
Semi-Supervised Convolution Graph Kernels for Relation Extraction

Xia Ning∗ Yanjun Qi†

Abstract
Extracting semantic relations between entities is an impor-
tant step towards automatic text understanding. In this pa-
per, we propose a novel Semi-supervised Convolution Graph
Kernel (SCGK) method for semantic Relation Extraction
(RE) from natural English text. By encoding sentences as
dependency graphs of words, SCGK computes kernels (sim-
ilarities) between sentences using a convolution strategy, i.e.,
calculating similarities over all possible short single paths
on two dependency graphs. Furthermore, SCGK adds three
semi-supervised strategies in the kernel calculation to en-
able soft-matching between (1) words, (2) grammatical de-
pendencies, and (3) entire sentences, respectively. From a
large unannotated corpus, these semi-supervision steps learn
to capture contextual semantic patterns of elements inside
natural sentences, and therefore alleviate the lack of anno-
tated examples in most RE corpora. Through convolutions
and multi-level semi-supervisions, SCGK provides a pow-
erful model to encode both syntactic and semantic evidence
which are important for effectively recovering the relational
patterns of interest. We perform extensive experiments on
five RE benchmark datasets which aim to identify interaction
relationships from biomedical literature. Our results demon-
strate that SCGK achieves the state-of-the-art performance
on the task of semantic relation extraction.

keywords: Relation Extraction, Graph Kernels, Semi-
supervised Learning, Natural Language Processing

1 Introduction
Natural Language Processing (NLP) aims to understand and
organize unstructured text into structured format, which
could enable automatic machine translation, semantic infor-
mation retrieval or advanced question answer, etc. As a basic
step towards automatic text understanding, the task of Rela-
tion Extraction (RE) tries to detect if a sentence describes
a semantic relation between two entities of interest or not.
Many methods have been proposed to solve the relation ex-
traction task over years, which primarily differ from two per-
spectives.

• How to represent sentences and elements inside the sen-

∗Department of Computer Science & Engineering, University of Min-
nesota, Twin Cities. xning@cs.umn.edu

†Machine Learning Department, NEC Labs America. qyj@cs.cmu.edu

tences, e.g. words [10]. Widely used sentence rep-
resentations include parse tree [18] and dependency
parsing [32, 14]. Popular word representations include
Part-of-Speech (POS) tagging, bag-of-words and on-
tologies [26].

• Which learning method to use [3]. Researchers have
tried kernel [25, 1] methods under Support Vector
Machine (SVM) [29] framework, generative graphical
models [26], neural networks [26] and conditional ran-
dom fields [3].

Despite years of progress, automatic RE still remains
a challenging task due to two reasons. First of all, feature
representations of natural sentences is hard for RE problem.
Because the task is associated to both the syntactic structures
and the semantic patterns of natural text. Secondly, the
lack of sufficient annotated examples for model training also
limits the capability of current RE systems.

To tackle both challenges, here we propose a novel
Semi-supervised Convolution Graph Kernel method, re-
ferred to as SCGK, to solve Relation Extraction task as a sen-
tence classification problem using Support Vector Machine
classifier. In our method, each sentence is represented as a
graph with words as graph vertices and syntactic dependen-
cies between words as corresponding edges. Consequently
the dependency graph representation provides a powerful
structure to encode grammatical patterns between words. To
encode semantic patterns beyond syntax, SCGK proposes
three semi-supervised steps to groups similar elements inside
text sentences. For instance, the semi-supervision on words
provides an embedded representation for each word in the
dictionary which was learnt to capture contextual semantic
similarities between words from a large unannotated corpus.
Finally a convolution kernel strategy is proposed to calculate
the similarities (i.e. kernels under SVM framework) between
sentences using not only the dependency graph structures,
but also the semi-supervised semantic represenations of text
elements in the sentences. Essentially the proposed convo-
lution strategy calculates similarities over all possible short
single paths from two dependency graphs. This is partly mo-
tivated by the fact that semantic relations between name enti-
ties are mostly localizing to effective substructures in depen-
dency graphs. In summary, SCGK provides a unified model
to combine text semantic patterns, sentence syntactic struc-
tures, and local relational substructures together, which are

all essential parts for solving relation extraction problems.
The rest of the paper is organized as follows. Section 2

formally defines the relation extraction problem and provides
a background introduction of graph kernel. Then in Sec-
tion 3.1, graph representation of natural text sentences is
formulated. Section 3 introduces the convolution graph ker-
nel for RE. Then in Section 4 we describe different levels
of semi-supervision added in SCGK. A brief review of re-
lated work is provided in Section 5. Finally in Section 6, we
present the experimental setup and the performance compar-
isons.

2 Background
2.1 Problem Definition Relation Extraction is a classic
NLP problem, where given a sentence, it aims to detect
if there exists a certain semantic relationship between two
entities of interest in it. RE is commonly formulated as a
binary classification problem as following: we treat a given
sentence S as a sequence of n words (denoted by w i with
i ∈ {1, ..., n}), among which there exist two known entities
e1 and e2 (that are also words).

(2.1) S = w1w2 · · · e1 · · · e2 · · ·wn−1wn

For a certain type of relationship R, a RE system aims to
learn a function FR so that

FR(S) =

(
+1 if e1 and e2 are associated by the relation R

−1 otherwise

All RE systems have two key components: (1) data repre-
sentation, that is, how to encode the semantic and syntactic
information within text sentences in a meaningful style. (2)
learning algorithm which utilizes the sentence representation
to optimally classify whether given sentences are related to a
predefined relation R or not.

2.2 Support Vector Machines and Kernels In this pa-
per, we adopt Support Vector Machines (SVM) [29] frame-
work as the learning algorithm for solving RE. SVM is a
widely used binary classification approach, which achieves
the state-of-the-art performance in many application do-
mains. Given a set of positive training instances C+ and a
set of negative training instances C−, the SVM framework
learns a classification function f(x) of the following form

(2.2) f(x) =
X

ci∈C+

λ+
i K(x, ci)−

X
ci∈C−

λ−i K(x, ci)

where λ+
i and λ−i are non-negative weights that are com-

puted during training by maximizing a quadratic objective
function. K(., .) is called the kernel function which is com-
puted to measure the similarity between two instances (e.g.
between x and training instance ci in equation 2.2). The ker-
nel fucntion must satisfy two mathematical requirements: it
must be symmetric, that is, K(x, x′) = K(x′, x), and posi-
tive semi-definite.

2.3 Graph Kernels In our RE system we adopt the graph
representation for describing the relational patterns in natural
text sentences where graph nodes representing words and
graph edges representing grammatical dependency between
words. Details of this data representation is provided in
Section 3.1. Consequently, each sentence instance x maps to
a graph and the kernel fucntion K(x, ci) between sentences
essentially involves constructing a kernel between graphs,
i.e. so-called “graph kernel”.

