analysis
is essential for analyzing the growing amount of genomic and proteomics interation
data in model organisms.

Aiming to improve the quality of experimentally available PPI data by identi-
fying erroneous datapoints from PPI experiments, Sontag et al. [85] described a
probabilistic approach to estimate errors in yeast-two-hybrid experiments, consider-
ing both random and systematic errors. The systematic errors arise from limitations
of the Y2H experimental protocol: ideally the reporting mechanism in Y2H should
be activated if and only if the two proteins being tested truly interact, but in practice,
even in the absence of a true interaction, the reporter may be activated by some pro-
teins - either by themselves or through promiscuous interaction with other proteins.
The authors described a probabilistic relational model that explicitly models these
two types of errors. They use Markov chain Monte Carlo algorithms for inference.
In constrast to previous work, which often models Y2H errors as being independent
and random, experimental results showed that this approach could make better use
of the available experimental data.
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Currently no method exists to systematically and experimentally assess the qual-
ity of individual interactions reported in interaction mapping experiments. Braun
et al. [10] developed an interaction tool kit consisting of four complementary,
high-throughput protein interaction assays and provided a standardized confidence-
scoring method. Based on positive and random reference sets consisting of well
documented pairs of interacting human proteins and randomly chosen protein pairs,
a logistic regression model was trained to combine the assay outputs and calculate
the probability that any newly identified interaction pair is a true biophysical in-
teraction once it has been tested in the the four high-throughput PPI assays. This
approach allows a systematic and empirical assignment of confidence scores to all
individual protein-protein interactions from high throughput interation experiments.

The above approaches have considered protein pairs independently when infer-
ring the presence of PPIs. In contrast, Jaimovich et al. [37] considered the neigh-
borhood interaction pairs together and employed a relational Markov random field
approach for collective inference of PPIs in yeast. The basic idea is shown in Fig-
ure 10:

Fig. 10 Improve PPI prediction with dependencies between interactions (modified from Figure 1 in
[37]). (a) A possible interaction between proteins P1 and protein P2. They are localized in different
cellular positions (indicated with purple and green colors). (b) Two additional proteins P3 and P4
provide extra dependency evidence. Dashed line represents functional association from indirect
evidence and solid line describes interactions from experimental interaction sets. The combined
evidence gives more support to predict that P1 and P2 interacts.

In this paper [37], the authors view the PPI prediction task as a relational learn-
ing problem, where observations about different entities are not independent. The
method exploits relational probabilistic models to combine multiple types of fea-
tures, including protein attributes (e.g., localization of proteins) and protein-protein
interactions (e.g., experimental interaction assays). The results demonstrated that
modeling the dependencies between interactions leads to significantly better predic-
tions. However, due to the model complexity and the difficulties during inference,
this model can currently be applied only to a small set of proteins.
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3 Prediction of domain-domain interactions

Many of the experimental and computational approaches described above address
the question, “Do these two proteins interact?” In practice, how the proteins interact
is also of great interest. Protein interactions occur through physical binding of small
regions on the surface of proteins. Therefore, insights into the mechanism whereby
a protein carries out its function can be obtained by identifying the interaction site
where protein binding takes place. Moreover, detailed knowledge about the binding
sites at which an interaction takes place can provide insight into the causes of human
disease as well as a starting point for drug design [93]. Unfortunately, this type
of information is not typically provided in a protein interaction graph and is not
revealed by high-throughput experimental methods.

A protein may contain a single domain or multiple domains, each one typically
associated with a specific function [89]. The combination of domains determines the
function of the protein, such as its subcellular localization and the interactions it is
involved in [34]. There exists a certain degree of conservation in the interaction pat-
terns between similar proteins and domains. It has been found that close homologs
almost always interact in the same way [82]. Thus, it is interesting to find out what
domains are responsible for binding.

Currently little useful data is available from major databases with respect to rela-
tions on the domain level [64]. This lack of data makes computational prediction of
domain-domain interactions very important. A series of computational approaches
have been developed to predict which domains in a protein pair interact given a set
of experimental protein interactions [83]. Domain interactions extend the functional
significance of proteins and provide a more detailed view of the protein-protein in-
teraction network (Figure 11).

Fig. 11 Prediction of domain-
domain interactions

Inferring interactions between domains from protein-protein interactions is a
challenging task. Various methods have been proposed to predict domain interac-
tions from protein-protein interaction graphs. Most methods begin by annotating
protein sequences with domains that can be defined by Pfam, CDD, or other domain
databases. The models are typically trained with certain known protein interactions
to identify domain-domain interaction pairs. The predicted domain interactions can
be evaluated using structural data or by high quality interaction sets. Moreover, the
resulting domain interactions can in turn help in predicting protein-protein inter-
actions. It is worthwhile to mention that some of the approaches mentioned in the
last section for protein interaction prediction, such as the sequence co-evolution



Protein interaction networks: Protein domain interaction and protein function prediction 15

or phylogenetic profiles (reviewed in [64]) are also applicable to domain interac-
tion prediction [83]. In addition, the following section introduces several methods
specifically designed to predict domain-domain interactions from protein interaction
data.

Inferences on the interactions among domains can be made by analyzing the
domain composition of a set of proteins and their interaction networks.

Fig. 12 Two methods to predict domain-domain interactions from PPIs. (a) Association method.
The domains x and a are predicted to interact due to the abundance of domains x and a in pro-
tein interaction pairs, shown as the blue line. (b) As the same PPI dataset in (a), that the actual
domain interactions (blue lines) do not include domains x and a. This shows that accounting for
other domains in a protein pair, in addition to x and a, can result in alternative domain interaction
predictions.

Association method: A characteristic domain or structural motifs can be used to
distinguish interacting proteins from non-interacting. Association methods [86, 30,
83] use different classifiers for this purpose, and some of them are tuned specifically
to identify domains responsible for protein interactions. Correlated domains are
pairs of domains that are found together more often than expected by chance in
known PPI pairs. An association method may predict that two proteins interact if
they contain correlated domains, one from each protein, whose association value
is greater than a predefined threshold. Because some domain pairs can be found
quite often in protein interacting pairs, this simple assocation method can be quite
successful in identifying novel PPIs.

An examplar case is given in Figure 12(a). Domain pair (x, a) is the most abun-
dant in all four interacting protein pairs (blue lines) compared with other domain-
domain pairs. Taking the domain combination pair as a basic unit, these methods use
their frequencies in the interacting and non-interacting sets of protein pairs, for de-
riving novel protein interactions. For example, Sprinzak et al. [86] use the following
score, computed from protein interaction data, to find correlated domains:
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S(dm,dn) =
Imn

Nmn
(2)

where Imn is the number of interacting pairs that contain (dm,dn), and Nmn is the
total number of protein pairs that contain (dm,dn).

Dyer et al. [20] extended this idea for identify domain interactions in host-
pathogen systems. They integrate a number of public intra-species PPI datasets with
protein-domain profiles for predicting and studying host-pathogen PPI networks.
The model used intra-species PPIs and protein-domain profiles to compute statistics
on how often proteins containing specific pairs of domains interact. These statistics
can then be used to predict inter-species PPIs in host-pathogen systems.

