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Abstract

Latent semantic analysis (LSA), as one of the most populanpervised dimen-
sion reduction tools, has a wide range of applications it te&xing and infor-
mation retrieval. The key idea of LSA is to learn a projectioatrix that maps
the high dimensional vector space representations of destso a lower dimen-
sional latent space, i.e. so called latéopic space. In this paper, we propose
a new model calle®parse LSAwhich produces a sparse projection matrix via
the ¢, regularization. Compared to the traditional LSA, Sparsd Is8lects only

a small number of relevant words for each topic and henceigesva compact
representation of topic-word relationships. MoreoveraiSp LSA is computa-
tionally very efficient with much less memory usage for stgrthe projection
matrix. Furthermore, we propose the nonnegative SparsedsS#n extension of
Sparse LSA. We conduct experiments on several benchmag&etatand compare
Sparse LSA and its extension with several widely used mathed. LSA, Sparse
Coding and LDA. Empirical results suggest that Sparse L3#Aeaes similar per-
formance gains to LSA, but is more efficient in projection putation, storage,
and also well explain the topic-word relationships.

1 Introduction

Latent Semantic Analysis (LSA) [5], as one of the most susftgtools for learning hidden concepts
from text, has widely been used for the dimension reductiopgse in information retrieval and text
mining. A key component of LSA is to learn a projection matfiat converts the high dimensional
vector space representations of documents to a lower dioreispace built with latent factors.
These latent factors are learned from unlabeled data aleticd latentoncepts or topics

In this paper, we introduce a scalable latent topic modeMigecall “Sparse Latent Semantic Anal-
ysis” (Sparse LSA). Different from the traditional LSA bdsen SVD, we formulate a variant of
LSA as an optimization problem which minimizes the appradion error under the orthogonality
constraint of latent factors. Based on this formulation,ade thesparsityconstraint of the pro-
jection matrix via the/; regularization as in the lasso model [11]. By enforcing tharsity on the
projection matrix, the model has the ability to automaticaklect the most relevant words for each
latent topic. Furthermore, we propose one important eidartsased on Sparse LSA: Nonnegative
Sparse LSA where we further enforce the nonnegativity camgton the projection matrix. This
could provide us a pseudo probability distribution of eadrdvgiven the topic, similar to Latent
Dirichlet Allocation (LDA) [3].

There exist numerous related work in a larger context of tladrisnfactorization. For instance,

principal component analysis (PCA) [7], which is closeliated to LSA, has been widely applied
for the dimension reduction purpose. In the content of imfation retrieval, PCA first centers each
document by subtracting the sample mean. This step makesdP@#\variants, e.g. sparse PCA
[12] unsuitable for processing the large text corpus sifdehe centered document-term matrix
will become a dense matrix which may not fit into memory sirfee humber of documents and



words are both very large; (2) the convariance matrix resglio be computed in PCA also gets very
large for the computation and the storage. Other closedtedimodels include sparse coding [9],
probabilistic LSA [8], Latent Dirichlet Allocation (LDA) 3], and their variants. In Section 3, we

compare Sparse LSA and its extension with these popularadgtte.g. LSA [5], Sparse Coding

[9] and LDA [3]. Empirical results show clear advantages af methods in terms of computational

cost, storage and the ability to generate sensible topit$aselect relevant words for the topics.

2 Sparse LSA

2.1 Optimization Formulation of LSA

We considerN documents, where each document lies inMdrdimensional feature spack, e.g.
tf-idf [1] weights of the vocabulary with the normalizatiom unit length. We denot& documents
by a matrixX = [X1,..., Xy] € RVXM whereX; € R is thej-th feature vector for all the
documents. For the dimension reduction purpose, we aimrieeda mapping that projects input
feature space into B-dimensional latent space whelteis smaller thanl/. When dealing with text
data, each latent dimension is also called as a hidden “topic

Motivated by the latent factor analysis [7], we assume thahaveD uncorrelated latent variables

Ui,...,Up, where eacl/; € RY has the unit length, i.e|U,|[o = 1. Here|| - ||, denotes the
vectorfy-norm and lefU = [Uy,...,Up] € RV*P . We also assume that each feature vedfor
can be represented as a linear expansion in latent variébles. , Up:
D
Xj :Zaded—&—ej7 (1)
d=1

or simplyX = UA + e whereA = [a4;] € RP* gives the mapping between the latent space and
the input feature space aads the zero mean noise. Our goal is to compute the so-caltgdqgtion
matrix A.

We can achieve this by solving the following optimizatiomlplem which minimizes the rank
approximation error subject to the orthogonality constraf U:

. 1 .
man7A§|\X — UA|% SubjecttoUTU =1, 2)

where|| - | r denotes the matrix Frobenius norm and the constfdihU = I guarantees that the
latent variables are uncorrelated with the unit length.