As a structured data representation, graphs have been
widely used in many real applications, e.g. chemoinformat-
ics, drug discovery, and social networks analysis, to study
relationships between structured objects. Graphs are natural
data structures to model relational structures, where nodes
represent objects and edges model the relations between
them. Enormous efforts have been dedicated to manipulat-
ing graphs, particularly within SVM framework and kernel
methods [12]. The challenge of “graph kernel” involves the
definition of a kernel that captures the semantics inherence
between two graphs and at the same time is reasonably effi-
cient to evaluate.

Kernels between graphs were previously proposed by
[11] (random walk graph kernels), extended by [2] and also
extended to marginalized kernels on graph [19]. The specific
type of graph kernels used in this paper is the convolution
graph kernels [15], which aims to capture structural simi-
larities using the substructures on two graphs. Details are
provided in the next section.

3 Convolution Graph Kernel for Relation Extraction
In this section, we introduce a convolution graph kernel to
extract a certain semantic relationship between two entities
from natural english text. The method first converts en-
glish sentences into a dependency parsing graph represen-
tation (Section 3.1), and then calculates the kernel func-
tion between two sentences using a “convolution” strategy
on graphs (Section 3.2).

3.1 Dependency Graph Representation of Sentences
English sentences could be naturally converted into certain
graph structures where nodes represent words and edges de-
scribe connections between words. The two most popular
ones include the widely used parse tree (the concrete syntax
tree [6]) and the typed dependency parsing graph from the
Stanford dependency scheme [24].

One problem associated with the parse tree representa-
tion is that words, which map to tree leaves, are not directly
connected with other words, but via common ancestors. As a
result, when a typical tree kernel tries to look for the linkage
between two leaves (words) from parse trees, it is unable to
directly describe the relational pattern between entities.

The other typed dependency graph representation is
based on grammatical dependency relationship among words

Figure 1: Typed dependency representation for a sentence

CD5 is coupled to the protein-tyrosine kinase p56lck

nsubj pass
aux pass

det
amod

nn

prep to

In a given sentence, there exist two entities of interest CD5 and p56lck.
Edges are labeled with the types of dependencies between two words. The
dark and orange edges map to dependency relations, where orange edges
are critical for relation extraction. For example, word “CD5” is the subject
of word “coupled” in the passive format (i.e., nsub pass dependency), word
“kinase” is a noun compound modifier for word “p56lck” (i.e., nn), word
“protein-tyrosine” is an adjectival modifier for word “p56lck” (i.e., amod
dependency). The gray arrows correspond to the sequential-order edges
between words, if no dependency exists.

[24] and has been previously used in comparsing natural lan-
guage sentences [1]. In this scheme, dependencies between
pairs of words are defined as a set of triplets

(3.3) d(w i,w j , gk),

where a grammatical function gk exists from word w i to
word w j . Dependency g is formally defined by Stanford de-
pendency scheme to have 52 possible types (i.e. grammatical
relations) and all types of dependencies belong to binary re-
lations. An examplar list of dependency triplets for a real
english sentence is provided in Figure 1.

We adopt this dependency-based graph representation
in our kernel approach, where edges connecting vertices
(words) are labeled with their inferred dependency func-
tion gk from Stanford dependency parser [24]. Such a
dependency-based graph naturally encodes the grammatical
structure within a sentence since edges indicate grammati-
cal roles. Compared to conventional parse trees, this graph
format is more explicit and more direct in describing the
syntatic information.

Figure 2 provides an example of how we construct a
graph from the dependency triplets of a given sentence, i.e.
Figure 1. Two modifications are added beyond dependency
triplets to build the graph, (1) we drop those directions exist-
ing in dependency relations to make them undirected edges.
This is a reasonable generalization since the predefined rela-
tionships covered by most RE task are symmetric, i.e. undi-
rected. (2) It is normally observed that the semantics patterns
of a word is associated with its local neighboring words to
some extent, e.g. local semantic “chunk”. Thus, we add
edges between adjacent words (i.e., sequential-order edges
from the original linear structure of the sentence). It is worth
to mention that we do not add duplicate edges between nodes
in the resulting graph.

To summarize, an unweighted undirected graph referred

Figure 2: Dependency graph representation of a sentence

CD5

is coupled to the

protein-syrosine

kinasep56lck

A dependency graph representation for the sentence “CD5 is coupled to
the protein-syrosine kinase p56lck.”. The directions on edges are dropped.
The edges are typed with their dependency labels (though not shown in the
figure). Color code of edges means: (1) grey for linear-order edge; (2) black
for dependency relation edge; (3) orange for edges critical for relational
pattern extraction between two entities of interest (CD5 and p56lck).

to as GD(S), is derived for a sentence S from its full set
of dependency relations supplemented by its original linear-
order structure (i.e. a special case of dependencies), The
whole set is denoted by D(S) in the following.

(3.4) GD(S) = (V (S),E(S))

Here V (S) is the set of vertices, with each v i ∈ V (S)
representing a certain word w . E (S) is the set of typed
edges, each representing a dependency or a sequential pair-
wise order. We denote an edge in E (S) as e(v i, v j , k) where
v i ∈ V (S), v j ∈ V (S) and ∃d(w i,w j , gk) ∈ D(S).

In the rest of the paper, we call such graphs as depen-
dency graphs. We may use “sentence”, “graph” and “sen-
tence graph” interchangeably, if not specified. The same
protocol applies to “word” vs “vertex”, “dependency” vs
“edge”, respectively.

3.2 Graph Decomposition by Convolution To use SVM
framework for RE, we need to define a kernel function on
graphs which is able to map graphs (sentences) into a new
feature space where sentences with similar entity relational
patterns are closer/similar to each other compared to those
graphs(sentences) with different relational patterns.

As explained in Section 2.3, designing kernels on
graphs is a challenging task over years with respect to
both computational complexity and discriminative power.
For the target RE problem, this is even more challenging
since we need to formulate a graph kernel, which takes
into consideration of both semantic and syntactic structures
insider natural sentences.

Most previous RE work relied the assumption that
words locating between the candidate entities or connecting
them are highly likely to carry information regarding the tar-
get relationship [1]. Another important observation we find
is that semantic relations between entities range mostly over
short substructures in the dependency graphs (Figure 2).

Figure 3: Graph decomposition into short single paths

CD5 is CD5 is coupled CD5 coupled to

CD5 coupled p56lck protein-syrosine kinase p56lck

the p56lck coupled to · · · · · ·

A decomposition from dependency graph for the sentence “CD5 is coupled
to the protein-syrosine kinase p56lck.”. Again, the directions on edges are
dropped. The edges are typed but not shown here.

