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Abstract
We describe a novel semi-supervised method called Word-
Codebook Learning (WCL), and apply it to the task of bio-
named entity recognition (bioNER). Typical bioNER sys-
tems can be seen as tasks of assigning labels to words in bio-
literature text. To improve supervised tagging, WCL learns
a class of word-level feature embeddings to capture word
semantic meanings or word label patterns from a large un-
labeled corpus. Words are then clustered according to their
embedding vectors through a vector quantization step, where
each word is assigned into one of the codewords in a code-
book. Finally codewords are treated as new word attributes
and are added for entity labeling. Two types of word-
codebook learning are proposed: (1) General WCL, where
an unsupervised method uses contextual semantic similar-
ity of words to learn accurate word representations; (2)
Task-oriented WCL, where for every word a semi-supervised
method learns target-class label patterns from unlabeled
data using supervised signals from trained bioNER model.
Without the need for complex linguistic features, we demon-
strate utility of WCL on the BioCreativeII gene name recog-
nition competition data, where WCL yields state-of-the-art
performance and shows great improvements over supervised
baselines and semi-supervised counter peers.

Keywords: semi-supervised feature learning, information
extraction, sequence labeling, biomedical natural language
processing, named entity recognition

1 Introduction

For biomedical research, efficient access to information
contained in online scientific literature collections is es-
sential as it plays a crucial role to the initial experiment
planning, the final data interpretation, or communica-
tion of results. Most of the biomedical discoveries are
communicated through publications, or reports. Re-
cently, biomedical databases enabled efficient data re-
trieval, exchange, and analysis of previous discoveries.
Most of these databases rely on manual annotations of
the literature through field experts, which is often as-
sociated with significant curation workloads [20], and
limited to a fraction of journals.

The life science literature database PUBMED stores
around 16 million citations and receives over 70 million
queries every month [19]. The rapid accumulation of
new publications that appear on a daily basis needs to
be processed in time to extract new discoveries and/or
to revise existing ones. A range of text mining and
natural language processing (NLP) strategies has been
proposed to convert human language in bio-literature
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into formal computer representations for sophisticated
biomedical literature mining.

Finding biomedical named entities is one of the
most important subtasks in processing bio-literature
text. Technically speaking, finding bio-named entities
in bio-literature is similar to common named entity
recognition (NER) systems which label atomic elements
in newspaper text into categories such as person name,
company name, or organization name [10]. Bio-named
entity recognition is critical for subsequent tasks like
document retrieval, information summarization, or bio-
event extractions.

The task of bio-named entity recognition (bioNER)
differs from other common NER problems in several as-
pects, which make bioNER substantially more difficult:
• Much more rare words, extensive usage of acronyms

and constantly changing vocabulary. For instance,
there exist millions of gene names used. Rare word
problem results in the need of being able to detect
and predict previously unseen words/entities.

• Complex orthographic patterns, many variations of
bio-terms referring to same entities. This substan-
tially expands active vocabulary, and complicates
building named entity dictionaries.

• Multiple types of bio-named entities exist with
similar morphology and contexts, such as protein
name, gene name, disease name, cell name, etc. For
example, gene names naturally co-occur with other
bio-named entity types, such as cell names.

• Ambiguity. The same name may refer to a range
of biological objects and terms, which further com-
plicates their distinctions.
Typical bioNER systems assign labels to words

in biomedical literature. Supervised techniques have
yielded great success, though the performance is re-
stricted by the expense of annotating the corpus [29].
Recently semi-supervised learning has become one of
the most natural forms of training for language process-
ing tasks, since unlabeled language data is plentiful.

In this paper, we propose a semi-supervised method
called Word-Codebook Learning (WCL), with the hope
of tackling/easing above-mentioned issues through the
usage of large unlabeled corpora. The basic motivation
is the following: words are basic units of meaning and
fundamental building blocks of human language. For
bioNER task, individual words carry significant seman-
tic and label information. WCL aims to learn a class of



word-level feature representation (embeddings) to cap-
ture multiple indications of individual words through
the usage of unlabeled bio-literature sentences. Two
kinds of WCL are proposed: (1) General WCL, where
an unsupervised method based on neural networks tries
to use contextual similarity of words to learn accu-
rate word representations describing semantic informa-
tion; (2) Task-oriented WCL, where a semi-supervised
method tries to capture each word’s target label pat-
terns from unlabeled data using supervised signals from
iteratively trained bioNER model. After getting embed-
ded feature representations, words are clustered accord-
ing to these vector embeddings. A vector quantization
(VQ) technique is utilized to assign each word to one of
the codewords in a codebook learned through VQ. Fi-
nally codewords are treated as extra word attributes and
added into bioNER systems for named entity labeling.

We apply WCL on the BioCreativeII gene name
recognition competition [29] data set. Our meth-
ods are compared to several baselines, including the
fully-supervised learning, the self-training, the semi-
supervised counter peer, and a simple co-occurrence
based WCL. With all settings we tried, WCL shows
significant improvements and yields the state-of-the-art
performance (F1 test score 87.86) without the need for
complex linguistic features and domain dictionaries.