Maximum Likelihood Estimation: One drawback of the association method
is that it ignores other domain-domain interaction information between the protein
pairs and, thus, does not make full use of all of the available information. As in
Figure 12(a), if domains x and a do not appear in any other proteins, then in the
association method this pair is assigned the association score S(x,a) = 4/4 = 1. This
method ignores other domain-domain interactions among domains b, c, y and z. To
infer a domain-domain interaction, other related domain-domain interactions should
be taken into account (as shown in Figure 12(b)). To do so, interactions among
other proteins containing domains b, c, y or z must be included, and thus, more
domains and proteins are involved. Iterating this process, eventually all proteins and
all domains are related and need to be taken into account. In addition, the association
method ignores experimental errors (normally quite high in current experimental
PPI sets) and treats the observed interactions as real interactions. This noise may
lead to the impossibility of having a pattern of domain interactions that is compatible
with the protein-protein interaction map.

To address the above two issues, Deng et al. [18] develop a global approach using
a maximum likelihood estimation (MLE) method that incorporate all available pro-
teins and domains, as well as experimental errors. They used yeast two-hybrid pro-
tein interaction data and treated protein sequences as “bags of domains.” The model
estimates the probabilities of interactions between every pair of domains. Treating
protein-protein interactions and domain-domain interactions as random variables,
the two basic assumptions are (1) that two proteins interact if at least one pair of
domains of the two proteins interacts and (2) interactions between different domain
pairs are independent. Thus, the probability of a potential interaction between a pro-
tein pair (i, j) is

P(Pi j = 1) = 1− ∏
(dm,dn)⊂(Pi,Pj)

(1−λmn) (3)

where λmn denotes the probability that domain dm interacts dn. The expectation max-
imization (EM) algorithm is used to find maximum likelihood estimates of unknown
parameters by finding the expectation of the complete data consisting of observed
and unobserved data in two iterative steps. Here the observed data includes protein-
protein interactions and the domain composition of the proteins, and the unobserved
data includes all putative domain-domain interactions [83].
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The above methods may preferentially identify promiscuous domain interactions,
because they focus on those that occur with the highest frequency. Methods are need
to detect the low-propensity, high-specificity domain interactions. Thus, Riley et al.
[74] proposed the domain pair exclusion analysis (DPEA) method to extend the
MLE approach. Riley et al. are specifically interested in extending beyond single
proteome prediction to infer domain interactions from the incompletely mapped
interactomes of multiple organisms. Their appoach employs a likelihood ratio test
to assess the contribution of each potential domain interaction to the likelihood of
a set of observed protein interactions from the incomplete interactomes of multiple
organisms.

Similarly, Iqbal et al. [35] address the problem of predicting protein domain inter-
actions by using belief propagation, which is a powerful message passing algorithm
for probablistic inference. The input to their algorithm is an interaction map among
a set of proteins, and a set of domain assignments to the relevant proteins. The out-
put is a list of probabilities of interaction between each pair of domains. The method
is able to effectively cope with errors in the protein-protein interaction dataset and
systematically resolve contradictions.

Hypothesis test: Nye et al. [62] proposed a statistical method to test the null
hypothesis that the presence of a particular domain pair in a protein pair has no
effect on whether two proteins interact. The procedure calculates a statistic for each
domain pair which takes into account experimental errors and the incompleteness
of the dataset. The background distribution is simulated by shuffling domains in
proteins so that the network of protein interactions remains fixed. The domain pair
with the lowest p value is deemed most likely to interact. The authors point out that,
for the majority of test cases, random domain prediction outperforms all methods
tested, indicating the low accuracy of all prediction methods of domain interactions.

A set cover approach: Later, Huang et al. [33] proposed an interesting model
to map the relationship between interactions of proteins and their corresponding
domain architectures to a generalized set cover problem. Figure 13 gives a schematic
explanation of the set cover approach. Set Y represents all potential protein pairs,
and set X describes all known protein interaction pairs. F = {Si,1≤ i≤ t} is a family
of subsets of Y . The general set cover problem is to find a subset C of F to cover
X , such that X ⊆ ∪S∈CS. Often, C is required to satisfy certain conditions. In this
case, F is the set of all domain pairs (dm,dn). Specifically if a protein interaction
pair (Pi,Pj) contains domain pair (dm,dn), then (Pi,Pj) belongs to the subset of
(dm,dn). The goal is to find the collection C to cover X , where C is a subset of F
and contains all the domain pairs present in the interaction network. The authors
applied a greedy algorithm to identify sets of domain interactions which explain the
presence of protein interactions to the largest degree of specificity. Using domain
and protein interaction data from S. cerevisiae, they claim that this model enables
prediction of previously unknown protein interactions.

Prediction with additional information: Recently, researchers started to com-
bine PPIs with a variety of additional types of evidence to predict domain interac-
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Fig. 13 A set cover approach
to predict domain interactions
from PPIs. Y set represents
all potential protein pairs. X
set includes all known protein
interaction pairs.

tions. For example, Wang et al. [93] propose a learning method, called InSite, to
predict specific regions (domains or motifs) where protein-protein interactions take
place. The input includes a library of conserved sequence motifs or domains, a set of
protein-protein interactions, and any available indirect evidence on protein-protein
interactions and motif-motif interactions, such as expression correlation, gene func-
tional annotation, and domain fusion. InSite makes predictions at the level of indi-
vidual protein pairs, in a way that takes into consideration the various alternatives for
explaining the binding between this particular protein pair. Specifically, this method
integrates multiple biological data sets and generates predictions in the form of ’Mo-
tif Y on protein P2 binds to protein P5’ (as shown in Figure 14). In contrast to pre-
vious methods, which predict bindings between pairs of motif types, InSite makes
predictions of interactions of particular occurrences of two motifs. Thus, InSite may
give the same motif pair different interaction confidences, depending upon the se-
quence context and the local neighborhood of the PPI network (Figure 14). This
approach provides a principal way to integrate all available biological evidence. It
also treat PPIs from multiple assays differently, since some of them are noisy and
some are indirect.

Fig. 14 Basic idea to predict protein interaction sites with the InSite method [93]. This figure is
modified from Figure 1 in [93].
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As above, we briefly discuss several important approaches to the task of iden-
tifying interacting and/or functionally linked domain pairs. These methods exhibit
varying levels of success; however, they usually assume that domains interact in-
dependently, which is a limitation. Also part of the prediction errors come from
incomplete domain assignments, insufficient coverage of domain databases and lim-
ited searching ability of domain profiles. In addition, domain interactions are pre-
dicted from protein interactions, whose available data is incomplete and noisy at the
current stage [83].

There exist a number of important problems related to the domain-domain pre-
diction from PPIs, including the interaction sites’ prediction or the docking task.
Since they are beyond the scope of this chapter, interested audience could refer to
the review paper Zhou et al. [104] for the first task and Ritchie et al. [75] for under-
standing the second: docking problem.

4 Prediction of protein function from PPI networks

Fig. 15 Prediction of protein function from PPI networks

Proteins are involved in practically every function performed by a cell. However,
despite the availability of large amounts of DNA and protein sequence data, the
biological function is still unknown for a large proportion of sequenced proteins.
Moreover, a given protein may have more than one function, so many proteins that
are known to be in one functional class may have as yet undiscovered functionalities
[98].

Inferences about function can be made via protein-protein interactions because
protein interactions directly contribute to protein function. The premise is that the
unknown function of a protein may be discovered through its interaction partners.
Besides protein interaction evidence, the function of an unannotated protein can be
predicted through various other data sets, including sequence homology, phyloge-
netic profiles, gene expression and so on. Combining multiple data sources together
for protein function prediction is an interesting computational problem [66, 11, 90].
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Here we focus on reviewing computational approaches that use protein-protein
interaction evidence for protein function inference. It is worth mentioning that the
interaction partners for a protein may belong to different functional categories.
The problem of functional assignments in the complex protein network of within-
function and cross-function interactions remains a difficult task [81].