Thus we propose to explore a convolution strategy to investi-
gate dependency graphs from its possible substructures, e.g.
short single paths on the graph. The idea of “convolution”
kernel has been proposed previously for structured data clas-
sification. Conceptually, it states that if a big structure can
be decomposed into some sub-structures, then by combining
the kernels on sub-structures it gives a kernel on the origi-
nal big structure. One competitive advantage of convolution
kernel is that it analyzes structured data using a “bottom-up”
fashion, which fits well to our representation where depen-
dency graphs have rich substructures on different levels of
details.

Then the main question becomes how to decompose a
dependency graph into proper substructures and what kernels
can be used on its substructures.

Inside dependency graphs we constructed in Section 3.1,
each vertex is only locally related to its neighborhood (of
small size). Given this observation, intuitively we could
decompose a dependency graph into small units in which
each vertex (word) is only connected to the close neighbors.
Thus, we propose to decompose the graph into all possible
single (i.e., no circles) paths up to a certain length. Such
single short paths represent local vertex-edge-vertex (i.e.
word-dependency-word) patterns, which could well preserve
the grammatical relationship between vertices (words). An
example of such decomposition is shown in Figure 3. If we
consider the edge directions from the original dependency
graphs, the decomposition can only leave us a significantly
fewer number of single paths, where the most informative
ones might get lost. For instance, the orange path “CD5
— coupled — p56lck” in Figure 2 does not exist in the
directed version of the graph in Figure 1. This is part of
the reason that we drop all the directions in the dependency
graph construction.

The proposed convolution decomposition has a number
of advantages. First of all, single path is much easier to
handle with compared to graphs. At the same time the
paths provide direct and informative signals to entity relation
entraction. For example, in Figure 3, the single path “CD5
— coupled — p56lck” covers the entities of interest “CD5”
and “p56lck” via a word “coupled”. The existence of such

single path is a strong indication of the target relationship
(e.g. protein interaction relation) between the two entities.
Secondly, the decomposition can be extremely fast in terms
of running time if the graph is sparse, which is exactly the
case for most dependency graphs. Thirdly, it is much easier
to develop kernel functions for single paths. In particular,
we could use the concept of “convolution” again (details
discussed later in this section).

A single path p from a dependency graph GD(S) is
composed from a sequence of words and their associated
dependencies

(3.5) p = (w i, d i,j ,w j , · · · ,wp, dp,q,wq)

where word w i and w j are connected by the dependency
edge d i,j . The length of a single path is defined as the
number of edges(dependencies) it contains. The entire set
of up-to-size-n single paths from a sentence graph GD(S) is
denoted as Pn(GD(S)).

3.3 Convolution Graph Kernels via Single Paths Given
two graphs S and S ′ decomposed into all possible single
paths (up-to-size-n), a convolution kernel (denoted as KG),
is defined as the sum of kernels on paths (denoted as Kp),
that is

KG(GD(S),GD(S
′)) =X

p∈Pn(GD(S))

X
p′∈Pn(GD(S ′))

Kp(p, p′) Pr(p|GD(S)) Pr(p′|GD(S
′))

(3.6)

where Pr(p|GD(S)) is the probability that single path p

happens in the graph GD(S) and it can be calculated as the
ratio of path count over sum of all path counts.

3.3.1 Convolution Path Kernel In Equation 3.6,
Kp(p, p′) describes a kernel on single paths. We again apply
the concept of “convolution”, where a single path could
be decomposed into even smaller substructures such that
a convolution path kernel can be defined based on smaller
substructures. Since a single path (Equation 3.5) consists of
only word nodes and dependency edges, a straightforward
way to decompose is to split it into words and dependencies.
Therefore, we define the path kernel Kp as following: given
two single path p and p′,

p(w1, d1,2,w2, · · · ,w i, d i,m, wm)

p′(w ′
1, d

′
1,2,w

′
2, · · · ,w ′

j , d
′
j,n,w ′

n)

then
(3.7)

Kp(p, p′) =

8>>>>>>><>>>>>>>:

Kw(w1,w ′
1)

|p|−1Y
i=1

{Kd(di,i+1, d
′
i,i+1)Kw(w i+1,w ′

i+1)},

if |p| = |p′|

0, otherwise

where Kw is a kernel defined on words and Kd is a kernel
on dependencies. Essentially Kp(p, p′) is the dot product

of corresponding word kernel values and dependency kernel
values after aligning the two paths.

The defined path kernel Kp has three properties:

• First of all, there exist two different alignments between
two paths (i.e., w1 aligned against w ′

1, or w1 aligned
against w ′

n) which results in three different path kernel
values. We use the maximum of the three values as the
final kernel value between the two paths (not explicitly
shown in Equation 3.7). This is to maximize the pos-
sibility that two paths are aligned optimally. However,
this nonlinear max operator raises some validity issue
for the graph kernel. Thus we use the method described
in [27] to convert a symmetric matrix into a valid ker-
nel matrix. This conversion uses the transductive set-
ting, that is, kernelize the symmetric matrix including
not only training data, but also the testing data (a com-
mon practice to kernelize matrices).

• Secondly, Kp only considers similarities between sin-
gle paths with the same length, since the optimal align-
ment between paths of different lengths is computation-
ally hard to handle. Also such an optimal alignment in-
volves a sub-path alignment with the short-length path,
which has been covered in D(S) already.

• With Equation 3.7, the path kernel value gets smaller
when the path length grows longer. Intuitively, this
is desired since longer paths carry less direct pattern
information related to RE.

Word Kernel Kw represents the kernel on words in Equa-
tion 3.7. Each word w is represented by a d-dimensional real
value vetor E(w) (based on their patterns in a large unlabeled
corpora, discussed in details in Section 4.1). Thus we define
a word kernel as follows (k is a parameter to tune):

(3.8) Kw(w ,w ′) = exp(−k × ‖E(w), E(w ′)‖2)

Dependency Kernel In Equation 3.7, Kd is kernel between
the dependencies (including sequential-order edges). There
exist only a few types of syntactic dependencies. If the two
dependencies have the same type of grammatical function g
associated, Kd(d , d ′) = 1, otherwise the kernel value gets
zero. We enforce the similarity between any grammatical
dependency and sequential order as zero. Since such a
similarity matrix is a valid kernel matrix after normalization.

4 Semi-Supervised Convolution Graph Kernel
4.1 Semi-Supervision on Words The dependency graph
constructed in Section 3.1 mainly emphasizes the syntax
structure inside a sentence. However, for relation extraction,
semantic pattern is also important. So we look for strategies
to introduce sentence semantics (i.e. meanings) into the
kernel calculation. Since sentence meanings are heavily
expressed by its words, this comes down to the question of
word representation.