2 Related Work
2.1 Supervised Sequence Labeling for Natural
Languages BioNER belongs to the general family of
information extraction (IE) tasks in the natural lan-
guage processing (NLP) field. NLP research aims to
convert human language into representations that are
easy for computers to process. Typical problems in NLP
range from the syntactic, like part-of-speech tagging,
chunking, to the semantic, such as named entity extrac-
tion (NER) [7]. Most of these sub-tasks could be treated
as sequence segmentation or sequence labeling prob-
lems. For instance, NER systems label atomic elements
of the sentence into several categories, which essentially
classifies words into one of the multiple classes. While
early studies were mostly based on handcrafted rules,
recent systems use supervised machine learning tech-
niques to automatically train labeling algorithms from
a collection of training examples. Popular supervised
techniques includes Hidden Markov Models (HMM),
Maximum Entropy (ME) Models, Support Vector Ma-
chines (SVM), and Conditional Random Fields (CRF).
See [24] for a review of NER problems.

2.2 Semi-supervised Learning It is quite difficult
to obtain labeled training sentences with word-level an-
notations, especially for bio-literature text. Supervised
NLP techniques are restricted by the availability of la-

beled examples. Semi-supervised learning has become
one of the most natural forms of training, since unla-
beled language data is abundant in this field. For in-
stance, PUBMED (the central life science publication
database) provides free downloads for all its publica-
tion abstracts (more than 16 million citations with over
∼1.3G tokens after preprocessing).

Self-training [27, 15, 18], and co-training [2, 5] are
popular semi-supervised methods applied in NLP. Both
utilize large sets of unlabeled corpora and try to im-
prove over supervised methods by iteratively adding
self-labeled examples predicted by the current model.
This can give improvements to a model, but care must
be taken as the predictions are prone to noise. Many
other semi-supervised learning algorithms exist, includ-
ing Transductive SVMs [14, 6], graph-based regulariza-
tion [32], entropy regularization [12] and EM with gen-
erative mixture models [25], see [4] for a review.

Unlike most popular semi-supervised approaches,
the proposed WCL method induce word features (code-
words, see Section 3.2) (not examples) from a large cor-
pus of unannotated examples. These features are then
used to augment the feature space of the labeled set.
This is an orthogonal direction for improving accuracy,
i.e. it can be used in combination with many other su-
pervised or semi-supervised methods.

2.3 Bio-Named Entity Recognition (bioNER)
and Gene Name Finding A considerable fraction of
the existing discoveries in life science are in the form of
natural language text. Currently most functional infor-
mation contained in biological databases has been ex-
tracted directly or indirectly from these text sentences.
Many previous efforts have been made to extract bio-
logically relevant information from electronic biomedical
texts automatically. See [20] for a survey.

While complete automatic semantic understanding
is still a far-distant goal, researchers have taken a di-
vide and conquer approach and identified several im-
portant sub-tasks such as bio-entity recognition, pro-
tein interaction extraction, etc. When processing bio-
literature text, bioNER is one of the most important
tasks since biological entities represent the primary tar-
gets of scientific discoveries. A combination of charac-
teristics makes bio-name entities difficult to recognize
automatically (details in Section 1). Well-labeled train-
ing sentences are scarce for general bioNER types, with
GENIA [16] corpus as one of the first attempts.

Among typical bio-entity types, gene/protein
names are among the most fundamental ones since
genes/proteins are the chief targets for biomedical sci-
ence. The problem of finding gene names (termed as
“gene mention” (GM)) has been one of the major tasks



in the challenge competition series: BioCreativeI and
BioCreativeII [19]. Two BioCreative competitions pro-
vided well-defined GM corpora and the state-of-the-art
evaluation results to compare on this benchmark data
set [29]. Nineteen teams participated in BioCreative
II gene mention task and each team submitted one to
three runs. All top teams utilized large domain lexi-
cons (termed “gazetteer”), complicated linguistic fea-
tures (such as POS), and complex training strategies
(for instance, two passes training of sequence models,
forward pass + backward pass).

2.4 NER with Words Grouping WCL essentially
clusters words in the vocabulary into multiple groups.
Several previous works [3, 23] made efforts in this di-
rection to solve NER tagging. For example, Miller et
al. [23] proposed to augment annotated training data
with hierarchical word clusters that are automatically
derived from a large unannotated corpus. The words
were grouped according to their co-occurrence statistics
(with method proposed in [3]) in the unlabeled sets.
Since co-occurrence patterns could be treated as em-
bedding and fit into WCL as well, we make experimen-
tal comparisons of the two proposed WCL (General or
Task-Oriented) methods to a co-occurrence based WCL
baseline in Section 5.

Another group of closely related methods treat
word clusters as hidden variables in their models. For
instance, Koo and Collins [17] proposed a conditional
log-linear model, with hidden variables representing the
assignment of atomic items to word clusters or word
senses. The model learns to automatically make the
cluster assignments based on a discriminative training
criterion. The method was tested within reranking
problems.

3 Methods
In the following, we describe the word-codebook learn-
ing (WCL), which has two steps: (I) learning word-level
feature representations (embedding vectors), either with
respect to semantic meaning (unsupervised) or target la-
bel patterns (semi-supervised), Section 3.1; (II) building
word-codebook and assigning codewords to every word
according to its embedding vector (Section 3.2).

The algorithm of general word codebook learning is
given in Table 1 and is further illustrated in Figure 1.
Embedding step (step 3 in Table 1) is accomplished with
suitable learning procedures (details in Section 3.1).
Word codebook construction and codeword assignment
(steps 4 and 5 in Table 1) are described in Section 3.2.