At the optimum of Eq. (2)lUA leads to the best rank- approximation of the datX. In general,
the largerD is, the better the reconstruction performance. HowevegetaD requires more com-
putational cost and large amount memory for storg This is the issue that we will address in
the next section. After obtaining, given a new document< R | its representation in the lower
dimensional latent space can be computedgas: Ag, i.e. A could project documents into the
vector representations on latent topic space.

2.2 Sparse LSA

Here we propose to add tlsparsityconstraint on the projection matrix via the/; regularization
as in the lasso model [11]. We name this new model as SparsatL@emantic Analysis (Sparse
LSA). To obtain a sparsd, an entry-wise/;-norm of A is added as the regularization term to the
loss function and this formulates the Sparse LSA model as:

. 1 .
mingy, a5 | X - UA|% + A|A|: SubjecttoU’U =1, (3)

where||All; = Zle Zj‘il |aq;| is the entry-wisé-norm of A and is the positive regularization
parameter which controls the density (the number of noneatdes) ofA. In general, a largek
leads to a sparseX. On the other hand, a too spar&ewill miss some useful topic-word relation-
ships which harms the reconstruction performance. Thergio practice, we need to try to select
larger A to obtain a more spars& while still achieving good reconstruction performance. Wit
show the effectiveness ofin more details in Section 3.



One benefit of sparse LSA is to improve LSA with easy inteigdyity on topic-word relationships.
Sparse LSA automatically selects the most relevant wondséoh latent topic and hence provides
us a clear and compact representation of the topic-wortaathip. Moreover, for a new document
q, if the words ing has no intersection with the relevant wordsieth topic (nonzero entries iA¢,
the d-th row of A), thed-th element ofj, A¢q, will become zero. In other words, tisparseatent
representation af clearly indicates the topics thatbelongs to.

Another benefit of learning spargeis to save computational cost and to ease storage requitemen
when D is large. In traditional LSA, the topics with larger singulalues will cover a broader
range of concepts than the ones with smaller singular vall@s example, the first few topics
with largest singular values are often too general to haeeiip meanings. As singular values
decrease, the topics become more and more specific (or ngéalpinrherefore, we might want to
enlarge the number of latent topi€sto have a reasonable coverage of the topics. However, given
a large corpus with millions of documents, a lardemwill greatly increase the computational cost
of projection operations in traditional LSA. On the conyrdor Sparse LSA, projecting documents
via a highly sparse projection matrix will be much more cotagionally efficient; and it will take
much less memory for storingg when D is large.

2.3 Optimization Algorithm

In this section, we propose an efficient optimization altni to solve Eq. (3). Although the
optimization problem is non-convex, fixing one variablel{erU or A), the objective function with
respect to the other is convex. Therefore, a natural appramasolve Eq. (3) is by the alternating
approach:

[1] WhenU is fixed, letA; denote thej-th column ofA; the optimization problem with respect to
A:

o1
min - [X — UA|| + A Al

can be decomposed in fd independent ones:
1 )
min o [[X; = UA 3+ A4, 5 =1,.... M. 4)
J

Each subproblem is a standard lasso problem whgrean be viewed as the response &hds the
design matrix. To solve Eq. (4), we can directly apply theest#-the-art lasso solver in [6] which
is essentially a coordinate descent approach.

[2] WhenA s fixed, the optimization problem is equivalent to:

1 .
m|nU§HX — UA|% SubjecttoU’U =1. (5)

The objective function in Eq. (5) can be further written as:
%Hx —UA|%Z = —tr(ATUTX) + %tr(XTX) + %tr(ATA),
where the last equality is according to the constraintthaly = I. By the fact that fA7 U7 X) =
tr(UTXAT), the optimization problem in Eq. (5) is equivalent to
maxgtr(UTXAT) subject toU”7U = 1. (6)

LetV = XAT. Infact,V is the latent topic representations of the documaht&ssuming thalv’
is full column rank, i.e. with ranv) = D, Eq. (6) has the closed form solution as shown in the
next theorem:

Theorem 2.1 Suppose the singular value decomposition (SVDYyaé V = PAQ, the optimal
solution to Eq(6) is U = PQ.

The proof of the theorem is omitted due to space limit. It isthwpto note that sincé is usually
much smaller than the vocabulary six&, the computational cost of SVD &f ¢ RY*P is much
cheaper than SVD &X € RV*M in traditional LSA.



As for the starting point, anA® or U° stratifying (U°)7U° = I can be adopted. We suggest a

very simple initialization strategy fdJ° as following: U° = <I§> , Wherel , the D by D identity

matrix. It is easy to verify thatU%)7U° = 1.