A typical way to represent the words is to use the dic-
tionary index of the word in the vocabulary under consider-
ation. Alternatively the words’ POS tagging is also a good
candidate, which provides a simple way to cluster words and
has been used by many text analysis algorithms. However,
a notable drawback with this single-integer approach is that
it could not capture semantic patterns of words into account.
Instead, we use a word embedding method learning to map
every word in the dictionary into a d-dimensional real value
vector. Words with similar meanings are mapped into points
that are closer in the new d-dim space (with respect to Eu-
clidean distance). Similarly words with different semantic
meanings are represented with points locating far away from
each other in the d-dim space.

There exist many ways to learn this mapping from a
large unannotated text corpus. We adopt a so-called semi-
supervised “language model (LM)” method proposed in [7]
in our framework. LM uses a multiple-layer perceptron
network classifier and modify it with a so-called “lookup
table” layer (as the first layer) which converts word tokens to
real value vectors. The whole LM aims to learn a latent space
in which words with similar meanings can be automatically
clustered together. The meanings of words are considered by
looking at the word’s contextual neighbors (local short word
window with length 7). LM proposed a semi-supervised task
that forces two sentences with the same semantic labels to
have similar representations in the shared layers of neural
network, and vice versa. Training for this task is achieved
by assigning a positive label to genuine fragments of natural
language, and negative labels to fragments that have been
synthetically generated. Thus, a 50-dimension vector of real
values is learned for each word (i.e., graph vertex) in the
embedding space (represented by the “lookup table” layer.

Such embedding representation offers enriched seman-
tic information of words in a context-sensitive way. For in-
stance the most similar words of word “protein” includes
“ligand, subunit, proteins, receptor, molecule” using our LM
embedding. Also also the real value representation makes it
possible to quantitatively compare semantics among words
(i.e. by soft-matching of embedding vectors). Other word
embedding strategy could also be used in calculating word
kernel Equation 3.8. For instance, word co-occurrence-
based models are very typical in text categorization field, in
which researchers have tried to group words based on their
co-occurrence statistics. The LM embedding we used has
been shown to give better performance than co-occurrence-
based models in [20].

4.2 Semi-Supervision on Dependencies Kernel value
Kd(d , d ′) is actually decided by the dependency type g and
g ′ inside d and d ′, respectively (see Equation 3.3). Stanford
dependency scheme [24] defined totally 52 possible types
of dependency. Plus the linear order edge type we add in

our graph representation, we have 53 types of edges. The
similarity between various edge types are different. Thus
we consider the distribution patterns of dependency edges
based on their co-occurrence relationship in the unlabeled
text corpus, where a co-occurrence based method is applied
to generate a similarity matrix between dependency types.
Then soft matching between the dependency edges becomes
Kd(d , d ′) = cooccurrence-similarity(g , g ′), which provides
further semantic evidence beyond words. Co-occurrence of
two dependencies is defined as if such dependencies share
a common word (3.3). That is, large dependency similarity
indicates that corresponding dependencies are more likely to
occur together.

4.3 Semi-Supervision on Sentences Besides imposing
semi-supervision on words and dependencies, we also in-
troduce a semi-supervised learning strategy at the level of
whole sentence. We modify a “self-training” [28] strategy
to select unlabeled sentences that are highly likely to contain
the target relation, and then add them as pseudo positive ex-
amples into the training set. This is motivated by the fact
that the annotated data sets for RE are mostly very small
which largely restricts the performance of relation extrac-
tions. Here we leverage more unlabeled sentences, which
are highly likely to be positive (i.e., having relation of inter-
est between entities), into training set in order to to boost the
detection performance. Shown in Figure 4 our framework
relies on a Name Entity Recognizer (NER) to recognize en-
tities of interest first. Then we apply a keyword filter to se-
lect those sentences with interested entities recognized and
containing relation-related keywords (e.g. “coupled” for the
interaction relationship). The selected sentences gets clas-
sified by an existing RE system that we build from labeled
data. Those sentences having high prediction scores are then
used as pseudo positive examples and added into a new round
of RE model training. The whole process is named as Self-
Sentence-Learning (SSL) (Figure 4).

4.4 Discussion of SCGK In summary, the proposed
method provides a number of advantages:
• Novel graph representation, which encodes very rich

semantic and syntactic information simultaneously;
• Multi-level semi-supervision, i.e., word embedding,

dependency similarity and pseudo positive sentences;
• Convolution graph kernel which recovers relation pat-

terns between entities;
• Succinct manipulation of structured data without any

requirement of manual adjustment.
Furthermore, most graph-related kernels need to be

taken care of their computational costs. In case of our con-
volution graph kernels, computational efficiency indeed de-
serves some additional discussion. As we explained above,
in order to generate a convolution graph kernel, two steps

Figure 4: Semi-supervision with self-sentence-learning

Name Entity Recognition (NER) to predict potential related entities

NER

Select sentences which have exactly 2 predicted entities

entity filter

Select sentences which have a relation-related keyword

keyword filter

Classify selected sentences using models learned from labeled sentences

classification

Select sentences of high prediction scores

rank

Add selected unlabeled sentences as ”pseudo” positive into training set

incorporation

have to be completed. The first one is to find all possible
single paths from all graphs under consideration. The sec-
ond step is to compare path similarities. If these two steps
are carried out independently, then a lot of computation time
can be wasted on doing same calculation multiple times (i.e.,
calculation of similarity between two long single paths p1

and p2 involves the calculation of similarity between two
short single paths p′

1 ∈ p1 and p′
2 ∈ p2). So in our im-

plementation, we couple the two steps in order to perform
the similarity calculation efficiently. All the single paths are
found by finding short paths first and then extending them
to longer ones. Path similarities are saved once they are cal-
culated, and therefore they can be reused later when longer
paths involve corresponding shorter paths.

5 Related Work
5.1 Kernels for RE Task Kernel methods have been pre-
viously explored on RE tasks over years. A simple tree ker-
nel from Zelenko et al. [30] defined a matching function
between shallow parse trees which is recursively calculated
by matching all tree nodes from root to leaves. Culotta et
al. [8] and Zhang et al. [31] proposed more general version
of tree kernel, but are still restricted to tree representations.
Later researchers began to consider representations derived
from more general dependency graph structures. Bunescu et
al. proposed a shortest path kernel in [4], but is limited to
representing only a single path in the full dependency graph.
Airola et al. proposed a all-path graph kernel in [1], which
represented a sentence as a weighted dependency graph and
used POS tags to represent the word vertex. The authors ran
a random walk on the graph which then calculate the kernel
as the sum of element-wide product between adjacency ma-
trices of the all-path graphs. Differently from above works,
recently Kuksa et al. [21] treated the relation extraction task
as a string classification problem using a semi-supervised

string kernel approach. Word semantics patterns was also
added by a semi-supervised word embedding there.