Previous efforts in this area can be grouped into six categories, which are de-
scribed in the following sections.

4.1 Simple Statistical Test

The basic assumption of functional annotation is that proteins which lie closer to one
another in the PPI network are more likely to have similar functions. Thus, a simple
statistical test can be used to assign functions to proteins based on the functions of
their interaction partners.

For instance, Schwikowski et al. [78] proposed the neighborhood-counting method
to assign k functions to a protein by identifying the k most frequent functional la-
bels among its interacting partners. This strategy is simple and effective, but the full
topology of the network is not taken into account in the annotation process, and no
confidence scores are created for the annotations.

Another typical technique, referred to as the chi-square method [31], assigns k
functions to a protein with the k largest chi-square scores. For a protein p, each

function f is assigned a score (n f−e f )2

e f
, where n f is the number of proteins in the

n-neighborhood of p that have the function f . The value e f is the expectation of this
number based on the frequency of f among all proteins in the network [81].

Recently Lee et al. [49] extended the neighborhood-counting [78] method to
make network-based prediction of loss-of-function phenotypes in Caenorhabditis el-
egans. For a given phenotype, each gene in the worm proteome was ranked-ordered
by the sum of its linkage weight (log-likelihood score of the gene interaction edge)
to the “seed” set of genes already known to show that phenotype. The high-scoring
genes are most likey to share the given phenotype.

In general, these simple methods lack a systematic mathematical model.

4.2 Graph Topoplogy

Researchers have also explored a variety of graph algorithms for protein functional
inference [59, 91, 42]. For instance, Vazquez et al [91] and Karaoz et al. [42] exploit
the global topological structure of the interaction network for functional annotation.
The basic idea is described with a simple schematic example in Figure 16. This is a
subgraph of the protein interaction network in the yeast Saccharomyces cerevisiae,
with yellow nodes representing unannotated proteins and blue nodes representing
annotated ones (the associated functions are listed as numbers in brackets adjacent
to the nodes). Given one of these proteins with unknown functions, a simplified
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Fig. 16 Functional annota-
tion from graph algorithm on
PPI networks. Modified from
Figure 1 in [91]. This shows
a subgraph of the protein in-
teraction network of the yeast
Saccharomyces Cerevisiae.
Proteins in yellow are unan-
notated (unknown function);
the others are classified pro-
teins (functions in brackets).

version of the method (proposed in [78]) would predict the function that appears
most often in the neighbor proteins of known function. This approach would lead
to the following classification result (from top to bottom): P3 (2), P4 (3,4,10) and
P5 (12). By contrast, graph algorithms such as the one proposed by Vazquez et al
[91], would also consider the interactions among unclassified proteins. Taking into
account the interactions among the three unclassified proteins, one more iteration of
the “majority rule” would lead to the following classification: P3 (2,4), P4 (3,4,10)
and P5 (12). Thus, this extended method determined another possible function for
P3.

The approach proposed in [91] assign proteins to functional classes so as to max-
imize the number of edges that connect proteins (unannotated or previously anno-
tated) assigned with the same function. Precisely, they maximize

∑
(i, j)∈E ′

δ (σi,σ j)+ ∑
i∈V

hi(σi) (4)

where E ′ is the set of edges between two unannotated proteins, δ is a function that
equals 1 if x = y and 0 otherwise, V is the set of nodes (proteins), and hi( f ) denotes
the number of neighbors of protein i previously annotated with function f . The first
term in the optimization criterion accounts for unannotated proteins, whereas the
second term concerns the interactions between unannotated and previously anno-
tated proteins. This optimization problem can be generalized to the computationally
hard problem of minimum multiway cut. The authors solved it heuristically using
simulated annealing in [91].

Karaoz et al. [42] additionally consider the case where edges in physical inter-
action networks are weighted using gene expression data. The approach is a gen-
eralization of the well-studied multiway k-cut problem. The authors apply a local
search strategy in which the state of the vertex is changed according to the majority
of the states of its neighbors. Similarly, Nabieva et al. in [59] developed a network
flow algorithm that exploits the underlying structure of protein interaction maps in
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Fig. 17 A schematic illustra-
tion of the function prediction
task on a protein network.
Modified from Figure 1 in
[90]. The task is to predict
labels of unannotated proteins
marked as ”?”. For a specific
functions proteins having that
function are labeled with ”1”
or other wise ”0”.

order to predict protein function. Unlike [91, 42], this method takes advantages of
both network topology and a particular measure of locality.

4.3 Graph Clustering

Clustering on protein interaction networks can also be used to predict protein func-
tion. For example, Samanta and Liang [77] proposed a network-based statistical
measure to represent how many common partners two proteins share. They then
use this statistic to hierarchically cluster the proteins in the PPI network. The key
idea is that two proteins that share a large number of common partners likely have
close functional associations. Arnau et al. [3] also applied hierarchical clustering in
the protein-protein interaction network to find functionally consistent clusters. Their
similarity measurement is derived from the shortest distance between two proteins
in the network. Unlike typical graph clustering, Airoldi et al. explored a generative
style of clustering [2]. The authors used a latent mixture membership approach to
model the protein-protein interaction network. This approach transforms the func-
tion prediction objective into learning of the latent groups.

Sharan et al. [81] recently reviewed current computational approaches on func-
tional annotation of proteins in the context of the protein interaction networks. They
split the related papers into two types: (1) direct annotation schemes, which infer
the function of a protein based on its connections in the network, and (2) module-
assisted schemes, which first identify modules of related proteins and then annotate
each module based on the known functions of its members. Methods we cover in
other subsections belong to the “direct scheme” category. The current subsection
only briefly introduces module-based (we call “graph clustering” based) methods
which utilized the modularity assumption of PPI networks. There exist a number
of ongoing work that explore this category of strategies for protein function annota-
tion. Readers interested should refer to the overview paper [81] for details. Basically,
such methods first attempt to identify coherent groups of genes and then assign func-
tions to all genes in each group. The module-assisted methods differ mainly in their
module detection techniques, which include graph clustering, hierarchical cluster-
ing, clustering based on network topology, etc. Once a module is obtained, simple
methods are usually used for function prediction within the modules.
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4.4 Probabilistic Propagation on Belief Networks

Although there exist multiple functional classes, we can approach the functional an-
notation task one fuction at a time. Figure 17 gives a schematic illustration of this
case. For a certain functional class, the proteins assigned this function are labeled
“1”. The proteins which are known to not have this function are labeled “0”. The
remaining nodes are marked “?”. With this assignment, the protein-protein interac-
tion graph in Figure 17 can be treated as a probabilistic belief network of function
annotations. A number of probabilistic approaches to protein function prediction
have been suggested. Most such approaches have relied on a Markovian assump-
tion, namely, that the function of a protein is independent of all other proteins given
the functions of its immediate neighbors [81] . This global approach takes all the net-
work interactions and the functions of known proteins into consideration, propagat-
ing function labels from annotated proteins to unannotated proteins [19, 17, 50, 51].