3.1 Step I: Learning Word-Level Embedding
WCL relies on the key observation that individual
words carry significant semantic information or label
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Figure 1: Flow chart of word-codebook learning (WCL)

Figure 2: Word embedding step maps each word to
a vector of real values (with dimension M) which are
learned from the large unlabeled data set (e.g., PubMed
abstracts for bioNER).

indications for NLP tasks. Thus we try to map each
word to a vector of real values (called “embedding”
in the following) which is able to describe this word’s
semantic meanings or possible class patterns. Figure 2
illustrates this mapping step with an exemplar sentence.
We propose two strategies to learn embeddings which
represent every word’s

• Semantic information: an unsupervised approach
named “language model” (LM) to capture words’
semantic meanings in human language (e.g., bio-
literature text here). This strategy makes use of
only unlabeled set and is not related to the targeted
class types. Thus we name WCL using this strategy
as “General WCL”.

• Class pattern: a semi-supervised method named
“self learned label patterns” (SLLP) to capture
words’ target class (e.g., named entity types) dis-
tributions. This strategy depends on the target
class types WCL is targeting. Thus WCL using
this strategy is named as “Task-Oriented WCL”.

3.1.1 General Embedding: Language Model
(LM) Traditional language models estimate the proba-
bility of the next word being w in a language sequence.
Collobert et al. [7] proposed a different type of “lan-
guage model” (LM) which is an unsupervised task to
embed normal English words into a M dimensional
space by utilizing unlabeled sentences from Wikipedia.
We adapt this approach to bio-literature text and train



Algorithm for Word Codebook Learning (WCL)

1: Define the feature representation φ(w) for words w

2: Choose a target word vocabulary D

3: Train φ(w) for all words in the word vocabulary to obtain a collection of word vector embeddings
4: Form a codebook C from the vector embeddings to obtain a word codebook
5: Augment the representation of words φ(w) with their learned codebook feature

Table 1: Word codebook learning (WCL)

the language model on PubMed abstracts. The basic
motivation is that in most language tagging tasks, words
semantically similar can be usually exchanged with no
impact on the labeling. For example, in a sentence like
“EGFR interacts with an inhibitor” one can replace “in-
teracts” with “cooperates” with no change in the sen-
tence meaning.

The proposed LM tries to force two natural sen-
tences with same semantic tags to have similar embed-
ding representations and force two sequences with dif-
ferent semantic tags to have different representations.
This is achieved by utilizing unlabeled text fragments
and learning to predict whether the given text sequence
exists naturally in bio-literature, or not. Figure 3 gives
a schematic framework of LM embedding.

Multiple-layer perceptron network (one type of neu-
ral network (NN)) is used for the LM embedding learn-
ing. The first layer is a lookup-table layer which map
raw words into real-valued vectors (which are the em-
bedding vectors we are looking for). With a sliding win-
dow approach (where the inputs are word windows of
a fixed size, and the middle word in the window is the
word to be tagged), values of words in the current text
window are concatenated and fed into subsequence lay-
ers which are classical neural network (NN) layers. The
weights of all the layers in the network are automatically
trained by backpropagation. The last layer outputs a
scalar value f(x), for each input x (a window of words).
The model is trained with a ranking-type cost:

(3.1)
X

x∈X

X

w∈D

max
`

0, 1 − f(x+) + f(x−)
´

,

where X is the set of all possible word windows in
natural text, D is the vocabulary of words, and f(·)
represents the output of NN architecture. x+ represents
real text fragments (positive example) and x− is a
pseudo negative example which is generated from x+

by replacing its middle word w by a random word.
We sample this cost online w.r.t. (x, w). With the
above cost, LM is trained to recognize if the word
in the middle of an input text window is naturally
related to its surrounding words or not. Thus the learnt
embedding vectors in the lookup-table layer are close for
semantically similar words.

Figure 3: Word embedding with “language model”
using a neural network (NN) framework.

3.1.2 Task Oriented Embedding: Semi-
supervised Self-Learned Label Patterns (SLLP)
We now discuss a task-oriented method for learning
word representations. The method directly targets a
labeling task at hand by learning each word’s label
distribution patterns which represent probabilities with
which a word might belong to the classes defined by
the task.

Figure 4 gives a schematic summary of this ap-
proach, the so called “self-learned label patterns”
(SLLP) learning. The basic version of SLLP is presented
in [26]. Here we propose several extended versions.

For a given word w, a feature vector SLLP(w)
models the probability of assigning each target class
to this word. Assuming the target label has K classes
total, SLLP(w) = (SLLP(w)1, . . . ,SLLP(w)K)
with the ith component defined as

(3.2) SLLP(w)i = P (y = i|w, where w = xm),

where m = (|x| + 1)/2. That is, the ith dimension
measures the probability of label y = i being assigned
given word w is the middle word (word of interest) in
the input segment x (Figure 4). Here we are also using
a sliding window approach (x represents a text window
of five words in Figure 4 ). This distribution is of course
unknown but can be empirically estimated from the
training set or, critically, can be re-estimated using an
unlabeled corpus by applying a classifier trained on the
labeled set and averaging predicted labels over all cases
in the unlabeled corpus.

The empirical SLLP is then defined for a given word
w as:



Figure 4: Word embedding with SLLP (Self-Learned
Label Pattern) learning.

(3.3) SLLP(w)i =
|{j : f(x∗

j ) = i ∧ w = (x∗
j )m}|

|{k : w = (x∗
k)m}|

,

where f(·) is a bioNER classifier trained to predict
label y given x. Essentially this distribution measures
the proportion of text sequences assigned to class i
given word w is the word of interest in those window
sequences.