2.4 Extension of Sparse LSA: Nonnegative Sparse LSA

In this section, we propose one important extension of @pa®A model. It is natural to assume
that each word has a nonnegative contribution to a specffic,toe. the projection matriA should
be nonnegative. In such a case, we may normalize each ré&wtofl:

_ %

Z;\; adj

Sinceay; measures the relevance of thieh word, w;, to thed-th topict,, from the probability
perspectivegy; can be viewed as a pseudo probability of the wordgiven the topicq, P(w;ltq).
Similar to topic modeling in the Bayesian framework such 8AL3], this model, named as the

nonnegative Sparse LSA, can also provide the most reldkaht/words to a specific topic. More
formally, the nonnegative Sparse LSA can be formulated e&allowing optimization problem:

adj =

. 1 .
ming, a 5[ X - UA|% + \|A|: , SubjecttoU”’U =1, A >0. (7)
The optimization problem in (7) can also be solved by an aétéing scheme similar to Section 2.3.

3 Experimental Results

In this section, we conduct several experiments on realdwdatasets to test the effectiveness of
Sparse LSA and its extension.

3.1 Text Classification Performance

In this subsection, we consider the text classificationqrarhnce after we project the text data into
the latent space. We use two widely adopted text classiicatdrpora, 20 Newsgroups (20NG)
dataset and RCV1 [10]. For the 20NG, we classify the postings from heasgroupsilt.tatheism
andtalk.religion.misausing the tf-idf of the vocabulary as features. For RCV1, @raove the words
appearing fewer than 10 times and standard stopwords;rpaegs the data according to f2Jand
convert it into a 53 classes classification task.

We evaluate different dimension reduction techniques dasethe classification performance of
linear SVM classifier. Specifically, we consider (1) Traafiial LSA; (2) Sparse Coding with the
code from [9] and the regularization parameter is choserrbgsevalidation on train set; (3) LDA

with the code from [3]; (4) Sparse LSA,; (5) Nonnegative SparSA (NN Sparse LSA).

After projecting the documents to the latent space, we nagl@plit the documents into train-
ing/testing set with the ratid : 1 and perform the linear SVM using the package LIBSVM [4] with
the regularization parameték,m € {le — 4, ..., le + 4} selected by 5-fold cross-validation.

Firstly, following the traditional way of comparing diffent dimension reduction methods, we vary
the dimensionality of the latent space and plot the clasdifin accuracy in Figure 1 (a) & (b).
For Sparse LSA and NN Sparse LSA, the regularization paemeis fixed to be0.05 and the
corresponding densities (proportion of nonzero entriésd are shown in Table 1.

It can be seen that the performances of LSA and Sparse Codéngoanparable. When the di-
mensionality of latent space is small, Sparse LSA is shghibrse than LSA. This is expectable
since when the number of parameters in its projection manizery small, the sparse model may
miss important topic-word patterns. By contrast, whenidgakith more latent topics, Sparse LSA

1Seehtt p: // peopl e. csai |l . mit.edu/|renni e/ 20Newsgr oups/

2See http://ww csie.ntu.edu.tw ~cjlin/libsvntools/datasets/multiclass.
htm #rcvl. mul ticl ass
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Figure 1:Classification accuracy vs the dimensionality of latent space for (a) 20®CV1. Classification
Accuracy vs effective dimension for (a) 20NG (b) RCV1.
Table 1: Density of Projection MatriA (%)
(a) 20NG (b) RCV1
| Dimension | 10 | 50 [ 100 [ 500 [ 1000| [ 10 [ 50 [ 100 [ 500 | 1000 |
Sparse LSA 1.48| 0.80| 0.74| 0.32| 0.18 1352 | 746 | 7.40| 2.71| 1.13

NN Sparse LSA| 1.44| 0.72| 0.55| 0.31| 0.17 11.65] 497| 0.40| 1.91| 0.79
Other Methods | 100 | 100 | 100 | 100 | 100 100 | 100 | 100 | 100 | 100

Table 2: Computational Efficiency and Storage on 20NG corpus
[ [Proj. Time (ms)Storage (MB]Density of Proj. Doc. (%)Acc. (%) |

Sparse LSA  |0.25 (4.05E-2)|0.6314 35.81 (15.39) 93.01 (1.17
NN Sparse LSA0.22 (2.78E-2)|0.6041 35.44 (15.17) 93.00 (1.14
[SA 316 (1.10) |132.68 100 (0) 93.89 (0.58
Sparse Coding|1711.1 (323.9)|132.68 86.94 (3.63) 90.54 (1.55

shows its advantage in the sense that it can achieve sirfaksification performance with a highly
sparse model (see Table 1). A spassevill further save both computational and storage cost as
shown in the next section. NN Sparse LSA achieves similasiiaation performance as Sparse
LSA with an even more sparge. LDA performs not very well for the text classification tagkich

is also expectable since LDA is a generative model desigoebdtter interpretability instead of
better dimension reduction performance.