The Markovian assumption naturally leads to a Markov random field (MRF)
model, which was proposed by Deng et al. [19]. In this paper, an MRF was used
to assign functions to unknown yeast proteins, with a probability representing the
confidence in the prediction. Each protein node is assigned a random variable, with
states corresponding to functional annotations in this setting. Thus, the interaction
between two known proteins can be classified into one of the three groups: (1,1),
(1,0) and (0,0), where numbers describe the involved proteins’ functional annota-
tion. The joint belief can then be represented with a Gibbs distribution by consider-
ing the classification of all proteins,

Pr(X |PPInet) =
exp[−U(x;θ)]

Z(θ)
(5)

where
U(x;θ) =−(αN1 +βN11 + γN10 +κN00) (6)

U(x;θ) represents the potential function of the PPI network given a functional con-
figuration of all proteins X = (x1, ...,xN) (discrete states). N1 is the number of pro-
teins for class “1,” and Nll′ is the number of protein interactions between category l
and l′ in the network. θ = (α,β ,γ,κ) are parameters, where κ is set equal to 1. Z(θ)
is the normalization constant (called the partition function), which is calculated by
summing over all the configurations,

Z(θ) = ∑
x

exp[−U(x;θ)] (7)

Inference in this model is computationally hard. Deng et al. [19] use a quasi-
likelihood method to estimate the parameters θ . The posterior probability that an
unknown protein has the function of interest given the annotations of its neighbors
P(xv = 1|xN(v)) was calculated with a Gibbs sampler.

Letovsky and Kasif [51] assumed a binomial model for local neighbors of a pro-
tein annotated with a given term. Also using the MRF propagation this algorithm
assigns probabilities for proteins’ functional annotation in the network using loopy
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Fig. 18 Actual values of
the diffusion kernel for one
parameter setting of diffusion
parameter β . Modified from
Figure 2 in [90]. Each value
on a node shows the kernel
value between the node and
the central node (orange
node). The kernel values
diffuse through the nodes on
the graph.

belief propagation. Leone et al in [50] proposed a belief propagation method on PPI
networks in a similar framework.

Later, Wu et al [94] proposed a related probabilisitic model to annotate functions
of unknown proteins on PPI networks. Their model is an implicit MRF model that
considers all the functions in a single model. This approach allows the model to
capture correlations among protein functions. The authors used the conditional dis-
tribution and presented a maximum likelihood formulation of the problem. The time
complexity of the corresponding learning and inference algorithms is linear in the
size of the PPI network.

Mostafavi et al [58] adopted a variation of the Gaussian field label propagation al-
gorithm for gene function prediction. Like the methods described above, this method
assigns a score to each node in the network. This score reflects the estimated degree
of association that the node has to the seed list defining the given function. The
scores can be thresholded to make predictions. Unlike previous approaches using
MRFs, the Gaussian field algorithm has a well-defined solution and can be effi-
ciently computed.

4.5 Kernel Method

Kernel machines have been applied extensively for discovering functionally similar
proteins within interaction networks. This approach has the ability to integrate mul-
tiple types of evidence for functional predictions. For instance, Lanckriet et al. [47]
and later Tsuda et al. [90] represent each data type using a matrix of kernel similar-
ity values. These matrices are then combined by learning optimal relative weights
for the different kernels.

Here we briefly describe how protein-protein interaction data can be used by a
kernel method [90]. Normally, a diffusion kernel [46, 84] is calculated on the graph
of proteins connected by interactions. The diffusion kernel is a general method for
computing pairwise distances among all nodes in a graph, based on the sum of
weighted paths between each pair of nodes. Assume that A is the n ∗ n adjacency
marix of a graph, and D is the n∗n diagonal matrix such that Dii is the node degree
of i-th node. The graph Laplacian matrix is defined as L = D−A. The diffusion
kernel [46, 84] is then defined as
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K = exp(−βL) (8)

where the diffusion parameter β > 0 determines the degree of diffusion. This ker-
nel can be interpreted in terms of a “lazy” random walk for sufficiently small β . At
each step, the next node is randomly chosen from the neighbor nodes according to
the transition probabilities. One can also stay at the same node (which is why the
random walk is called “lazy”. The kernel value Ki j is equivalent to the probability
that a random walk starting from i will stay at j after infinite time steps. Figure 18
shows the actual values of diffusion kernels with one possible β . When β is large
enough, the kernel values among distant nodes can capture the long-range relation-
ships between proteins [90]. Diffusion kernels offer several benefits: (1) these ker-
nels consider similarities among all protein pairs on the graph, not just immediate
neighbors, (2) node degrees are taken into account in the kernel calculations, and
(3) the parameter β is relatively easy to tune and has a clear meaning.

Lanckriet et al. [47] (and many others) used a diffusion kernel [46, 84] to sum-
marize PPI graph evidence for functional predictions. Later, Tsuda and Noble [90]
proposed a locally constrained variant of the diffusion kernel. They showed that
computing the diffusion kernel is equivalent to maximizing the von Neumann en-
tropy, subject to a global constraint on the sum of the Euclidean distances between
nodes. This global constraint allows for high variance in the pairwise kernel dis-
tances. Thus, the authors proposed an alternative, locally constrained diffusion ker-
nel and demonstrated that the resulting kernels allow for more accurate support
vector machine predictions of protein functional classifications from the metabolic
and protein-protein interaction networks.

4.6 Functional Identification Toward Annotation Taxonomy

The above two subsections handle the task of protein function prediction as multi-
ple binary classications, where the methods treat each function at a time and make
predictions for each term independently.

Fig. 19 A simple example of
protein function identification
considering the annotation
taxonomy. Modified from
Figure 2 in [29]. SVM clas-
sifier is represented with
light red node and GO terms
are described with green.
Here single SVM classifiers
(with one SVM per function
term) were combined through
Bayesian networks to correct
their predictions based on
the hierarchical relationship
between GO [14] terms.
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A more general approach to protein function prediction uses labels that follow a
directed acyclic graph taxonomy as defined by the Gene Ontology (GO) [14]. The
GO defines a set of terms to which any given protein may be annotated. In GO rep-
resentation, the parent-child relationship among terms implies that the child term
is either a special case of the parent term or describes a process or component that
is part of the parent process/component. In either case, there is a clear directional
dependency. Specifically, a protein positively annotated to a child term is, by defini-
tion, also positively annotated to the parent term(s), but not vice versa. As a logical
consequence, a protein that is negatively annotated to a parent term is also nega-
tively annotated to the child term(s). A negative annotation indicates that a protein
has been experimentally verified not to be involved in a particular function.

Researchers proposed a variety of methods for systematically predicting protein
function considering its taxonomy structures at the same time. Here we list three
representative approaches as following:

Markov Random Field Extension: A MRF model was extended to chain graphs
in [11] to directly incorporate the structure of the Gene Ontology into the graphical
representation for protein classification. The authors presented a method in which
each protein is represented by a replicate of the Gene Ontology structure, effectively
modeling each protein in its own annotation space. Belief propagation was used to
make predictions at all ontology terms.

Ensemble Framework: Guan et al. [29] describe an ensemble framework based
on SVMs that considers correlation between multiple function terms (see Figure 19).
A single SVM is used to predict a certain function for an unknown protein by in-
tegrating diverse datasets. In the context of the Gene Ontology hierarchy, single
SVM classifiers are combined through Bayesian networks to correct their predic-
tions based on the hierarchical relationship between GO terms in the GO directed
acyclic graph. For each GO term, the method included all neighboring nodes in its
Markov blanket to construct the Bayesian network. Shown in Figure 19, Y 1 is the
GO node of interest in this example. Thus this Bayesian network was constructed
with the local Markov blanket surrounding Y 1.