As pointed out by the organizers of BioCreativeII
GM task, it seems to be infeasible to detect ’difficult’
(i.e. unique, rare) gene names, because they obey a
Zipf-like distribution and there are as many unique and
difficult gene names as there are common and easy
ones [29]. In the following we try to conquer this
difficulty two extended SLLP.

[CRKL], an adapter protein ...
[SH2-SH3-SH3] adapter protein ...
high expression of [p51a] ...
zygotic expression of [Kr] ...

Table 2: Exemplar words carrying rich class boundary
information. Each row gives an example where the
words next (or very close) to the named entity (gene
name) are informative.

Boundary SLLP Rare words are normally the
hardest examples to label since the training set could
hardly cover them. In this case, we try to model
those words which occur frequently before (or after)
a certain class of entity type. During testing, when a
rare word needs to be labeled, its neighborhood words
might give strong indications of its target class types
if these words always appear around the boundary of
a certain entity class. Table 2 lists several exemplar
words in bio-text that are usually very close to named
entities (gene names). Clearly, some words carry strong
class boundary information. In this case, basic SLLP
can be extended to incorporate the class boundary
distributions, named as “boundary SLLP”.

Boundary SLLP (BSLLP) models how likely a word

w is to occur before or after a certain class (assuming
class t):

bSLLP(w)t,1 = P (y = t|w ∈ {(x)1, . . . , (x)m−1})

bSLLP(w)t,2 = P (y = t|w ∈ {(x)m+1, . . . , (x)|x|})
where m is the middle index in a given “window”
x (sequence), as before. We show experimentally
that this extension effectively improves the gene name
recognition task which suffers a lot from the “rare word”
problem.

Bigram SLLP While both the basic method and
the boundary SLLP estimate word-class probability for
individual class labels, to better capture context in
which word appears, one could estimate distributions
of target class label n-grams (n-gram SLLP) as opposed
to distributions over individual class labels.

Here we consider a bigram SLLP model as an
example. The Bigram-SLLP estimates for a given word
w a set of probabilities using current tag (t0), previous
tag (t−1), and next tag (t1) tags (a simplified equation
is provided to save space):

(3.4) BiSLLP (w) = [P (t−1, t0|w), P (t1, t0|w)]

The BiSLLP feature vector, for instance, in IOBES
representation has 25 dimensions corresponding to valid
label bigrams (some of the combinations are invalid,
e.g., IB, OI, etc.)

Compared to the basic/boundary SLLP that only
looks at the individual label distribution independently
for every word the n-gram SLLP estimates for every
word the joint distribution over the label sequence
corresponding to the labels of the word itself and the
words surrounding it. Thus the n-gram SLLP gives
more information about the potential labels for not only
the word under consideration, but also for the words
around it.

3.2 Step II: Building Word-Codebook We now
describe a vector quantization (VQ) step that is used to
build the word codebook on words’ embedding vectors,
where every word is going to be assigned into one of the
codewords (Figure 5).

For a given word w, the embedding step (e.g.,
SLLP, LM, etc.) defines a feature vector E(w) ∈ R

M .
Similar feature vectors E(w) indicate either semantic
closeness of the words (as in LM) or closeness in terms of
label assignments (as in SLLP). Thus grouping similar
feature vectors together might give stronger indications
of the target sequence labels and allow for better
generalization over learned patterns.

Here we utilize a vector quantization technique [11]
to convert embedding vectors E(w) to prototype vec-
tors. Each of the input vectors (embeddings to be quan-
tized) would be quantized into one quantization level



Figure 5: Building word-codebook step clusters words
into multiple groups according to their vector embed-
dings. Each symbol “+” represents “input vector”.
Each red circle represents the “code vector”. Blue
boundary lines split the space into three regions and
each input vector “+” would be assigned to the red cir-
cle in the corresponding region.

(called a code vector). The set of all code vectors is
called a codebook.

Formally speaking, we have feature vectors
E(w) for every word w in the dictionary D, i.e.
{E(w1),E(w2), ...,E(wD)}, where E(wd) ∈ R

M . Using
C to represent the codebook set which includes N code-
book vectors, C = {C1, C2, ..., CN}, VQ tries to mini-
mize the following objective function,

(3.5)

D∑

d=1

||E(wd) − Cn||
2, where n ∈ {1...N}

With this optimization, VQ finds the best codebook C
and for each input vector E(wd), VQ finds the best code
vector Cn to assign on. Figure 5 provides a schematic
graph for this process. After VQ step, we use the indices
of this code vector as the new feature for word w, called
codewords. Essentially the whole process clusters all the
words in the dictionary into multiple (N) groups and
then uses the cluster ID as novel feature representation
(a binary vector with all zeros except for the IDth

dimension which is set to 1).
In summary, WCL learns embedded feature repre-

sentations E(w) for every word w from unlabeled ex-
amples (Section 3.1) and then uses the learned repre-
sentations to build a word codebook C (Section 3.2).
This, in turn, is used to re-represent word feature vector
(Eq. 3.6). Assuming the original feature representation
for word w in bioNER systems as φ(w), then

(3.6) φ̄(w) = (φ(w), CB(w)),

where CB(w) is the codebook representation obtained
from the unlabeled data (e.g., using LM or SLLP). WCL
then re-trains the entity tagging classifier on the labeled
set using this extended word feature representation.
Figure 1 gives a flow chart of this process.

