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Abstract

Latent semantic analysis (LSA), as one of the most popular unsupervised dimen-
sion reduction tools, has a wide range of applications in text mining and infor-
mation retrieval. The key idea of LSA is to learn a projectionmatrix that maps
the high dimensional vector space representations of documents to a lower dimen-
sional latent space, i.e. so called latenttopic space. In this paper, we propose
a new model calledSparse LSA, which produces a sparse projection matrix via
theℓ1 regularization. Compared to the traditional LSA, Sparse LSA selects only
a small number of relevant words for each topic and hence provides a compact
representation of topic-word relationships. Moreover, Sparse LSA is computa-
tionally very efficient with much less memory usage for storing the projection
matrix. Furthermore, we propose the nonnegative Sparse LSAas an extension of
Sparse LSA. We conduct experiments on several benchmark datasets and compare
Sparse LSA and its extension with several widely used methods, e.g. LSA, Sparse
Coding and LDA. Empirical results suggest that Sparse LSA achieves similar per-
formance gains to LSA, but is more efficient in projection computation, storage,
and also well explain the topic-word relationships.

1 Introduction

Latent Semantic Analysis (LSA) [5], as one of the most successful tools for learning hidden concepts
from text, has widely been used for the dimension reduction purpose in information retrieval and text
mining. A key component of LSA is to learn a projection matrixthat converts the high dimensional
vector space representations of documents to a lower dimensional space built with latent factors.
These latent factors are learned from unlabeled data and called as latentconcepts or topics.

In this paper, we introduce a scalable latent topic model that we call “Sparse Latent Semantic Anal-
ysis” (Sparse LSA). Different from the traditional LSA based on SVD, we formulate a variant of
LSA as an optimization problem which minimizes the approximation error under the orthogonality
constraint of latent factors. Based on this formulation, weadd thesparsityconstraint of the pro-
jection matrix via theℓ1 regularization as in the lasso model [11]. By enforcing the sparsity on the
projection matrix, the model has the ability to automatically select the most relevant words for each
latent topic. Furthermore, we propose one important extension based on Sparse LSA: Nonnegative
Sparse LSA where we further enforce the nonnegativity constraint on the projection matrix. This
could provide us a pseudo probability distribution of each word given the topic, similar to Latent
Dirichlet Allocation (LDA) [3].

There exist numerous related work in a larger context of the matrix factorization. For instance,
principal component analysis (PCA) [7], which is closely related to LSA, has been widely applied
for the dimension reduction purpose. In the content of information retrieval, PCA first centers each
document by subtracting the sample mean. This step makes PCAor its variants, e.g. sparse PCA
[12] unsuitable for processing the large text corpus since (1) the centered document-term matrix
will become a dense matrix which may not fit into memory since the number of documents and
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words are both very large; (2) the convariance matrix required to be computed in PCA also gets very
large for the computation and the storage. Other closely related models include sparse coding [9],
probabilistic LSA [8], Latent Dirichlet Allocation (LDA) [3], and their variants. In Section 3, we
compare Sparse LSA and its extension with these popular methods, e.g. LSA [5], Sparse Coding
[9] and LDA [3]. Empirical results show clear advantages of our methods in terms of computational
cost, storage and the ability to generate sensible topics and to select relevant words for the topics.

2 Sparse LSA

2.1 Optimization Formulation of LSA

We considerN documents, where each document lies in anM -dimensional feature spaceX , e.g.
tf-idf [1] weights of the vocabulary with the normalizationto unit length. We denoteN documents
by a matrixX = [X1, . . . ,XM ] ∈ R

N×M , whereXj ∈ R
N is thej-th feature vector for all the

documents. For the dimension reduction purpose, we aim to derive a mapping that projects input
feature space into aD-dimensional latent space whereD is smaller thanM . When dealing with text
data, each latent dimension is also called as a hidden “topic”.