Reconciliation Method: Similar to the above paper, Obozinski et al. [63] pro-
posed to predict GO terms using an ensemble of discriminative classifiers. This
paper focused on reconciliation methods for combining independent predictions to
obtain a set of probabilistic predictions that are consistent with the topology of the
ontology. Eleven distinct reconciliation methods were investigated: three heuristic
methods; four variants of a Bayesian network; an extension of logistic regression to
the structured case; and three novel projection methods including isotonic regres-
sion and two variants of a Kullback-Leibler projection method. The authors found
that many apparently reasonable reconciliation methods yield reconciled probabili-
ties with significantly lower precision than the original, unreconciled estimates. On
the other hand, the isotonic regression method seems to be able to use the con-
straints from the GO network to its advantage, usually performing better than the
underlying, unreconciled predictions.
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Recently, in a special issue of Genome Biology, several research groups [66] used
GO annotation as a benchmark to compare methods of protein function predictions
with GO hierarchy structure being considered. Readers could refer to [66] for more
discussion.

5 Related General Topics

All sub-problems covered in this chapter are instances of more general tasks like
“link prediction”, “entity labeling”, “structural output learning” or “graph min-
ing” in the machine learning, data mining, and social network analysis commu-
nities. Methods proposed in related research fields have great potentials to be used
for protein-protein interaction prediction, protein function identification or domain-
domain interaction detection in the near future. As the literature on these topics is
vast, this section will briefly discuss just a few related studies as a guide.

Statistical Relational Learning (SRL) As an area of growing interest in ma-
chine learning, statistical relational learning [25, 26] takes an object oriented ap-
proach to clearly distinguish between entities, relationships and their respective at-
tributes in a probabilistic setting. Unlike most previous learning algorithms that as-
sume all training examples are mutually independent, SRL methods try to capture
complex relations among examples. A simple example of a relational system is a
recommendation system: based on the attributes of two entities, i.e. of the user and
the item, one wants to predict relationships like the preference (rating, willingness
to purchase, ...) of this user for this item. One can exploit the known relationship
attributes and the attributes of entities to predict unknown entity or relationship
attributes [95]. This case is quite similar to protein-protein interaction prediction
where we want to find the interaction preference of one protein to another. Various
paradigms of SRL have been proposed in recent years, including probabilistic rela-
tional models, Bayesian logic programs, relational dependency networks, Markov
logic networks, infinite relational model [44], infinite hidden relational model [95]
and etc (surveyed in [60, 25, 26]). Several methods have software package available
online, for instance, the open-source Alchemy system [45] provided a series of al-
gorithms for statistical relational learning and probabilistic logic inference, based
on the Markov logic representation [73]. It has been applied to problems in entity
resolution, link prediction, information extraction and others [45].

Graph-Based Semi-Supervised Learning Semi-supervised learning (SSL) [12]
occupies the middle ground, between supervised learning (in which all training ex-
amples are labeled) and unsupervised learning (in which no label data is given). In
application domains where unlabeled data are plentiful, such as bioinformatics, SSL
got growing interests in recent years. One category of SSL algorithms consider de-
pendencies between the labels of nearby examples on a constructed graph [105, 9]
to perform joint inference. These models train to encourage nearby data points to
have the same class labels, which is exactly protein function detection aims for. The
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graph-based SSL can obtain impressive performance using a very small amount of
labeled data [12]. As we know from above, for a large number of protein functional
categories, there exist very few annotated genes from experimental tests. Graph-
based SSL might make better functional predictions for these classes. Mostafavi et
al. [58] made some attemps in this direction.

Mining of Entity-Relation Graphs In the data mining research community, re-
lational or semi-structured data is naturally represented in a graph schema, where
nodes denote entities and edges between nodes represent the relations between en-
tities [22]. Such graphs are heterogeneous, since they include different types of
nodes and different types of edges [57]. Many social networks could be described as
entity-relation graphs. Using email system as an example, the graph inludes email-
message, from-to-person, email-address and time entities which are inter-connected
via relations derived from textual and structural information residing in a corpo-
rate database or a personal computer [57]. Similarly, protein interaction network
could be converted to this schema easily where proteins, protein function annota-
tions or domain compositions could be treated as different types of entities. Given
an entity-relation graph, a popular question of interest is how to determine the na-
ture of relationship between two entities that are not directly connected in the graph.
The classical strategy [22] proposed in the literature performs random “lazy” graph
walks on the entity-relation network to measure entity similarities. This strategy is
closely related to graph-based SSL methods where “labels” (or “similarity”) from
a start node propogate through edges in the graph, e.g. ccumulating evidence of
relatedness over multiple connecting paths. The problem of “entity proximity” has
connections to all three tasks we covered in this chapter. For instance, protein func-
tion prediction could be treated (“implicitly”) as a task of finding how similar an
unknown protein is, to a known protein in terms of a specific functional category.

6 Summary

Biology relies on the concerted action of a number of biomolecules organized in
networks, including proteins, small molecules, DNA and RNA. A key challenge is
to understand the interactions among these molecules. The role of computational
research on protein-protein interactions includes not only prediction, but also un-
derstanding the nature of the interactions and their binding residues on interaction
interfaces. This chapter surveys recent efforts to predict interactions between pro-
teins and between protein domains.

Predicting protein functions is one of the most important challenges of current
computational biology research. A large number of computational techniques have
been suggested for functional annotation using interaction networks; we have re-
viewed a few typical approaches in this chapter.



Protein interaction networks: Protein domain interaction and protein function prediction 29

References

1. Abraham, I., Bartal, Y., Neimany, O.: Advances in metric embedding theory. In: STOC ’06:
Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pp. 271–
286. ACM, New York, NY, USA (2006). DOI http://doi.acm.org/10.1145/1132516.1132557

2. Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic block-
models. J. Mach. Learn. Res. 9, 1981–2014 (2008)

3. Arnau, V., Mars, S., Marin, I.: Iterative cluster analysis of protein interaction data. Bioinfor-
matics 21(3), 364–78 (2005)

4. Bader, G.D., Hogue, C.W.: Analyzing yeast protein-protein interaction data obtained from
different sources. Nature Biotechnology 20(10), 991–997 (2003)

5. Bader, J., Chaudhuri, A., Rothberg, J., Chant, J.: Gaining confidence in high-throughput pro-
tein interaction networks. Nature Biotechnology 22(1), 78–85 (2004)

6. Ben-Hur, A., Noble, W.: Kernel methods for predicting protein-protein interactions. Bioin-
formatics (Proceedings of the Intelligent Systems for Molecular Biology Conference) 21,
i38–i46 (2005)

7. Ben-Hur, A., Noble, W.: Choosing negative examples for the prediction of protein-protein
interactions. BMC Bioinformatics 20(Suppl 1), S2 (2006)

8. Bleakley, K., Biau, G., Vert, J.P.: Supervised reconstruction of biological networks with local
models. Bioinformatics 23(13), i57–i65 (2007). DOI 10.1093/bioinformatics/btm204. URL
http://dx.doi.org/10.1093/bioinformatics/btm204

9. Blum, A.: Semi-supervised learning using randomized mincuts. In: ICML ’04: Proceedings
of the twenty-first international conference on Machine learning (2004)

10. Braun, P., Tasan, M., Dreze, M., Barrios-Rodiles, M., Lemmens, I., Yu, H., Sahalie, J.M.,
Murray, R.R., Roncari, L., de Smet, A.S., Venkatesan, K., Rual, J.F., Vandenhaute, J., Cu-
sick, M.E., Pawson, T., Hill, D.E., Tavernier, J., Wrana, J.L., Roth, F.P., Vidal, M.: An ex-
perimentally derived confidence score for binary protein-protein interactions. Nat Methods
6(1), 91–97 (2009). DOI 10.1038/nmeth.1281. URL http://dx.doi.org/10.1038/nmeth.1281

11. Carroll, S., Pavlovic, V.: Protein classification using probabilistic chain graphs and the gene
ontology structure. Bioinformatics 22, 1871–78 (2006)

12. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning (Adaptive Computa-
tion and Machine Learning). MIT Press (2006)