3.3 Advantages of WCL Our approach, similar to
popular semi-supervised methods such as self-training,
can be used as a wrapper approach with other su-
pervised or semi-supervised base classifiers, to improve
their prediction performance. In addition, WCL has the
following merits:

• It learns compact representations (codebooks) for
possibly very large number of words (e.g., PubMed
has a word vocabulary of over 5 million words)
through exemplar concepts (codewords). This al-
lows to provide better generalization for labeling
tasks, which otherwise need to work with and gen-
eralize over potentially infinitely many combina-
tions of raw words.

• It allows to improve predictive performance by
working with multi-resolution representations cor-
responding to various word groupings, from specific
to general, which could better capture variety of
natural classes/groups formed by words and there-
fore improve generalization capacity.

• It allows to improve predictive ability of simple
models with very basic feature sets by adding well-
trained WCL codebook features obtained using
more complex, advanced models with rich feature
sets.

• The WCL approach is highly scalable and can be
used with large corpora as it adds features to the
model without the need of adding large number of
extra examples (e.g., as in self-training).

• WCL features give a robust abstraction of word
groups, either semantic (as in general WCL with
LM) or task-specific (as in WCL with SLLP)
classes, to help improve generalization and label-
ing performance. The generalization is obtained
through use of word clusters (codewords) instead
of raw words, enabling better recognition of pre-
viously unseen combinations of words (or word’s
context/boundary) that are similar (in the sense of
their WCL representation) to words in already seen
examples.

4 Supervised & Semi-Supervised Baselines
Essentially WCL clusters words into multiple groups
based on their semantic meanings or target-class pat-
terns from unlabeled text. The constructed codebook
assigns pseudo-features (codewords), to each word and
adds them into the labeled set. From three perspectives,
we compare WCL to three related baselines (1) Semi-
supervision: Co-Occurrence pattern based WCL; (2)
Semi-supervision: Self-training; (3) Supervision: Con-
ditional random fields (CRF).



4.1 Semi-Supervised Baseline: Co-Occurrence
based WCL Word co-occurrence-based models are
typical in many NLP applications, such as text cate-
gorization or information retrieval. In NLP area, as
mentioned in Section 2.4, researchers have tried to
group words based on their co-occurrence statistics and
then added into NER systems for performance improve-
ments. As a direct baseline, we treat each word’s cooc-
currence patterns to all the other words as an embed-
ding representation. Thus this embedding could be
added into WCL similar to LM and SLLP embeddings.

In this paper, co-occurrence based model is used
to estimate semantic relatedness of the words based
on their spatial co-location. We estimate the word co-
occurrence matrix using short text fragments (windows)
extracted from large text corpus (e.g., PUBMED).
Words with similar co-occurrence patterns can be clus-
tered together to define word classes containing related
words. We estimate each entry (wi, wj) in the cooc-
currence matrix by counting the number of times word
j cooccurred with word i within all the possible text
windows in unlabeled set.

4.2 Semi-Supervised Baseline: Self-Training
As already mentioned, self-training [27] (also called
’bootstrapping’ in the traditional NLP field) [2] aug-
ment the training set with labeled examples from the
unlabeled set which are predicted by the model itself.
Self-training can be used in combination with any learn-
ing model and is highly scalable to the size of target
problems. However, it is vulnerable to the incestuous
training bias problem [28, 31], i.e. examples may be
consistently mislabeled making the model even worse
on the next iteration. To combat this, several authors
have proposed schemes for only adding examples that
meet a selection criterion [18, 28, 8], but these heuristic
choices still might yield unreliable results.

We apply self-training to the same supervised base-
line method to compare to the performance of WCL.
There are numerous variants of self-training. We adopt
the following weighting scheme: given L training ex-
amples, we choose L/R (R is a parameter to choose)
unlabeled examples to add in the next round of train-
ing.

4.3 Supervised Baseline: CRF Conditional ran-
dom fields (CRFs) [21] achieve state-of-the-art perfor-
mance across a broad spectrum of sequence labeling
tasks, including the gene mention task in the BioCre-
ativeII competition [29]. Thus we choose CRF as our
supervised baseline. Linear-chain CRFs are discrimina-
tive probabilistic models over observation sequences x
and label sequences y = (y1, ..., y|y|), where |x| = |y|,
and each label yi has K different possible discrete values

(multi-class). The conditional probability is defined as

(4.7) pθ(y|x) =
1

Z(x)
exp(

∑

j

θjFj(x,y))

where

Fj(x,y) =

n∑

i=1

fj(x, yi, yi+1, i)

and

Z(x) =
∑

y

exp(
∑

j

θjFj(x,y)).

The model is trained by maximizing the log-
likelihood of the training data by gradient methods,
which is a convex optimization problem [21]. A dynamic
algorithm (the forward/backward strategy) is used to
compute all the required probabilities pθ(yi, yi+1) for
calculating the gradient of the likelihood. We used the
CRF++ toolkit [1] to train CRF models.

Multiple semi-supervised strategies have been ex-
tended to CRF, such as entropy regularization [13] or
generalization expectation [9, 22]. Considering these
methods are either unstable [22], or not applicable to
the large scale of unlabeled corpus we use in this paper,
they are not compared here.

5 Experimental Results
We now present experimental results for labeling bio-
literature texts. We show applications of our method
in the semi-supervised, as well as transductive and
supervised settings.