5.2 Semi-supervised Learning Supervised techniques
are often restricted by the availability of labeled examples.
Therefore, semi-supervised learning has become popular.
The primary philosophy of semi-supervised learning is to
utilize unlabeled data together with labeled data to improve
performance. Unlabeled data is usually abundant. Mean-
while it is reasonable to assume that related unlabeled data
can also carry useful information to benefit learning pro-
cess. There exist many semi-supervised learning algorithms,
including self-training [28], transductive SVM [16] graph-
based regularization [33], entropy regularization [13], etc.
[5] provides a nice survey of the field. Our SSL step essen-
tially is a “self-training” algorithm.

6 Experiments
6.1 Datasets & Setup To evaluate our methods, we use
five benchmark datasets which are widely used for relation
extraction on biomedical literatures. These five datasets con-
tain sentences that describe protein-protein interaction events
between protein entities. The raw sentences are publicly ac-
cessible [1]. These datasets are referred as AIMED, BioIn-
fer, HPRD50, IEPA and LLL, respectively, and Table 1 lists
their characteristics. In addition to the labeled datasets as
in Table 1, we randomly chose a set of 200K sentences from
Pubmed1 as the pool of unlabeled data for semi-supervised
strategies.

In the labeled datasets, there might exist more than two
protein entities in a single sentence, among which only two
entities are the ones we are interested in and they have been
indicated in the sentences. In order to distinguish positive
relations existing in one sentence from each other and also
from those false ones, we convert each original sentence
into multiple relation instances such that in each relation
instance, two entities of interest are labeled with PROT1,
PROT2 and other protein entities are labeled using PROT.
Only those relation instances, having the correct two entities
of interest and with these two entities being annotated as the
true relation, get positive labels.

6.1.1 SVM Model Learning We used the publicly avail-
able support vector machine tool SVMlight [17] that imple-
ments an efficient soft margin optimization algorithm. In all
of our experiments, we study the regularization parameter C
that controls the margin width, and the cost-factor parameter
j by which training errors on positive examples outweigh er-
rors on negative examples. The reason for the optimization
on j is that all the datasets have notable imbalance between
positive and negative training sets.

1http://www.ncbi.nlm.nih.gov/pubmed

Table 1: Dataset characteristics for relation extraction

Dataset #+ve #-ve #dict #d/sen senlen #rel/sen

AIMED 991 4784 3180 26.9 33.0 5.0
BioInfer 2534 7053 3470 31.5 42.3 8.8
HPRD50 163 270 920 23.4 31.2 3.0
IEPA 335 482 2463 30.0 36.5 1.7
LLL 164 166 537 30.3 37.6 4.3

In this table, #+ve is the number of possitive training in-
stances (i.e., sentences with true protein-protein interaction
relations), and #-ve is the number of negative training in-
stances. #dict is the size of dictionary (i.e,, the number of
distinct words in the corresponding dataset). #d/sen is the
average number of dependencies per sentence. senlen is
the average sentence length. #rel/sen is the average num-
ber of protein entity pairs per sentence.

6.1.2 Name Entity Recognizer (NER) In order to per-
form the protein name entity recognition which is neces-
sary in SSL step (Section 4), we use a NER system built
from [20]. This NER system is based on the conditional ran-
dom fields (CRFs) [23] approach, and achieves the state-of-
art protein name recognition performance. Due to the space
limit, we omit the details of this system.

6.2 Evaluation Metrics Our methods is evaluated using a
five-fold cross validation strategy. However, how to split sen-
tences into training and testing sets remains as an issue [1]
for relation extraction tasks. Since each original sentence
can produce multiple relation instances as discussed abve
in Section 6.1, the train-test split needs to make sure that
sentence relation instances from the same original sentence
should not be split into both train and test, in order to guar-
antee the relative independency between the two sets. To
achieve this, we first randomly split the original sentences
into training and testing sets, then we generate multiple rela-
tion instances within each set. Although the raw sentences of
five benchmark RE datasets are publicly available, there still
lacks a benchmark enumeration and splits such that people
can compare their methods with, so our processed sentences
and splits are made accessible2 for the sake of comparison.

To evaluate our system, we use F value and AUC, which
are popular metrics used for relation extraction evaluation. F
value is the harmonic mean of precision and recall

F =
2× precision × recall

precision + recall

where precision is defined as the ratio of true positives
(TP) from prediction over all predicted positives (i.e., true
positives (TP) plus false positives (FP)). Recall is defined
as the ratio of true positive (TP) from prediction over all

2http://www-users.cs.umn.edu/∼xning/bionlp data.tar.gz

positives (i.e., true positives (TP) plus false negatives (FN)).
The threshold to cut prediction score is searched to give a
best F value.

AUC [9] describes the normalized area under the curve
that plots the true positives against the false positives for dif-
ferent score thresholds for classification (receiver operating
characteristic curve).

6.3 Experimental Results In this section, we present the
performance of semi-supervised convolution graph kernels
for relation extraction on five benchmark datasets. We
present a complete set of experimental results, and then dis-
cuss the influence of each of the parameters independently.

Table 2 shows detailed results on five datasets (Sec-
tion 6.1), when varying the parameter k (Equation 3.8) to
control word similarity and also when varying the length
limit n of single paths which each dependency graph is de-
composed into. The set of studies in Table 2 are conducted
without semi-supervision on sentence level.

6.3.1 Effects of Single Path Lengths In Table 2 we first
focus on the results for cases with maximal path length as
1, 2 or 3. Fixing the k parameter and looking at the ef-
fects of maximal single path length (i.e. comparing each row
of the tables independently), the observation is consistent:
across all the datasets except LLL, the best performance,
in terms of both F value and corresponding AUC, happens
when the dependency graph is decomposed into single paths
of size 2. This conforms to our assumption as in Section 3.2,
that is, entity relation patterns may be very possibly cap-
tured/represented by a single path of length 2 in form of
(w id i,jw jd j,kwk), where the two words w i and wk are the
entities of interest, and the word w j is the one which seman-
tically describes the entity relation. Also note that in case of
path length 2, we do not need to specify the relation-related
“keyword” as some other methods do [14, 25] but the model
itself can implicitly handle that.

The performance of maximal path length as 1 is worse
than that of length 2, and this is expected, since the repre-
sentation of word-dependency-word cannot capture the en-
tity interaction sufficiently. In such representation, there are
two possibilities to encode such interactions. One way is that
the two words in one single path are the entities of interest,
and they are connected through single dependency between
them. However, such dependency edge only encodes syn-
tactic information, not semantic, and thus it only leads to
sub-optimal results. The other way is that the two entities of
interest are separate in two single paths, and these two single
paths share a common word that semantically describes the
entity interaction. This encoding is less explicit and less ef-
ficient than that in a (w id i,jw jd j,kwk) form and it requires
the learner not only to discover such single paths but also to
combine them to generate useful knowledge.

LLL has its best results for single paths of length 1
because we believe it is a rather easy case. LLL has
fewer but more balanced training and testing instances, and
words involved are also fewer. Therefore, single paths
of length 1 may already be sufficient to encode necessary
information for LLL. However, as long as the training data
get complicated like AIMED and BioInfer, the difference can
be dramatic.