13. Chia, J.M., Kolatkar, P.R.: Implications for domain fusion protein-protein interactions based
on structural information. BMC Bioinformatics 5, 161 (2004)

14. Consortium, T.G.O.: Gene ontology: tool for the unification of biology. Nature Genet. 25,
25–9 (2000)

15. Cusick, M.E., Yu, H., Smolyar, A., Venkatesan, K., Carvunis, A.R., Simonis, N., Rual, J.F.,
Borick, H., Braun, P., Dreze, M., Vandenhaute, J., Galli, M., Yazaki, J., Hill, D.E., Ecker,
J.R., Roth, F.P., Vidal, M.: Literature-curated protein interaction datasets. Nat Methods 6(1),
39–46 (2009). DOI 10.1038/nmeth.1284. URL http://dx.doi.org/10.1038/nmeth.1284

16. Davis, F.P., Barkan, D.T., Eswar, N., McKerrow, J.H., Sali, A.: Host pathogen protein inter-
actions predicted by comparative modeling. Protein Sci 16(12), 2585–2596 (2007). DOI
10.1110/ps.073228407. URL http://dx.doi.org/10.1110/ps.073228407

17. Deng, M., Chen, T., Sun, F.: An integrated probabilistic model for functional prediction of
proteins. J Comput Biol. 11(2-3), 463–75 (2004)

18. Deng, M., Mehta, S., Sun, F., Chen, T.: Inferring domain-domain interactions from protein-
protein interactions. Genome Res. 12(10), 1540–8 (2002). Their method is actually an
EM-based MLE

19. Deng, M., Zhang, K., Mehta, S., Chen, T., Sun, F.: Prediction of protein function using
protein-protein interaction data. J Comput Biol. 10(6), 947–60 (2003)

20. Dyer, M.D., Murali, T.M., Sobral, B.W.: Computational prediction of host-pathogen
protein-protein interactions. Bioinformatics 23(13), i159–i166 (2007). DOI
10.1093/bioinformatics/btm208. URL http://dx.doi.org/10.1093/bioinformatics/btm208



30 Yanjun Qi and William Stafford Noble

21. Espadaler, J., Romero-Isart, O., Jackson, R., Oliva, B.: Prediction of protein-protein interac-
tions using distant conservation of sequence patterns and structure relationships. Bioinfor-
matics. 21(16), 3360–8 (2005)

22. Faloutsos, C., Miller, G., Tsourakakis, C.: Large graph-mining: Power tools and a practi-
tioner’s guide. KDD 09 Tutorial (2009)

23. Gavin, A., Aloy, P., Grandi, P., et al., Superti-Furga, G.: Proteome survey reveals modularity
of the yeast cell machinery. Nature 440(7084), 631–6 (2006)

24. Gavin, A.C., Bosche, M., Krause, R., et al., Superti-Furga, G.: Functional organization of
the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–7
(2002). URL http://dx.doi.org/10.1038/415141a

25. Getoor, L., Diehl, C.: Link mining: A survey. SIGKDD Explorations 7(2), 3–12 (2005)
26. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press (2007)
27. Gomez, S., Noble, W., Rzhetsky, A.: Learning to predict protein-protein interactions from

protein sequences. Bioinformatics 19(15), 1875–81 (2003). Protein-protein pair interaction
probability takes as only the single most informative related domain-domain probability,

28. Gomez, S.M., Noble, W.S., Rzhetsky, A.: Learning to predict protein-protein interactions.
Bioinformatics 19, 1875–1881 (2003)

29. Guan, Y., Myers, C.L., Hess, D.C., Barutcuoglu, Z., Caudy, A.A., Troyanskaya, O.G.: Pre-
dicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biol
9 Suppl 1, S3 (2008). DOI 10.1186/gb-2008-9-s1-s3. URL http://dx.doi.org/10.1186/gb-
2008-9-s1-s3

30. Han, D., Kim, H.S., Seo, J., Jang, W.: A domain combination based probabilistic framework
for protein-protein interaction prediction. Genome Inform 14, 250–259 (2003)

31. Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., Takagi, T.: Assessment of prediction accu-
racy of protein function from protein–protein interaction data. Yeast 18(6), 523–531 (2001).
DOI 10.1002/yea.706. URL http://dx.doi.org/10.1002/yea.706

32. Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., et al., Tyers, M.:
Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spec-
trometry. Nature 415(6868), 180–3 (2002). URL http://dx.doi.org/10.1038/415180a

33. Huang, C., Morcos, F., Kanaan, S.P., Wuchty, S., Chen, D.Z., Izaguirre, J.A.: Predicting
protein-protein interactions from protein domains using a set cover approach. IEEE/ACM
Trans Comput Biol Bioinform 4(1), 78–87 (2007). DOI 10.1109/TCBB.2007.1001. URL
http://dx.doi.org/10.1109/TCBB.2007.1001

34. Ingolfsson, H., Yona, G.: Protein domain prediction. Methods Mol Biol 426, 117–143 (2008)
35. Iqbal, M., Freitas, A.A., Johnson, C.G., Vergassola, M.: Message-passing algorithms for the

prediction of protein domain interactions from protein-protein interaction data. Bioinformat-
ics 24(18), 2064–2070 (2008). DOI 10.1093/bioinformatics/btn366

36. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-
hybrid analysis to explore the yeast proteininteractome. Proc. Natl. Acad. Sci. USA 98(8),
4569–4574 (2001). URL http://www.pnas.org/cgi/content/full/98/8/4569

37. Jaimovich, A., Elidan, G., Margalit, H., Friedman, N.: Towards an integrated protein-protein
interaction network: a relational markov network approach. J Comput Biol. 13(2), 145–64
(2006)

38. Jansen, R., Gerstein, M.: Analyzing protein function on a genomic scale: the importance
of gold-standard positives and negatives for network prediction. Curr Opin Microbiol. 7,
535–45 (2004). Article

39. Jansen, R., Gerstein, M.: Analyzing protein function on a genomic scale: the importance of
gold-standard positives and negatives for network prediction. Current Opnion in Microbiol-
ogy 7, 535–545 (2004)

40. Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N.J., Chung, S., Emili, A., Snyder,
M., Greenblatt, J.F., Gerstein, M.: A Bayesian networks approach for predicting protein-
protein interactions from genomic data. Science 302, 449–453 (2003)

41. Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien,
P., Roth, A., Simonovic, M., Bork, P., von Mering, C.: String 8–a global view on proteins



Protein interaction networks: Protein domain interaction and protein function prediction 31

and their functional interactions in 630 organisms. Nucleic Acids Res 37(Database issue),
D412–D416 (2009). DOI 10.1093/nar/gkn760. URL http://dx.doi.org/10.1093/nar/gkn760

42. Karaoz, U., Murali, T., Letovsky, S., Zheng, Y., Ding, C., Cantor, C., Kasif, S.: Whole-
genome annotation by using evidence integration in functional-linkage networks. Proc Natl
Acad Sci USA. 101(9), 2888–93 (2004)

43. Kato, T., Tsuda, K., Asai, K.: Selective integration of multiple biological data for
supervised network inference. Bioinformatics 21(10), 2488–2495 (2005). DOI
10.1093/bioinformatics/bti339. URL http://dx.doi.org/10.1093/bioinformatics/bti339

44. Kemp, C., Tenenbaum, J.B.: Learning systems of concepts with an infinite relational model.
In: In Proceedings of the 21st National Conference on Artificial Intelligence (2006)

45. Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Domingos, P.: The
alchemy system for statistical relational ai. Tech. rep., Department of Computer Science and
Engineering, University of Washington (2007)