5.1 Datasets & Settings The BioCreativeII gene
mention (GM) [29] competition data set involves a se-
quence tagging task which looks for gene/protein names
in a bio-literature text corpus. The GM competition
data set contains 15000 training sentences and 5000 test
sentences. We use a collection with more than 4.5M
PUBMED abstracts from 1994 to 2009 as our unla-
beled corpus for semi-supervised learning. The size of
the training/test/unlabeled sets is given in Table 3.

Since almost all the top teams in BioCreativeII
GM competition [29] utilized conditional random
field (CRF) model, we use conditional random fields
(CRF++ tool [1]) as our base classifier, and apply WCL
as a wrapper semi-supervised approach.

In CRF model we tried the following word feature
sets:

• words and their capitalization attributes in a
5-word window surrounding the current word
(words+caps feature set)

• words, their capitalization attributes, prefix, suffix
(length up to 4), and the string (letter) pattern
in a 5-word window surrounding the current word
(extended word feature set)



Train 15000 sentences 426184 tokens

Test 5000 sentences 143391 tokens

Unlabeled 60M sentences ∼1.3G tokens

Table 3: Size of the used data sets. Train/Test were
from BioCreative II GM competition

Note we did not use any named-entity dictionaries, or
linguistic features (POS, chunk types, etc.)

For general WCL, we train the language model
(LM) on text windows that we extract from PUBMED.
The neural network used one hidden layer in its classical
NN part for LM training and sliding text windows of
11-words as inputs. LM learned embedding vectors
for the most frequent 40K words in PUBMED (with
50 dimensions in the lookup table layer). These word
representations are clustered to obtain 1K codebook
entries. Each word in the dictionary is then mapped
to one of the 1K codewords. We add this codeword
feature to the corresponding feature set and re-train the
supervised CRF with the labeled set.

For the task-oriented WCL in the semi-supervised
setting we also use PUBMED as the unlabeled corpus
and estimate the word-class label distributions (SLLP
features) for top most frequent words in PUBMED, sim-
ilar to the general WCL. The SLLP feature vectors
are then clustered into 256 codeword patterns. Simi-
larly, SLLP codeword features are used to augment the
labeled data and we re-train the supervised classifier
(CRF) on the extended feature set.

In addition, SLLP features could be estimated
from train or test sets as well. We call these two
cases transductive and supervised experiments where
the task-oriented WCL using both train and test sets
(transductive) or train set only (supervised) as the
“pseudo-unlabeled” corpus to learn feature embeddings.
That is, in the transductive setting we use SLLP word
codebook features estimated on train and test sets
only, and in the supervised setting we use SLLP word
codebook features estimated on the train set alone.

For cooccurrence WCL, we compute cooccurrence
frequencies for pairs of words in PUBMED abstracts.
We use a word window of size 11 and count the number
of times two words cooccur within the text window
and one of them is the middle word of current text
window). The word cooccurrence vectors are then
clustered to obtain cooccurrence-based word codebook
(2950 codewords). Similar to other cases, the learnt
codeword is added in next round of training.

Methods are evaluated using F1 score (as well as
precision and recall). For bioNER task the evaluation
is performed on the phrase level, not individual word
level, i.e. precise identification of the multi-word named

entity boundaries is required for its recognition.
In the following, we compare general WCL and task-

oriented WCL models to various baselines, including full
supervision, semi-supervision, and simple cooccurrence
WCL. We also compare our results to the state-of-the-
art results previously reported in the literature on GM
benchmark data set from BioCreative competition.

5.2 Performance Under general WCL (LM
Codewords) In Table 4, we use F1 score to com-
pare GM performance using WCL with the language
model (LM) codebook to the supervised CRF base-
lines, when using different base feature sets (words only,
words+caps, and extended word feature set).

Method Baseline(CRF) + WCL(LM)

Words only 74.29 83.39

Words+Caps 82.02 86.19

All word features 86.34 87.33

Table 4: F1 score on the test set for BioCreativeII GM.
General WCL with Language model added on CRF.
WCL (LM) improve over the supervised CRF in all
three settings.

Adding WCL (LM) codebook features provides im-
provements over supervised CRFs for all feature setups.
The best performance obtained with WCL (LM) plus
basic word attributes (word capitalization, prefix/suffix,
string appearance pattern) (F1 87.33) is slightly higher
than the best performance reported in the BioCreativeII
competition (F1 87.21). All the top systems in the com-
petition used many other features, such as POS, added
with extensive domain-specific dictionaries, and utilized
complex techniques such as bidirectional training and
multi-classifier output integration [29]. To summarize,
general WCL using LM effectively improves GM perfor-
mance and achieves state-of-the-art performance with
only simple word features.

5.2.1 Impact of the codebook size We vary code-
book size (N) from small (512 codewords) to large (4096
words) and get a range of performance impacts from
changing codebook resolutions. We can see the impact
of the codebook size on the performance in Table 5. The
observed performance (F1 score) varies within 0.6 range
from 85.48 to 86.19. We note that using multiple code-
book features corresponding to several codebooks with
different sizes can obviate the need to select a particular
fixed size for the codebook, and may also provide bet-
ter generalizations. For example, using two codebooks
of size 512 and 1024 achieves F1 score of 86.26, slightly
higher than results of individual codebooks. Here the
baseline is CRF with only word and caps features (F1
82.02).



Codebook size 512 1024 2048 4096

WCL (LM) 86.16 86.19 85.64 85.48

Table 5: Impact of the codebook size on the perfor-
mance (F1 score). Baseline uses CRF on Words+Caps
which achieves F1 test score: 82.02.