Motivated by the latent factor analysis [7], we assume that we haveD uncorrelated latent variables
U1, . . . , UD, where eachUd ∈ R

N has the unit length, i.e.‖Ud‖2 = 1. Here‖ · ‖2 denotes the
vectorℓ2-norm and letU = [U1, . . . , UD] ∈ R

N×D. We also assume that each feature vectorXj

can be represented as a linear expansion in latent variablesU1, . . . , UD:

Xj =
D∑

d=1

adjUd + ǫj , (1)

or simplyX = UA+ ǫ whereA = [adj ] ∈ R
D×M gives the mapping between the latent space and

the input feature space andǫ is the zero mean noise. Our goal is to compute the so-called projection
matrixA.

We can achieve this by solving the following optimization problem which minimizes the rank-D
approximation error subject to the orthogonality constraint of U:

minU,A

1

2
‖X − UA‖2

F Subject to:UT U = I, (2)

where‖ · ‖F denotes the matrix Frobenius norm and the constraintUT U = I guarantees that the
latent variables are uncorrelated with the unit length.

At the optimum of Eq. (2),UA leads to the best rank-D approximation of the dataX. In general,
the largerD is, the better the reconstruction performance. However, largerD requires more com-
putational cost and large amount memory for storingA. This is the issue that we will address in
the next section. After obtainingA, given a new documentq ∈ R

M , its representation in the lower
dimensional latent space can be computed as:q̂ = Aq, i.e. A could project documents into the
vector representations on latent topic space.

2.2 Sparse LSA

Here we propose to add thesparsityconstraint on the projection matrixA via theℓ1 regularization
as in the lasso model [11]. We name this new model as Sparse Latent Semantic Analysis (Sparse
LSA). To obtain a sparseA, an entry-wiseℓ1-norm ofA is added as the regularization term to the
loss function and this formulates the Sparse LSA model as:

minU,A

1

2
‖X − UA‖2

F + λ‖A‖1 Subject to:UT U = I, (3)

where‖A‖1 =
∑D

d=1

∑M

j=1 |adj | is the entry-wiseℓ1-norm ofA andλ is the positive regularization
parameter which controls the density (the number of nonzeroentries) ofA. In general, a largerλ
leads to a sparserA. On the other hand, a too sparseA will miss some useful topic-word relation-
ships which harms the reconstruction performance. Therefore, in practice, we need to try to select
largerλ to obtain a more sparseA while still achieving good reconstruction performance. Wewill
show the effectiveness ofλ in more details in Section 3.
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One benefit of sparse LSA is to improve LSA with easy interpretability on topic-word relationships.
Sparse LSA automatically selects the most relevant words for each latent topic and hence provides
us a clear and compact representation of the topic-word relationship. Moreover, for a new document
q, if the words inq has no intersection with the relevant words ofd-th topic (nonzero entries inAd,
thed-th row ofA), thed-th element of̂q, Adq, will become zero. In other words, thesparselatent
representation of̂q clearly indicates the topics thatq belongs to.

Another benefit of learning sparseA is to save computational cost and to ease storage requirements
whenD is large. In traditional LSA, the topics with larger singular values will cover a broader
range of concepts than the ones with smaller singular values. For example, the first few topics
with largest singular values are often too general to have specific meanings. As singular values
decrease, the topics become more and more specific (or meaningful). Therefore, we might want to
enlarge the number of latent topicsD to have a reasonable coverage of the topics. However, given
a large corpus with millions of documents, a largerD will greatly increase the computational cost
of projection operations in traditional LSA. On the contrary, for Sparse LSA, projecting documents
via a highly sparse projection matrix will be much more computationally efficient; and it will take
much less memory for storingA whenD is large.