46. Kondor, R.I., Lafferty, J.D.: Diffusion kernels on graphs and other discrete input spaces. In:
ICML ’02: Proceedings of the Nineteenth International Conference on Machine Learning,
pp. 315–322. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2002)

47. Lanckriet, G., Deng, M., Cristianini, N., Jordan, M., Noble, W.: Kernel-based data fusion
and its application to protein function prediction in yeast. Pac Symp Biocomput. pp. 300–11
(2004)

48. Lee, I., Date, S.V., Adai, A.T., Marcotte, E.M.: A probabilistic functional network of yeast
genes. Science 306, 1555–1558 (2004)

49. Lee, I., Lehner, B., Crombie, C., Wong, W., Fraser, A.G., Marcotte, E.M.: A single
gene network accurately predicts phenotypic effects of gene perturbation in caenorhab-
ditis elegans. Nat Genet 40(2), 181–188 (2008). DOI 10.1038/ng.2007.70. URL
http://dx.doi.org/10.1038/ng.2007.70

50. Leone, M., Pagnani, A.: Predicting protein functions with message passing algorithms.
Bioinformatics 21(2), 239–47 (2004)

51. Letovsky, S., Kasif, S.: Predicting protein function from protein/protein interaction data: a
probabilistic approach. Bioinformatics 19 Suppl 1, I197–204 (2003)

52. Lin, N., Wu, B., Jansen, R., Gerstein, M., Zhao, H.: Information assessment on predicting
protein-protein interactions. BMC Bioinformatics 5, 154 (2004)

53. Marcotte, E.M., Pellegrini, M., Ng, H.L., Rice, D.W., Yeates, T.O., Eisenberg, D.: Detecting
protein function and protein-protein interactions from genome sequences. Science 285, 751–
753 (1999)

54. Martin, S., Roe, D., Faulon, J.L.: Predicting protein-protein interactions using signature prod-
ucts. Bioinformatics 21(2), 218–226 (2005)

55. von Mering, C., Jensen, L., Snel, B., Hooper, S., Krupp, M., Foglierini, M., Jouffre, N.,
Huynen, M., Bork, P.: STRING: known and predicted protein-protein associations, integrated
and transferred across organisms. Nucleic Acids Res. 33, D433–7 (2005)

56. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P.: Compar-
ative assessment of large-scale data sets of protein-protein interactions. Nature 417(6887),
399–403 (2002)

57. Minkov, E.: Adaptive graph walk based similarity measures in entity-relation graphs. Ph.D.
thesis, Carnegie Mellon University (2008)

58. Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., Morris, Q.: Genemania: a
real-time multiple association network integration algorithm for predicting gene func-
tion. Genome Biol 9 Suppl 1, S4 (2008). DOI 10.1186/gb-2008-9-s1-s4. URL
http://dx.doi.org/10.1186/gb-2008-9-s1-s4

59. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome prediction of
protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21(S1),
i302–10 (2005)

60. Neville, J., Rattigan, M., Jensen, D.: Statistical relational learning: Four claims and a survey.
In: the Workshop on Learning Statistical Models from Relational Data, 18th International
Joint Conference on Artificial Intelligence (2003)



32 Yanjun Qi and William Stafford Noble

61. Nguyen, T.P., Ho, T.B.: An integrative domain-based approach to predicting protein-protein
interactions. Journal of Bioinformatics and Computational Biology 6(6), 1115–1132 (2008)

62. Nye, T.M.W., Berzuini, C., Gilks, W.R., Babu, M.M., Teichmann, S.A.: Statistical analy-
sis of domains in interacting protein pairs. Bioinformatics 21(7), 993–1001 (2005). DOI
10.1093/bioinformatics/bti086. URL http://dx.doi.org/10.1093/bioinformatics/bti086

63. Obozinski, G., Lanckriet, G., Grant, C., Jordan, M.I., Noble, W.S.: Consistent probabilistic
outputs for protein function prediction. Genome Biol 9 Suppl 1, S6 (2008). DOI 10.1186/gb-
2008-9-s1-s6. URL http://dx.doi.org/10.1186/gb-2008-9-s1-s6

64. Pagel, P., Strack, N., Oesterheld, M., Stmpflen, V., Frishman, D.: Computational prediction
of domain interactions. Methods Mol Biol 396, 3–15 (2007)

65. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., Yeates, T.O.: Assigning pro-
tein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl
Acad Sci U S A 96(8), 4285–4288 (1999)

66. Pea-Castillo, L., Tasan, M., Myers, C.L., Lee, H., Joshi, T., Zhang, C., Guan, Y., Leone, M.,
Pagnani, A., Kim, W.K., Krumpelman, C., Tian, W., Obozinski, G., Qi, Y., Mostafavi, S., Lin,
G.N., Berriz, G.F., Gibbons, F.D., Lanckriet, G., Qiu, J., Grant, C., Barutcuoglu, Z., Hill, D.P.,
Warde-Farley, D., Grouios, C., Ray, D., Blake, J.A., Deng, M., Jordan, M.I., Noble, W.S.,
Morris, Q., Klein-Seetharaman, J., Bar-Joseph, Z., Chen, T., Sun, F., Troyanskaya, O.G.,
Marcotte, E.M., Xu, D., Hughes, T.R., Roth, F.P.: A critical assessment of mus musculus
gene function prediction using integrated genomic evidence. Genome Biol 9 Suppl 1, S2
(2008). DOI 10.1186/gb-2008-9-s1-s2. URL http://dx.doi.org/10.1186/gb-2008-9-s1-s2

67. Qi, Y., Bar-Joseph, Z., Klein-Seetharaman, J.: Evaluation of different biological data and
computational classification methods for use in protein interaction prediction. PROTEINS:
Structure, Function, and Bioinformatics. 63(3), 490–500 (2006)

68. Qi, Y., Klein-Seetharaman, J., Bar-Joseph, Z.: Random forest similarity for protein-protein
interaction prediction from multiple sources. Pacific Symposium on Biocomputing 10, 531–
542 (2005)

69. Qi, Y., Klein-Seetharaman, J., Bar-Joseph, Z.: Random forest similarity for protein-protein
interaction prediction from multiple sources. In: Proceedings of the Pacific Symposium on
Biocomputing (2005)

70. Qiu, J., Noble, W.S.: Predicting co-complexed protein pairs from heterogeneous data.
PLoS Comput Biol 4(4), e1000,054 (2008). DOI 10.1371/journal.pcbi.1000054. URL
http://dx.doi.org/10.1371/journal.pcbi.1000054

71. Ramani, A.K., Bunescu, R.C., Mooney, R.J., Marcotte, E.M.: Consolidating the set of known
human protein-protein interactions in preparation for large-scale mapping of the human in-
teractome. Genome Biol. 6(5), R40 (2005). Article

72. Rhodes, D.R., Tomlins, S.A., Varambally, S., Mahavisno, V., Barrette, T., Kalyana-
Sundaram, S., Ghosh, D., Pandey, A., Chinnaiyan, A.M.: Probabilistic model of the human
protein-protein interaction network. Nat Biotechnol. 8, 951–9 (2005). Article

73. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–136
(2006)

74. Riley, R., Lee, C., Sabatti, C., Eisenberg, D.: Inferring protein domain interactions from
databases of interacting proteins. Genome Biol 6(10), R89 (2005). DOI 10.1186/gb-2005-
6-10-r89. URL http://dx.doi.org/10.1186/gb-2005-6-10-r89