5.3 Performance Under Task-oriented WCL
(SLLP) Table 6 compares GM performances under
multiple setups using WCL (SLLP). We could see that
WCL with basic SLLP and WCL with boundary SLLP
improve over the CRF supervised baselines. WCL with
Bigram SLLP shows better improvements compared to
basic and boundary SLLP.

Method Baseline + WCL(SLLP)
(CRF)

Words+Caps 82.02 84.01 (basic)

Words+Caps 82.02 85.24 (boundary)

Words+Caps 82.02 86.12 (bigram)

All Features 86.34 87.16 (boundary)

Table 6: F1 score on the test set for BioCreativeII GM.
Clustered SLLP and Boundary SLLP added to CRF.
Both improve over the supervised CRF when using only
words or all word attributes.

The best performance achieved here (F1 87.16 in the
last row of Table 6) is only slightly lower than the best
team (87.21 F1 test) in the BioCreativeII GM compe-
tition. In summary, WCL with self-supervision (SLLP)
could improve CRF on this GM corpus effectively and
we could achieve state-of-the-art performance using only
basic word features (which is similar to the general WCL
with LM).

We also test WCL in the transductive setting (Ta-
ble 7) using train/test set for SLLP codebook learning.
We observe that even when SLLP codebook is estimated
on the relatively small set (train+test), WCL could
still provides effective improvements over the supervised
CRF. These improvements, however, are much smaller
compared to the improvements in the semi-supervised
setting (Table 6) which used much large PubMed to
learn. When only the train set is used with WCL, WCL
could still improve to F1 83.13 compared to F1 82.02 of
the supervised CRF.

Please note that WCL (SLLP) could be run iter-
atively, where SLLP are built through iteratively re-
trained CRF whose feature set is augmented with WCL
(SLLP) from previous rounds. In Table 7, we handle
the transductive case using two iterations. We found a
small improvement exists from iteration 1 to iteration 2.

5.4 Performance under Multiple WCL Now we
compare performance of the WCL with single codebooks

Method Baseline + WCL(SLLP)
(CRF)

Words+Caps 82.02 84.65 (boundary, 1 iter.)

Words+Caps 82.02 84.73 (boundary, 2 iter.)

Table 7: F1 score on the test set for BioCreativeII
GM. Transductive setting. Clustered SLLP added to
CRF. SLLP provides effective improvements in the
transductive settings.

to the WCL which uses multiple codebooks. To obtain
multiple codebooks, we combine WCL codebook fea-
tures obtained using unsupervised WCL with LM, and
WCL with semi-supervision (SLLP). Table 8 gives re-
sults for WCL using multiple codebooks. For both basic
and extended word feature sets, using multiple code-
book WCL improves over WCL with single-codebook.
The best performance (F1 87.86) is achieved using basic
word features (capitalization attributes, prefix/suffix,
and the string pattern).

In Figure 6, we show distributions of the number of
errors over the gene name lengths (number of tokens in
each named entity) and compare the supervised CRF,
the WCL with LM, and the multiple WCL. Multiple
WCL results in the largest improvements in accuracy
for single-word gene names and multi-word gene named
entities with the length of up to 5 words. Using general
WCL with LM, per-word error rates improve by about
18% compared to the supervised CRF. WCL with SLLP
reduces word-level error by 16.6%. Using multiple WCL
results in the 20% improvement in the error rate. WCL
reduces the number of false negative (FN) gene named
entities by around 26-35% for LM, SLLP, and multiple
codebook settings, while reducing the number of false
positives (FP) by 10-18% at the same time (Table 9).
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Figure 6: Distribution of errors per term (gene name)
length. Both SLLP and LM improve over the supervised
CRF.



Method Baseline (CRF) WCL (LM) WCL (SLLP) multiple WCL

Words+Caps 82.02 86.19 86.12 87.16

All word features 86.34 87.33 87.16 87.86

Table 8: F1 score on the test set for BioCreativeII GM. WCL with multiple codebooks improves over the supervised
CRF and single-codebook setups.

Method TP FP FN

Baseline CRF (words+caps) 4870 674 1461

+ WCL (LM) 5257 610 1074

+ WCL (SLLP) 5250 611 1081

+ multiple WCL (LM+SLLP) 5343 586 988

Table 9: Reduction in error for GM task. TP is the
the number of true positive gene named entities; FP is
the number of false positive named entities; FN is the
number of false negative named entities. WCL improves
over the supervised CRF.

5.5 Improving Simple Models with WCL Code-
books from Better Models We now show that sim-
ple models with basic word features could achieve much
better performance by using WCL codebook derived
from better models that use more extensive sets of fea-
tures.

In this experiment, we add WCL codebook feature
obtained from the model with extended word feature
set (words, caps, prefix/suffix, string patterns) to the
model with the basic word feature (words+caps only)
set. Table 10 gives the results for WCL with basic SLLP,
boundary SLLP, and the bigram SLLP. We could see
that adding WCL codebook feature from better models
improves over using WCL codebook features from the
basic models. For instance, using the pre-trained SLLP
codebook from the model with extended word feature
set (i.e. with the prefix/suffix and string pattern fea-
tures), the model with only basic words+caps features
achieves F1 score of 86.56, which compares well with the
performance of the supervised CRF with all word fea-
tures (F1 86.34) as well as with the WCL with SLLP and
all word features (F1 87.16). In an important case of on-
line named entity recognition systems, for which speed
and efficiency are critical, training codebooks before-
hand using models with extensive feature setups, and
utilizing pre-trained codebooks with the simple models
using only basic word features, could be an attractive
choice for improving tagging speed while maintaining
its predictive performance.