2.3 Optimization Algorithm

In this section, we propose an efficient optimization algorithm to solve Eq. (3). Although the
optimization problem is non-convex, fixing one variable (eitherU orA), the objective function with
respect to the other is convex. Therefore, a natural approach to solve Eq. (3) is by the alternating
approach:

[1] WhenU is fixed, letAj denote thej-th column ofA; the optimization problem with respect to
A:

min
A

1

2
‖X − UA‖ + λ‖A‖1,

can be decomposed in toM independent ones:

min
Aj

1

2
‖Xj − UAj‖

2
2 + λ‖Aj‖1; j = 1, . . . ,M. (4)

Each subproblem is a standard lasso problem whereXj can be viewed as the response andU as the
design matrix. To solve Eq. (4), we can directly apply the state-of-the-art lasso solver in [6] which
is essentially a coordinate descent approach.

[2] WhenA is fixed, the optimization problem is equivalent to:

minU

1

2
‖X − UA‖2

F Subject to:UT U = I. (5)

The objective function in Eq. (5) can be further written as:

1

2
‖X − UA‖2

F = −tr(AT UT X) +
1

2
tr(XT X) +

1

2
tr(AT A),

where the last equality is according to the constraint thatUT U = I. By the fact that tr(AT UT X) ≡
tr(UT XAT ), the optimization problem in Eq. (5) is equivalent to

maxUtr(UT XAT ) subject to:UT U = I. (6)

Let V = XAT . In fact,V is the latent topic representations of the documentsX. Assuming thatV
is full column rank, i.e. with rank(V) = D, Eq. (6) has the closed form solution as shown in the
next theorem:

Theorem 2.1 Suppose the singular value decomposition (SVD) ofV is V = P∆Q, the optimal
solution to Eq.(6) is U = PQ.

The proof of the theorem is omitted due to space limit. It is worthy to note that sinceD is usually
much smaller than the vocabulary sizeM , the computational cost of SVD ofV ∈ R

N×D is much
cheaper than SVD ofX ∈ R

N×M in traditional LSA.
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As for the starting point, anyA0 or U0 stratifying (U0)T U0 = I can be adopted. We suggest a

very simple initialization strategy forU0 as following:U0 =

(
ID

0

)
, whereID theD by D identity

matrix. It is easy to verify that(U0)T U0 = I.

2.4 Extension of Sparse LSA: Nonnegative Sparse LSA

In this section, we propose one important extension of Sparse LSA model. It is natural to assume
that each word has a nonnegative contribution to a specific topic, i.e. the projection matrixA should
be nonnegative. In such a case, we may normalize each row ofA to 1:

ãdj =
adj∑M

j=1 adj

.

Sinceadj measures the relevance of thej-th word, wj , to thed-th topic td, from the probability
perspective,̃adj can be viewed as a pseudo probability of the wordwj given the topictd, P(wj |td).
Similar to topic modeling in the Bayesian framework such as LDA [3], this model, named as the
nonnegative Sparse LSA, can also provide the most relevant/likely words to a specific topic. More
formally, the nonnegative Sparse LSA can be formulated as the following optimization problem:

minU,A

1

2
‖X − UA‖2

F + λ‖A‖1 , Subject to:UT U = I, A ≥ 0. (7)

The optimization problem in (7) can also be solved by an alternating scheme similar to Section 2.3.

3 Experimental Results

In this section, we conduct several experiments on real world datasets to test the effectiveness of
Sparse LSA and its extension.

3.1 Text Classification Performance

In this subsection, we consider the text classification performance after we project the text data into
the latent space. We use two widely adopted text classification corpora, 20 Newsgroups (20NG)
dataset1 and RCV1 [10]. For the 20NG, we classify the postings from twonewsgroupsalt.tatheism
andtalk.religion.miscusing the tf-idf of the vocabulary as features. For RCV1, we remove the words
appearing fewer than 10 times and standard stopwords; pre-process the data according to [2]2; and
convert it into a 53 classes classification task.

We evaluate different dimension reduction techniques based on the classification performance of
linear SVM classifier. Specifically, we consider (1) Traditional LSA; (2) Sparse Coding with the
code from [9] and the regularization parameter is chosen by cross-validation on train set; (3) LDA
with the code from [3]; (4) Sparse LSA; (5) Nonnegative Sparse LSA (NN Sparse LSA).