75. Ritchie, D.W.: Recent progress and future directions in protein-protein docking. Curr Protein
Pept Sci 9(1), 1–15 (2008)

76. Rual, J.F., Venkatesan, K., et al., Roth, F.P., Vidal, M.: Towards a proteome-scale map of the
human protein-protein interaction network. Nature 437(7062), 1173–8 (2005). 1476-4687
(Electronic) Journal Article

77. Samanta, M., Liang, S.: Predicting protein functions from redundancies in large-scale protein
interaction networks. Proc Natl Acad Sci USA. 100(22), 12,579–83 (2003)

78. Schwikowski, B., Uetz, P., Fields, S.: A network of protein-protein interactions in
yeast. Nat Biotechnol 18(12), 1257–1261 (2000). DOI 10.1038/82360. URL
http://dx.doi.org/10.1038/82360



Protein interaction networks: Protein domain interaction and protein function prediction 33

79. Scott, M.S., Barton, G.J.: Probabilistic prediction and ranking of human protein-protein in-
teractions. BMC Bioinformatics 8, 239 (2007). 1471-2105 (Electronic) Comparative Study
Journal Article Research Support, Non-U.S. Gov’t

80. Scudder, H.: Probability of error of some adaptive pattern-recognition machines. IEEE Trans-
actions on Information Theory 11(3), 363–371 (1965)

81. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Mol Syst
Biol 3, 88 (2007). 1744-4292 (Electronic) Journal Article Research Support, Non-U.S. Gov’t
Review

82. Shoemaker, B.A., Panchenko, A.R.: Deciphering protein-protein interactions. part i. exper-
imental techniques and databases. PLoS Comput Biol 3(3), e42 (2007). 1553-7358 (Elec-
tronic) Journal Article Research Support, N.I.H., Intramural Review

83. Shoemaker, B.A., Panchenko, A.R.: Deciphering protein-protein interactions. part ii. compu-
tational methods to predict protein and domain interaction partners. PLoS Comput Biol 3(4),
e43 (2007). 1553-7358 (Electronic) Journal Article Research Support, N.I.H., Intramural
Review

84. Smola, A., Kondor, R.: Kernels and regularization on graphs. In: B. Schölkopf, M. Warmuth
(eds.) Proceedings of the Annual Conference on Computational Learning Theory and Kernel
Workshop, Lecture Notes in Computer Science. Springer (2003)

85. Sontag, D., Singh, R., Berger, B.: Probabilistic modeling of systematic errors in two-hybrid
experiments. Pac Symp Biocomput pp. 445–457 (2007)

86. Sprinzak, E., Margalit., H.: Correlated sequence-signatures as markers of protein-protein
interaction. Journal of Molecular Biology 311, 681692 (2001). Use mutual information
(average) of two sequence signatures in the interacting protein pairs as signature interact
probability; InterPro =¿ sequence signature of protein

87. Stelzl, U., Worm, U., Lalowski, M., et al., Wanker, E.E.: A human protein-protein interaction
network: a resource for annotating the proteome. Cell 122(6), 957–68 (2005). 0092-8674
(Print) Journal Article

88. Tastan, O., Qi, Y., Carbonell, J., Klein-Seetharaman, J.: Prediction of interactions between
hiv-1 and human proteins by information integration. Pacific Symposium on Biocomputing
(PSB) 14 (2009)

89. Teichmann, S.A.: Principles of protein-protein interactions. Bioinformatics 18 Suppl 2, S249
(2002)

90. Tsuda, K., Noble, W.: Learning kernels from biological networks by maximizing entropy.
Bioinformatics 20 Suppl 1, I326–I333 (2004)

91. Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function prediction
from protein-protein interaction networks. Nature Biotechnology 21, 697 – 700 (2003)

92. Vert, J.P., Qiu, J., Noble, W.S.: A new pairwise kernel for biological network inference with
support vector machines. BMC Bioinformatics 8(Suppl 10):S8 (2007)

93. Wang, H., Segal, E., Ben-Hur, A., Li, Q., Vidal, M., Koller, D.: InSite: A computational
method for identifying protein-protein interaction binding sites on a proteome-wide scale.
Genome Biology 8(9), R192.1–R192.18. (2007)

94. Wu, Y., Lonardi, S.: A linear-time algorithm for predicting functional annotations from ppi
networks. J Bioinform Comput Biol 6(6), 1049–1065 (2008)

95. Xu, Z., Tresp, V., Yu, K., Kriegel, H.P.: Infinite hidden relational models. In: Proceedings
of the 22nd International Conference on Uncertainty in Artificial Intelligence (UAI 2006)
(2006)

96. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of
drug-target interaction networks from the integration of chemical and genomic spaces.
Bioinformatics 24(13), i232–i240 (2008). DOI 10.1093/bioinformatics/btn162. URL
http://dx.doi.org/10.1093/bioinformatics/btn162

97. Yamanishi, Y., Vert, J.P., Kanehisa, M.: Protein network inference from multiple genomic
data: a supervised approach. Bioinformatics 20 Suppl 1, i363–i370 (2004). DOI
10.1093/bioinformatics/bth910. URL http://dx.doi.org/10.1093/bioinformatics/bth910

98. Yanay, O., Marco, P., Burkard, R.: Tutorial: Function prediction - from high throughput to
individual proteins. Pacific Symposium on Biocomputing (2005)



34 Yanjun Qi and William Stafford Noble

99. Yip, K.Y., Gerstein, M.: Training set expansion: an approach to improving the re-
construction of biological networks from limited and uneven reliable interactions.
Bioinformatics 25(2), 243–250 (2009). DOI 10.1093/bioinformatics/btn602. URL
http://dx.doi.org/10.1093/bioinformatics/btn602

100. Yu, H., Braun, P., Yildirim, M.A., Lemmens, I., Venkatesan, K., Sahalie, J., Hirozane-
Kishikawa, T., Gebreab, F., Li, N., Simonis, N., Hao, T., Rual, J.F., Dricot, A., Vazquez,
A., Murray, R.R., Simon, C., Tardivo, L., Tam, S., Svrzikapa, N., Fan, C., de Smet, A.S.,
Motyl, A., Hudson, M.E., Park, J., Xin, X., Cusick, M.E., Moore, T., Boone, C., Snyder,
M., Roth, F.P., Barabsi, A.L., Tavernier, J., Hill, D.E., Vidal, M.: High-quality binary pro-
tein interaction map of the yeast interactome network. Science 322(5898), 104–110 (2008).
DOI 10.1126/science.1158684. URL http://dx.doi.org/10.1126/science.1158684

101. Yu, J., Finley, R.L.: Combining multiple positive training sets to generate confidence
scores for protein-protein interactions. Bioinformatics 25(1), 105–111 (2009). DOI
10.1093/bioinformatics/btn597. URL http://dx.doi.org/10.1093/bioinformatics/btn597

102. Zhang, L., Wong, S., King, O., Roth, F.: Predicting co-complexed protein pairs using ge-
nomic and proteomic data integration. BMC Bioinformatics 5, 38 (2004)

103. Zhang, L.V., Wong, S., King, O., Roth, F.: Predicting co-complexed protein pairs using ge-
nomic and proteomic data integration. BMC Bioinformatics 5(1), 38–53 (2004)

104. Zhou, H.X., Qin, S.: Interaction-site prediction for protein complexes: a critical assess-
ment. Bioinformatics 23(17), 2203–2209 (2007). DOI 10.1093/bioinformatics/btm323. URL
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/23/17/2203

105. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and
harmonic functions. In: ICML’03: Proceedings of the 20th International Conference on Ma-
chine Learning, pp. 912–919 (2003)