5.6 Comparison with Baseline: Co-Occurrence
based WCL In Table 11 we show GM performance
when we add co-occurrence WCL features to the CRF
with the basic feature set. The observed improvement,
though significant, is much lower when compared to

Method Baseline +WCL +WCL
(CRF) (SLLP) (SLLP best)

Words+Caps 82.02 84.01(basic) 84.98(basic)

Words+Caps 82.02 85.24(bound.) 86.39(bound.)

Words+Caps 82.02 86.12(bigram) 86.56(bigram)

Table 10: F1 score on the BioCreativeII GM compe-
tition task. Improving basic models with better word
codebooks. SLLP best in the last column refers to the
use of SLLP codebook obtained from the best model
with all word features. (bound. means boundary).

WCL with LM or SLLP methods. For instance, WCL
with LM achieves F1 score of 86.19, while F1 score of
the co-occurrence-based model is only 83.72.

Method Precision Recall F1

Baseline CRF (Words+Caps) 87.84 76.92 82.02

Baseline CRF (Words+Caps) 88.52 79.42 83.72
+ Co-occurrence

Table 11: Classification performance on BioCreativeII
GM task for co-occurrence based WCL.

5.7 Comparison with Self-training We apply self-
training to the baseline CRF to compare its performance
to WCL. Table 12 gives results for the CRF with self-
training on basic and extended word feature sets. Self-
training improves over the baseline (supervised CRF)
only in the case when all word features were used.
We note the observed improvement with self-training
is marginal, and is much smaller when compared to the
improvements of WCL (e.g., Table 6).

Method Baseline + Self-training
(CRF)

Words+Caps 82.02 81.99

All word features 86.34 86.43

Table 12: F1 score on the test set for BioCreativeII GM.
with Self-training applied on baseline CRF.

5.8 Comparison with Previous Results Previ-
ous best systems from the literature use complex tech-
niques such as, for instance, bi-directional CRF models
and multi-classifier settings with integration of outputs
from several classifiers, combined with extensive usages



of domain dictionaries/lexicons, to achieve good per-
formance. As we can see from the comparison with
the semi-supervised and supervised baselines in Ta-
ble 14, our approach based on a single classifier com-
pares well to these systems. For example, the best
result in the competition (F1 87.21) is achieved by
the semi-supervised alternating structure optimization
(ASO) method that also uses gene name lexicon, clas-
sifier combination, post-processing, etc. The best per-
formance of WCL (F1 87.86) (the last row in Table 14)
is achieved by using only basic word attributes, with
no gene name dictionaries, and with a single classifier.
Similarly, both rank 2 and rank 3 systems in the BioCre-
ativeII competition (F1 86.83 and F1 86.57) include a
rich set of features, and rely on multiple-classifier output
integration, with bidirectional training of CRF models
and a dictionary-based postprocessing for rank 2 sys-
tem [29].

Using domain dictionaries (e.g., protein/gene name
lists) as well as classifier combinations can be easily
adopted in our framework to further improve predic-
tive performance. We provide one such example and
add a list of known gene names to the system (from
NCBI gene list + UNIPROT gene names, ∼0.5M en-
tries total). We use the presence of the word in the
list as an additional feature for CRF. By adding do-
main knowledge in this form, we could further improve
prediction performance (Table 13). The best state-of-
the-art system [30] GM system (to our knowledge) is
reported to achieve a slightly higher F1 score of 88.76,
however it relies on using very large lexicons (over
15M protein/gene names) with dictionary-based post-
processing and multi-classifier setting. The best perfor-
mance in Table 13 (F1 88.17) is achieved by adding gene
name dictionary feature onto the multiple WCL which
is slightly higher than the performance of the multiple
WCL alone (F1 87.86).

Method Baseline +Dict. +Dict.
(CRF) +LM+SLLP

Words+Caps 82.02 84.26 87.41

All word features 86.34 87.11 88.17

Table 13: F1 score on the test set for BioCreativeII GM.
Adding domain knowledge (gene name dictionary).

6 Conclusion & Discussion
Efficient information retrieval and robust natural lan-
guage processing on biomedical literature is essential to
life science research community. In this work we pro-
posed a novel semi-supervised framework for bioNER
through learning compact word representations from
a large unlabeled corpus in both semi-supervised and

unsupervised settings. In unsupervised setting, LM
tries to represent word semantic information through
learning natural bio-literature text. While with semi-
supervision, SLLP method tries to capture word target
label patterns through supervised signals from trained
model. Both learned word vector embeddings are fed
into a VQ steps for learning codebooks. The resulting
codewords are then used to augment features of labeled
sets for re-training. We applied this method and sev-
eral extensions to labeling gene names in bio-literature
sentences, where we obtained improvements over the su-
pervised and semi-supervised baselines tested. It yields
state-of-the-art performance without the need of com-
plex linguistic features and domain lexicons on BioCre-
ativeII GM task.

WCL is applicable to any other sequence labeling
tasks and it could be generalized beyond word-level tag-
ging as well. For instance, a word’s embedding could be
learned to represent its distribution patterns in natural
documents. In text categorization problems (e.g., docu-
ment classification or advertisement recommendation),
SLLP of a word could represent the distribution of la-
bels of the documents containing that word.
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