After projecting the documents to the latent space, we randomly split the documents into train-
ing/testing set with the ratio2 : 1 and perform the linear SVM using the package LIBSVM [4] with
the regularization parameterCsvm ∈ {1e − 4, . . . , 1e + 4} selected by 5-fold cross-validation.

Firstly, following the traditional way of comparing different dimension reduction methods, we vary
the dimensionality of the latent space and plot the classification accuracy in Figure 1 (a) & (b).
For Sparse LSA and NN Sparse LSA, the regularization parameter λ is fixed to be0.05 and the
corresponding densities (proportion of nonzero entries) of A are shown in Table 1.

It can be seen that the performances of LSA and Sparse Coding are comparable. When the di-
mensionality of latent space is small, Sparse LSA is slightly worse than LSA. This is expectable
since when the number of parameters in its projection matrixis very small, the sparse model may
miss important topic-word patterns. By contrast, when dealing with more latent topics, Sparse LSA

1Seehttp://people.csail.mit.edu/jrennie/20Newsgroups/
2See http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.

html#rcv1.multiclass

4



10 50 100 500 1000

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Dimension of latent space

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

 

 

Sparse LSA+SVM
NN Sparse LSA+SVM
LSA+SVM
Sparse Coding+SVM
LDA+SVM

10 50 100 500 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension of latent space

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

 

 

Sparse LSA+SVM
NN Sparse LSA+SVM
LSA+SVM
Sparse Coding+SVM
LDA+SVM

10
−2

10
−1

10
0

10
1

10
2

10
3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Effective Dimension

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

 

 

Sparse LSA+SVM
NN Sparse LSA+SVM
LSA+SVM
Sparse Coding+SVM
LDA+SVM

10
−1

10
0

10
1

10
2

10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Effective Dimension

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

 

 

Sparse LSA+SVM
NN Sparse LSA+SVM
LSA+SVM
Sparse Coding+SVM
LDA+SVM

(a) (b) (c) (d)

Figure 1:Classification accuracy vs the dimensionality of latent space for (a) 20NG; (b) RCV1. Classification
Accuracy vs effective dimension for (a) 20NG (b) RCV1.

Table 1: Density of Projection MatrixA (%)
(a) 20NG

Dimension 10 50 100 500 1000
Sparse LSA 1.48 0.80 0.74 0.32 0.18
NN Sparse LSA 1.44 0.72 0.55 0.31 0.17
Other Methods 100 100 100 100 100

(b) RCV1

10 50 100 500 1000
13.52 7.46 7.40 2.71 1.13
11.65 4.97 0.40 1.91 0.79
100 100 100 100 100

Table 2: Computational Efficiency and Storage on 20NG corpus
Proj. Time (ms)Storage (MB)Density of Proj. Doc. (%)Acc. (%)

Sparse LSA 0.25 (4.05E-2) 0.6314 35.81 (15.39) 93.01 (1.17)
NN Sparse LSA0.22 (2.78E-2) 0.6041 35.44 (15.17) 93.00 (1.14)
LSA 31.6 (1.10) 132.68 100 (0) 93.89 (0.58)
Sparse Coding 1711.1 (323.9) 132.68 86.94 (3.63) 90.54 (1.55)

shows its advantage in the sense that it can achieve similar classification performance with a highly
sparse model (see Table 1). A sparseA will further save both computational and storage cost as
shown in the next section. NN Sparse LSA achieves similar classification performance as Sparse
LSA with an even more sparseA. LDA performs not very well for the text classification task,which
is also expectable since LDA is a generative model designed for better interpretability instead of
better dimension reduction performance.

Since Sparse LSA has fewer effective parameters (nonzero entries) in projection matrix, for more
fair comparisons, we introduce a concept calledeffective dimensionwhich has been widely adopted
in sparse learning. We define the effective dimension ofA to be #nz(A)

M
, where#nz(A) is the

number of nonzero entries ofA andM is the vocabulary size3. For other methods, the effective
dimension is just the dimensionality of the latent space since all the parameters affects the projection
operation. In other words, we compare the classification performance of different methods based on
the same number of learned nonzero parameters for the projection.

