Semi-Supervised Sequence Labeling with Self-Learned Features

Yanjun Qi¹, Pavel P. Kuksa², Ronan Collobert¹, Kunihiko Sadamasa, Koray Kavukcuoglu³, Jason Weston⁴

- ¹ Machine Learning Department, NEC Laboratories America, Inc.
- ² Computer Science Department, Rutgers University
- ³ Computer Science Department, New York University
- ⁴ Google Research New York

Roadmap

- □ Background
- ☐ Method (Self-Learned Features: SLF)
- ☐ Baseline Systems
- ☐ Experimental Results

Background: Learning

- Natural language processing (NLP) involves many machine learning tasks, especially sequential learning
- Learning: Supervised (classification, regression, etc.) vs. Unsupervised (clustering, etc)

Usage	Supervised learning	Unsupervised learning
{(x,y)} labeled data	Yes	No
{x*} unlabeled data	No	Yes

4 Background: Semi-Supervised Learning

- Labeled data are often hard to obtain
- Unlabeled data are often easy to obtain : <u>A Lot</u>

Usage	Supervised learning	Semi-supervised learning	Unsupervised learning
{(x,y)} labeled data	Yes	Yes	No
{x*} unlabeled data	No	Yes	Yes

- ☐ For instance, "Self-Training"
 - Popular semi-supervised method used in NLP
 - Induce self-labeled "pseudo" training "examples" from unlabeled set

5 Background: Semi-Supervised Learning (Cont')

- ☐ Semi-supervised Learning (most not applicable for large scale NLP tasks)
 - Self-training or co-training
 - Transductive SVM
 - Graph-based regularization
 - Entropy regularization
 - EM with generative mixture models
 - Auxiliary task on unlabeled set through multi-task learning
 - Semi-supervised learning with "labeled features"
 - "Labeled features" → Prior class-bias of features from human annotation
 - Using "labeled features" to induce "pseudo" examples or enforce soft constraints on predictions of unlabeled examples

Background: Word

- ☐ Individual words in NLP systems
 - Carry significant label information

- Fundamental building blocks of NLP
- Many basic NLP tasks involve sequence modeling with word-level evaluation
 - For example, named entity recognition (NER), part-of-speech (POS) tagging

Example	NLP Task	
former <i>captain</i> [Chris Lewis]	Name Entity [Person Name]	
the state of [washington]	Name Entity [Location Name]	

- Our target NLP problems: Information extraction
 - Assign labels to each word in a sequence of text
 - Essentially, classify each word into multiple classes

- □ Provide "semi-supervision" at the level of features (e.g. words) related to target labels
 - Through self-learned features (SLF) of words (basic case) $SLF(w)_i = P(\mathbf{y} = i|w, \text{ where } w \in \mathbf{x})$
 - SLF models the probability to each target class this word might be assigned with
 - SLF is unknown (of course)
 re-estimate using unlabeled examples by applying a trained classifier

"semi-supervised" self-learned features (SLF)

8 Method: Semi-Supervised SLF (Basic Case)

- ☐ Empirical SLF is estimated from unlabeled examples
 - Each example is a sequence of words
 - Thus, SLF of a word w, for class $i \rightarrow$
 - (# examples including word w that are predicted as class i / # examples including word w)

$$\overline{\text{SLF}}(w)_i = \frac{|\{j : f(\mathbf{x}_j^*) = i \land w \in \mathbf{x}_j^*\}|}{|\{k : w \in \mathbf{x}_k^*\}|}$$

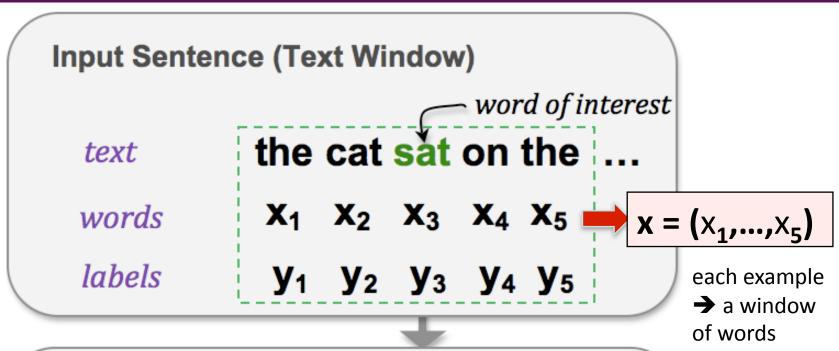
- Where {x*} represents unlabeled examples
- Where f(-) represents a trained supervised sequence classifier

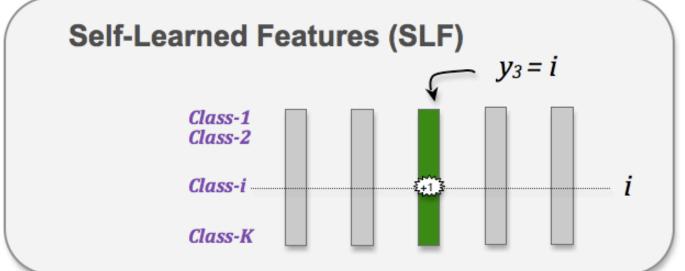
Method: Algorithm (Basic Case)