The performance of maximal path length as 3 is also
worse than that of 2. This may because longer paths
introduce more noise that is not very relevant to the entity
relation patterns. Moreover, the signals corresponding to
entity relation within length-3 single paths are not as strong
as those within length-2 single paths.

6.3.2 Effects of Path Set In Table 2 we used single paths
”up to” a certain length. For example, for single paths of up
to length 3, we use paths of length 1, 2 and 3 all together
without differentiating their importance. However, there can
be some alternatives. One of them is to use paths of only a
certain length. We tested this method by only using paths of
length 2 and 3 separately (paths of length 1 has already been
tested in Table 2). The results are shown in Table 3.

From Table 3, the overall trends again remain clear
and quite consistent. Using paths of only length 2 still
outperforms using paths of only length 1 or only 3 most of
the time (except BioInfer and LLL). This again demonstrates
that single paths of 2 have higher information encoding
power than paths of other lengths. However, all the “sep”
performance is worse than that using paths of ”up to” the
same length. This illustrates that single paths of length 1
and length 3 still encode some information (e.g., content of
entity interactions) that is not captured by paths of length
2 alone, and thus together they contribute to performance
improvement.

6.3.3 Effects of Sequential Order We did a study on the
effects of adding sequential word orders into graph repre-
sentation and Table 4 shows the comparison. Note that the
sequential order leads to non-zero contributions between two
edges only if the two edges are both sequential orders. The
results from Table 4 show that adding sequential word orders
into graph representation leads to performance improvement.
This indicates that the sequential orders from the sentences
do provide extra information like context around words that
dependencies alone may not be able to cover. Another reason
could be that without sequential word orders, the dependency
graphs may become disconnected with multiple components,
and thus information from different components cannot be
jointly utilized. We also studied the entire spectrum of “w/o
seq” performance across different k values and single path
lengths, and the conclusion is the same as we have in Ta-
ble 4. We do not present the entire set of results here due to

space limits.

6.3.4 Effects of Dependencies Dependencies between
words serve an important role in our convolution graph ker-
nel methods, so we study the effects of dependencies by re-
moving all dependency edges from graph representation and
adding sequential orders if necessary so as to connect all sen-
tence words. The performance comparison is shown in Ta-
ble 5.

Table 5 shows that using dependencies within graph rep-
resentation outperforms using only sequential orders. How-
ever, for datasets like AIMED and BioInfer, the improve-
ment seems not very significant. The reason for this is that, in
order to construct a connected graph after removing depen-
dencies, we added sequential word orders if necessary (when
we construct dependency graphs, if two adjacent words are
connected by a dependency relation, then we do not use the
sequential word order between them). In this way, actually
some dependency edges are not missing but only edge types
are replaced by sequential word order type. We studied the
entire spectrum of “w/o dep” performance across different
k values and single path lengths, and the conclusion is the
same as we have in Table 5 so we do not present the entire
set of results.

By comparing the ”w/o seq” column from Table 4 and
the “w/o dep” column from Table 5, we notice that ”w/o dep”
(i.e., only sequential orders) setting outperforms ”w/o seq”
(i.e., only dependencies) setting. This is no surprise because
similarly as discussed above, ”w/o dep” actually including
many dependency connections whereas ”w/o seq” setting has
on average 22% fewer edges than ”w/o dep”.

6.3.5 Effects of Word Similarity Fixing the maximal sin-
gle path length and looking at the effects of the k value,
that is, looking at each column of Table 2 independently, the
trend is very clear: the best performance accords to the k pa-
rameter in range 0.01 – 0.05. This is somehow independent
of what datasets are used. One reason for this data indepen-
dency may be that the word embedding for all the datasets is
learned in a semi-supervised fashion from a common set of
unlabeled data, and thus the structure of the underlying em-
bedding space is reflected by the similar k values across all
the datasets.

Word Similarity from POS Part-of-Speech (POS) tagging
is another popular candidate for word representation. POS
indicates the syntactic roles of words in a sentence so it does
not take any semantic information. We did a study on POS
word representation by replacing all word embedding with
POS tags, and estimating a POS-POS similarity matrix based
on co-occurrence principle. Our results show significant
degradation (for example, for AIMED, the F value of POS
method is 0.457 within the best parameter setting, compared
to 0.562 of word embedding method). The reason can be

two folds. One is that POS is weak representation to capture
semantic in the graph representation. The other is the POS
co-occurrence based similarity matrix is not discriminant
enough, or it is ill-suited to the SCGK framework. Due to
these, we did not pursue any further to use POS.

6.3.6 Effects of Dependency Similarity Matrix The de-
pendency similarity matrix used in graph kernel is estimated
using co-occurrence based method from unlabeled sentences
from Pubmed. It can also be estimated solely from training
data. In our experiments, we observed better results from the
dependency similarity matrix learned in a semi-supervised
fashion. We did not show the comparison here to save space.

6.3.7 SSL framework Table 6 presents the performance
of adding sentence level SSL learning, which is described
in Section 4. The conclusion is quite clear. That is, by
using extra unlabeled data, we can consistently improve the
RE performance.

6.3.8 Comparison with other methods Table 7 shows the
comparison the best performance between our methods and
other methods described in [1] and [22]. We believe that
our data sets are very close to those in [1] so that somehow
we can directly compare with their reported results, though
the preprocessing (i.e., entity chunking, splits, etc) is not
identical. For the method in [22], we tested it on our splits
to guarantee a fair comparison. The method in [1] stands for
the state-of-the-art performance for the graph-kernel based
methods. The method in [22] stands for the state-of-the-art
performance of non-graph-kernel based methods.

From Table 7, our conclusion is that our semi-
supervised convolution graph kernel method is able to pro-
duce comparable or better results than the state-of-the-art
peers.

7 Conclusion
In this paper, we propose a novel Semi-supervised Convolu-
tion Graph Kernel method for relation extraction from natu-
ral languages. Our method takes advantages of typed depen-
dency relations between words which result in graph rep-
resentations of sentences. Then with two semi-supervised
steps based upon unlabeled text sets, we represent each ver-
tex on this graph with word embedding capturing contextual
semantics, and describe each graph edge with their seman-
tic categories. Furthermore, we construct pseudo training
sentences utilizing unlabeled sentences in order to expand
the training set and improve the prediction performance (i.e.,
semi-supervised learning on sentence level).