Since Sparse LSA has fewer effective parameters (nonzérne®nn projection matrix, for more
fair comparisons, we introduce a concept cabiéféctive dimensiowhich has been widely adopted

in sparse learning. We define the effective dimensioAdf be #n;[(A), where#nz(A) is the

number of nonzero entries & and M is the vocabulary sizé. For other methods, the effective
dimension is just the dimensionality of the latent spaceesall the parameters affects the projection
operation. In other words, we compare the classificatiofopaance of different methods based on
the same number of learned nonzero parameters for the poojec

The result is shown in Figure 1 (c) & (d). For Sparse LSA and NfdrSe LSA, we fix the number
of latent topics to bé = 1000 and vary the value of regularization parametdrom large number
(0.5) to small one () to achieve different#nz(A), i.e. different effective dimensions. As we
can see, Sparse LSA and NN Sparse LSA greatly outperfornn ptathods in the sense that they
achieve good classification accuracy even for highly spasgels. In practice, we should try to find
a A which could lead to a sparser model while still achievingsogebly good dimension reduction
performance.

In summary, Sparse LSA and NN Sparse LSA show their advasitapen the dimensionality of
latent space is large. They can achieve good classificaidonmance with only a small amount of
nonzero parameters in the projection matrix.

3.2 Efficiency and Storage

In this section, we fix the number of latent topicslas0, the regularization parameter as= 0.05
and report the projection time, storage and the density efptfojected documents for different

3Effective dimension might be less than ¥hz(A) < M.



Table 3: Topic-word learned by NN Sparse LSA

[ Topic1 | Topic2 | Topic3 | Topic4 [ Topic5 | Topic6 [ Topic7 |
network | learning network | model function input image
neural reinforcementlearning | data functions output images
networks | algorithm data models approximation inputs recognition
system | function neural parameters| linear chip visual
neurons | rule training | mixture basis analog object
neuron control set likelihood | threshold circuit system
input learn function | distribution | theorem signal feature
output weight model gaussian loss current | figure
time action input em time action input
systems | policy networks| variables | systems policy networks

Table 4: Topic-word learned by LDA

[ Topic1 | Topic2 | Topic3 | Topic4 [ Topic5 | Topic6 [ Topic7 |
learning | figure algorithm| single rate algorithms function
data model method | general unit set neural
model output networks| sets data problem | hidden
training | neurons process | time time weight networks
informatignvector learning | maximum | estimation temporal | recognition
number | networks input paper node prior output
algorithm| state based rates set obtain visual
performandayer function | features input parametef noise
linear system error estimated | neural neural parameters
input order parametef neural properties simulated references

methods on 20NG corpus in Table 2. The Proj. time is computedeaCPU time for the projection
operation and the density of projected documents is thegptiop of nonzero entries 6f = Aq for

a document. Both quantities are computed fdd00 randomly selected documents in the corpus.
Storage means the size of the memory needed for storing timatrix.

Using Sparse LSA and NN Sparse LSA, although the classiicatcuracy is slightly worse (dif-
ference< 1% ), the time and memory costs during projection are much Idwyehe orders of mag-
nitudes than LSA and Sparse Coding. This means, if we neegbfegd millions of documents, e.qg.
web-scale data, into the latent space representationnmedytfashion (e.g. online), Sparse LSA and
its extension will be much more efficient. Moreover, giveneavrdocument, under Sparse LSA,
the projected document will also be a sparse vector, whidesgred for efficient indexing.

3.3 Topic-word Relationship

In this section, we qualitatively compare the topic-wortatienship learned by NN Sparse LSA
to LDA. We use the benchmark data: NIPS proceeding papiecsn 1988 to 1999 including 1714
articles, with a vocabulary 13,649 words. We vary Mfer NN Sparse LSA so that each topic has at
least ten words. The top ten words for the top 7 topiaee listed in Table 3. Itis very clear that NN
Sparse LSA captures different hot topics in machine legroommunity in 1990s, including neural
network, reinforcement learning, mixture model, theoignal processing and computer vision. For
the ease of comparison, we also list the top 7 topics for LDi dable 4. Although LDA also gives
the representative words, the topics learned by LDA are eot discriminative in the sense that all
the topics seems to be closely related to neural network.

4 Conclusion

In this paper, we introduce a new model called Sparse Latemig&tic Analysis, which enforces the
sparsity on the projection matrix based on LSA usingtthesgularization. Sparse LSA could pro-
vide a more compact and precise projection by selecting @siyall number of relevant words for
each latent topic. We conduct experiments on several redbwlatasets to illustrate the advantages
of our model from different perspectives.

“4Available atht t p: / / ¢s. nyu. edu/ ~r owei s/ dat a/
*We useD = 10. However, due to the space limit, we report the top 7 topics.
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