The result is shown in Figure 1 (c) & (d). For Sparse LSA and NN Sparse LSA, we fix the number
of latent topics to beD = 1000 and vary the value of regularization parameterλ from large number
(0.5) to small one (0) to achieve different#nz(A), i.e. different effective dimensions. As we
can see, Sparse LSA and NN Sparse LSA greatly outperform other methods in the sense that they
achieve good classification accuracy even for highly sparsemodels. In practice, we should try to find
a λ which could lead to a sparser model while still achieving reasonably good dimension reduction
performance.

In summary, Sparse LSA and NN Sparse LSA show their advantages when the dimensionality of
latent space is large. They can achieve good classification performance with only a small amount of
nonzero parameters in the projection matrix.

3.2 Efficiency and Storage

In this section, we fix the number of latent topics as1000, the regularization parameter asλ = 0.05
and report the projection time, storage and the density of the projected documents for different

3Effective dimension might be less than 1 if#nz(A) < M .
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Table 3: Topic-word learned by NN Sparse LSA
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7
network learning network model function input image
neural reinforcementlearning data functions output images
networks algorithm data models approximation inputs recognition
system function neural parameters linear chip visual
neurons rule training mixture basis analog object
neuron control set likelihood threshold circuit system
input learn function distribution theorem signal feature
output weight model gaussian loss current figure
time action input em time action input
systems policy networks variables systems policy networks

Table 4: Topic-word learned by LDA
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7
learning figure algorithm single rate algorithms function
data model method general unit set neural
model output networks sets data problem hidden
training neurons process time time weight networks
informationvector learning maximum estimation temporal recognition
number networks input paper node prior output
algorithm state based rates set obtain visual
performancelayer function features input parameter noise
linear system error estimated neural neural parameters
input order parameter neural properties simulated references

methods on 20NG corpus in Table 2. The Proj. time is computed as the CPU time for the projection
operation and the density of projected documents is the proportion of nonzero entries of̂q = Aq for
a documentq. Both quantities are computed for1000 randomly selected documents in the corpus.
Storage means the size of the memory needed for storing theA matrix.

Using Sparse LSA and NN Sparse LSA, although the classification accuracy is slightly worse (dif-
ference< 1% ), the time and memory costs during projection are much lowerby the orders of mag-
nitudes than LSA and Sparse Coding. This means, if we need to project millions of documents, e.g.
web-scale data, into the latent space representation in a timely fashion (e.g. online), Sparse LSA and
its extension will be much more efficient. Moreover, given a new documentq, under Sparse LSA,
the projected document will also be a sparse vector, which isdesired for efficient indexing.

3.3 Topic-word Relationship

In this section, we qualitatively compare the topic-word relationship learned by NN Sparse LSA
to LDA. We use the benchmark data: NIPS proceeding papers4 from 1988 to 1999 including 1714
articles, with a vocabulary 13,649 words. We vary theλ for NN Sparse LSA so that each topic has at
least ten words. The top ten words for the top 7 topics5 are listed in Table 3. It is very clear that NN
Sparse LSA captures different hot topics in machine learning community in 1990s, including neural
network, reinforcement learning, mixture model, theory, signal processing and computer vision. For
the ease of comparison, we also list the top 7 topics for LDA asin Table 4. Although LDA also gives
the representative words, the topics learned by LDA are not very discriminative in the sense that all
the topics seems to be closely related to neural network.

4 Conclusion

In this paper, we introduce a new model called Sparse Latent Semantic Analysis, which enforces the
sparsity on the projection matrix based on LSA using theℓ1 regularization. Sparse LSA could pro-
vide a more compact and precise projection by selecting onlya small number of relevant words for
each latent topic. We conduct experiments on several real-world datasets to illustrate the advantages
of our model from different perspectives.

4Available athttp://cs.nyu.edu/∼roweis/data/
5We useD = 10. However, due to the space limit, we report the top 7 topics.
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