Our proposed kernel provides a power model to cap-
ture both semantic and syntactic evidence inside natural sen-
tences. We demonstrate that our system reaches or out-
performs the state-of-the-art performance on five relation

Table 7: Comparison of SCGK with other methods

Dataset
all-path ASK SCGK SSL-SCGK

F AUC F AUC F AUC F AUC

AIMED 0.564 0.848 0.554 0.824 0.562 0.821 0.572 0.834
BioInfer 0.613 0.819 0.614 0.798 0.606 0.799 0.613 0.806
HPRD50 0.797 0.730 0.727 0.777 0.762 0.819 0.767 0.819
IEPA 0.751 0.851 0.735 0.809 0.737 0.791 0.740 0.797
LLL 0.768 0.834 0.850 0.823 0.849 0.841 0.860 0.847

In this table, all-path is the method described in [1]. ASK is the string kernel
method described in [22]. SCGK is our convolution graph kernel based method
without semi-supervision on sentence level. SSL-SCGK is the convolution graph
kernel method with semi-supervision on sentence level.

extraction benchmark data sets from biomedical literature.
Also with three levels of semi-supervision, our system is fea-
sible to work on RE problems with very few training exam-
ples.

References

[1] A. Airola, S. Pyysalo, J. Björne, T. Pahikkala, F. Ginter, and
T. Salakoski. All-paths graph kernel for protein-protein in-
teraction extraction with evaluation of cross-corpus learning.
BMC bioinformatics, 9 Suppl 11, 2008.

[2] K. M. Borgwardt, C. S. Ong, S. Schnauer, S. V. N. Vish-
wanathan, A. J. Smola, and H.-P. Kriegel. Protein function
prediction via graph kernels. Bioinformatics, 21 Suppl 1:i47–
i56, Jun 2005.

[3] M. Bundschus, M. Dejori, M. Stetter, V. Tresp, and H.-P.
Kriegel. Extraction of semantic biomedical relations from
text using conditional random fields. BMC Bioinformatics,
9(1):207, 2008.

[4] R. C. Bunescu and R. J. Mooney. A shortest path dependency
kernel for relation extraction. HLT ’05: articles of the
conference on Human Language Technology and Empirical
Methods in Natural Language Processing, pages 724–731,
2005.

[5] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-
Supervised Learning. MIT Press, Cambridge, MA, 2006.

[6] E. Charniak. A maximum-entropy-inspired parser. Provi-
dence, RI, USA, 1999. Brown University.

[7] R. Collobert and J. Weston. A unified architecture for natural
language processing: deep neural networks with multitask
learning. In ICML ’08: Proceedings of the 25th international
conference on Machine learning, pages 160–167, New York,
NY, USA, 2008. ACM.

[8] A. Culotta and J. Sorensen. Dependency tree kernels for
relation extraction. ACL ’04: Proceedings of the 42nd Annual
Meeting on Association for Computational Linguistics, page
423, 2004.

[9] T. Fawcett. Roc graphs: Notes and practical considerations
for researchers, 2004.

[10] K. Fundel, R. Küffner, and R. Zimmer. Relex—relation

extraction using dependency parse trees. Bioinformatics,
23(3):365–371, 2007.

[11] T. Gaertner, P. Flach, and S. Wrobel. On graph kernels:
Hardness results and efficient alternatives. In Proceedings
of the 16th Annual Conference on Computational Learning
Theory and 7th Kernel Workshop, pages 129–143. Springer-
Verlag, August 2003.

[12] T. Gärtner, P. A. Flach, and S. Wrobel. On graph kernels:
Hardness results and efficient alternatives. In COLT, pages
129–143, 2003.

[13] Y. Grandvalet and Y. Bengio. Semi-supervised learning by
entropy minimization. In NIPS’05, pages 529–536, 2005.

[14] Z. GuoDong, S. Jian, Z. Jie, and Z. Min. Exploring various
knowledge in relation extraction. ACL ’05: Proceedings of
the 43rd Annual Meeting on Association for Computational
Linguistics, pages 427–434, 2005.

[15] D. Haussler. Convolution kernels on discrete structures.
Technical report, University of Santa Cruz, 1999.

[16] T. Joachims. Transductive inference for text classification
using support vector machines. In ICML ’99, pages 200–209,
1999.

[17] T. Joachims. Optimizing search engines using clickthrough
data. KDD ’02: Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 133–142, 2002.

[18] N. Kambhatla. Combining lexical, syntactic, and semantic
features with maximum entropy models for extracting rela-
tions. Proceedings of the ACL 2004 on Interactive poster and
demonstration sessions, page 22, 2004.

[19] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized
kernels between labeled graphs. pages 321–328, 2003.

[20] P. Kuksa and Y. Qi. Semi-supervised bio-named entity
recognition with word-codebook learning. 2010.

[21] P. Kuksa, Y. Qi, B. Bai, R. Collobert, J.Weston, V. Pavlovic,
and X. Ning. Semi-supervised abstraction-augmented string
kernel for multi-level bio-relation extraction. In ECML
PKDD 2010, 2010.

[22] P. Kuksa, Y. Qi, B. Bai, R. Collobert, J. Weston, V. Pavlovic,
and X. Ning. Semi-supervised abstraction-augmented string
kernel for multi-level bio-relation extraction. In Machine
Learning and Knowledge Discovery in Databases, volume

6322 of Lecture Notes in Computer Science, pages 128–144.
Springer Berlin / Heidelberg, 2010.

[23] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Con-
ditional random fields: Probabilistic models for segmenting
and labeling sequence data. In ICML ’01: Proceedings of
the Eighteenth International Conference on Machine Learn-
ing, pages 282–289, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[24] M. Marneffe, B. Maccartney, and C. Manning. Generating
typed dependency parses from phrase structure parses. In
Proceedings of LREC-06, pages 449–454, 2006.

[25] D. P. T. Nguyen, Y. Matsuo, and M. Ishizuka. Subtree mining
for relation extraction from wikipedia. NAACL ’07: Human
Language Technologies 2007: The Conference of the North
American Chapter of the Association for Computational Lin-
guistics, pages 125–128, 2007.

[26] B. Rosario and M. A. Hearst. Classifying semantic relations
in bioscience texts. ACL ’04: Proceedings of the 42nd Annual
Meeting on Association for Computational Linguistics, page
430, 2004.

[27] H. Saigo, J.-P. Vert, N. Ueda, and T. Akutsu. Protein homol-
ogy detection using string alignment kernels. Bioinformatics,
20(11):1682–1689, 2004.

[28] H. Scudder. Probability of error of some adaptive pattern-
recognition machines. IEEE Transactions on Information
Theory, 11(3):363–371, 1965.

[29] V. N. Vapnik. Statistical Learning Theory. Wiley-
Interscience, September 1998.

[30] D. Zelenko, C. Aone, A. Richardella, J. K, T. Hofmann,
T. Poggio, and J. Shawe-taylor. Kernel methods for relation
extraction. Journal of Machine Learning Research, 3:2003,
2003.

[31] M. Zhang, J. Zhang, J. Su, and G. Zhou. A composite
kernel to extract relations between entities with both flat and
structured features. In ACL-44: Proceedings of the 21st
International Conference on Computational Linguistics and
the 44th annual meeting of the Association for Computational
Linguistics, pages 825–832, Morristown, NJ, USA, 2006.
Association for Computational Linguistics.

[32] S. Zhao and R. Grishman. Extracting relations with integrated
information using kernel methods. ACL ’05: Proceedings of
the 43rd Annual Meeting on Association for Computational
Linguistics, pages 419–426, 2005.

[33] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised
learning using gaussian fields and harmonic functions. In
ICML’03, pages 912–919, 2003.

Table 2: Results for SCGK method

AIMED

k
1 2 3

F AUC F AUC F AUC

0.020 0.535 0.796 0.561 0.818 0.547 0.815
0.030 0.540 0.795 0.562 0.821 0.561 0.818
0.050 0.530 0.790 0.553 0.814 0.550 0.813
0.100 0.521 0.778 0.540 0.802 0.537 0.795

BioInfer

k
1 2 3

F AUC F AUC F AUC

0.005 0.485 0.645 0.498 0.672 0.509 0.685
0.010 0.606 0.788 0.606 0.799 0.568 0.753
0.020 0.470 0.617 0.484 0.639 0.492 0.648
0.030 0.465 0.589 0.480 0.630 0.489 0.647

HPRD50

k
1 2 3

F AUC F AUC F AUC

0.005 0.727 0.778 0.748 0.793 0.734 0.790
0.010 0.733 0.787 0.757 0.808 0.753 0.804
0.020 0.755 0.812 0.762 0.819 0.750 0.811
0.030 0.739 0.804 0.752 0.816 0.740 0.812

IEPA

k
1 2 3

F AUC F AUC F AUC

0.005 0.708 0.763 0.715 0.758 0.708 0.750
0.010 0.712 0.771 0.725 0.783 0.622 0.500
0.020 0.721 0.782 0.737 0.791 0.733 0.794
0.030 0.720 0.781 0.731 0.788 0.724 0.781
0.050 0.718 0.770 0.719 0.772 0.622 0.500

LLL

k
1 2 3

F AUC F AUC F AUC

0.020 0.832 0.822 0.836 0.825 0.843 0.826
0.030 0.842 0.830 0.846 0.831 0.829 0.811
0.050 0.849 0.841 0.833 0.823 0.830 0.805
0.100 0.726 0.536 0.734 0.572 0.764 0.614

In this table, k is the parameter in Equation 3.8 to control
word similarity. Columns under “1”, “2” and “3” correspond
to the maximum path length 1, 2 and 3, respectively, up to
which each dependency graph is decomposed into. Columns
corresponding to “F” and “AUC” are the results in terms of F
value and AUC, respectively. The bold numbers are the best
performance given corresponding parameters.

Table 3: Effects of path set

mthd
1 2 3

F AUC F AUC F AUC

AIMED
upto

0.540 0.795
0.562 0.821 0.561 0.818

sep 0.560 0.815 0.549 0.800

BioInfer
upto

0.606 0.788
0.606 0.799 0.568 0.753

sep 0.591 0.776 0.469 0.594

HPRD50
upto

0.755 0.812
0.762 0.819 0.750 0.811

sep 0.757 0.813 0.738 0.798

IEPA
upto

0.721 0.782
0.737 0.791 0.733 0.794

sep 0.732 0.796 0.708 0.785

LLL
upto

0.849 0.841
0.833 0.823 0.830 0.805

sep 0.825 0.754 0.816 0.740

In this table, columns of 1, 2 and 3 correspond to the results of us-
ing paths of length 1, 2 and 3, respectively. Rows of method “upto”
show the results if using single paths up to the corresponding length,
and rows of method “sep” show the results if using single paths sep-
arately. The results in this table are from the best parameter settings
as in Table 2.

Table 4: Effects of sequential order

Dataset
w/o seq w/ seq imprv

F AUC F AUC F AUC

AIMED 0.549 0.805 0.562 0.821 2.3% 2.0%
BioInfer 0.601 0.790 0.606 0.799 0.8% 1.1%
HPRD50 0.740 0.792 0.762 0.819 2.1% 3.4%
IEPA 0.708 0.774 0.737 0.791 4.1% 2.2%
LLL 0.805 0.769 0.849 0.841 5.5% 9.4%

In this table, columns of “w/o seq” are the results when no sequential
orders are added in graph representation (i.e., only dependencies). Note
in this case, the graphs can be disconnected. Columns of “w/ seq” are
the results when sequential orders are added in graph representation.
Columns of “imprv” are the percentage improvement brought by adding
sequential orders. Columns of “F” and “AUC” are results in terms of F
value and AUC. The results of “w/ seq” are from the best performance
and corresponding parameters in Table 2. The results of “w/o seq” have
the same experimental settings (i.e., path length, k, etc) as those of “w/
seq” except the sequential orders are absent.

Table 5: Effects of dependencies

Dataset
w/o dep w/ dep imprv

F AUC F AUC F AUC

AIMED 0.559 0.817 0.562 0.821 0.5% 0.5%
BioInfer 0.601 0.794 0.606 0.799 0.8% 0.6%
HPRD50 0.726 0.792 0.762 0.819 5.0% 3.4%
IEPA 0.713 0.779 0.737 0.791 3.4% 1.5%
LLL 0.826 0.797 0.849 0.841 2.8% 5.5%

In this table, columns of “w/o dep” are the results when no dependen-
cies are used in graph representation (i.e., only sequential word orders).
Columns of “w/ dep” are the results when dependencies are added in
graph representation. Columns of “imprv” are the percentage improve-
ment brought by adding dependencies. Columns of “F” and “AUC” are
results in terms of F value and AUC. The results of “w/ dep” are from
the best performance and corresponding parameters in Table 2. The re-
sults of “w/o dep” have the same experimental settings (i.e., path length,
k, etc) as those of “w/ dep” except the sequential orders are absent.

Table 6: Results from SSL

Dataset
w/o SSL w/ SSL imprv
F AUC thrd F AUC F AUC

AIMED 0.562 0.821 0.0 0.572 0.834 1.8% 1.6%
BioInfer 0.606 0.799 0.0 0.613 0.806 1.2% 0.9%
HPRD50 0.762 0.819 1.0 0.767 0.819 0.7% 0.0%
IEPA 0.737 0.791 0.8 0.740 0.797 0.4% 0.8%
LLL 0.849 0.841 1.1 0.860 0.847 1.3% 0.7%

In this table, columns corresponding to “w/o SSL” are the re-
sults from supervised learning setting, and the columns cor-
responding to “w/ SSL” are the results from semi-supervised
setting. “thrd” under “w/ SSL” is the threshold we used to
choose additional training instances (i.e., the sentences have
a prediction score from supervised model higher than this
threshold so as to be chosen as additional training instances.)
The results for ”w/o SSL” are from the best parameter set-
tings as in Table 2.