☐ Pseudo-code

- 1. Define the feature representation for a word as $\phi(\omega)$, and the representation for an example (a window of words) as $\Phi(x)$
- 2. Train a classifier $f(\cdot)$ on training examples (x_i, y_i) using the feature representation $\Phi(\cdot)$
- 3. Use $f(\cdot)$ to estimate $\overline{SLF}(w)$ from unlabeled data $\{x^*\}$
- 4. Augment the representation of words to $\overline{\phi}(\omega)$ and refine $\Phi(x)$, where $\overline{\phi}(w) = (\phi(w), \overline{\text{SLF}}(w))$
- 5. Iterate steps 2 to 4 until stopping criterion is met.

10 Modified SLF: Word Sliding Window Case





Extension I: Boundary SLF

- Rare words are the hardest to label
- ☐ Motivation: model those words happening frequently before or after a certain target class

```
... former captain [Chris Lewis] ...
...[Hoddle] said ...
... [CRKL], an adapter protein ...
... [SH2-SH3-SH3] adapter protein ...
```

* Blue color words carry important label indications

☐ Boundary SLF: extend basic SLF to incorporate the class boundary distribution

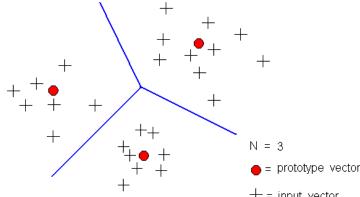
$$SLF''(w)_{t,1} = P(\mathbf{y}_i = t | w \in \{(\mathbf{x}_i)_1, \dots, (\mathbf{x}_i)_{m-1}\})$$

$$SLF''(w)_{t,2} = P(\mathbf{y}_i = t | w \in \{(\mathbf{x}_i)_{m+1}, \dots, (\mathbf{x}_i)_{|\mathbf{x}_i|}\})$$

Extension II & Extension III

☐ Extension II: Clustered SLF

- Words exhibiting similar target class distribution have similar SLF features
- Group SLF features might give stronger indications of target class or class boundary
- k-means to cluster all words into N clusters, and use cluster-ID as the new clustered-SLF features



☐ Extension III: Attribute SLF

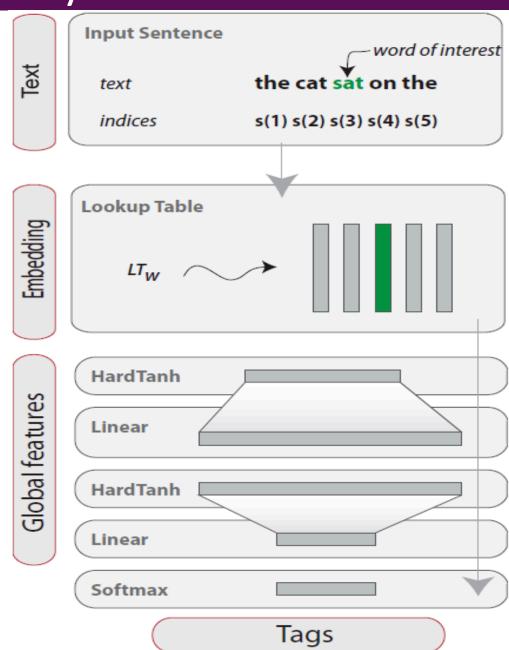
- Treat discrete attribute of words as the basic unit of sequence examples
- For instance, 'stem-end' for POS task

Why Useful?

- ☐ No incestuous bias since no examples are added
- □ No tricky parameters to tune (not like "self-training")
- ☐ Supervised model learns SLF relevant or not
- ☐ Summarization over many potential labels, hence infrequent mistakes can be smoothed out
 - Potentially corrected on the next iteration
- Empirical SLF features for neighboring words are highly informative
- ☐ Highly scalable (adding a few features, not examples)
- A wrapper approach applicable on many other methods

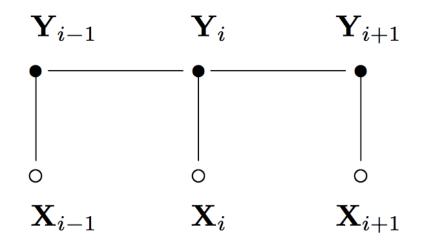
14 Baseline NLP System I - NN

- □ A deep neural network(NN) based NLPsystem [Collobert 08]
- □ Auxiliary task "LM" provides one type of semi-supervision
- "Viterbi" training enforces local label dependencies among neighborhood
 - SLF enforces local dependency as well



Baseline NLP System II - CRF

- Conditional Random Field (CRF) [Lafferty 01]
 - State-of-the-art performance on many sequence labeling tasks
 - Discriminative probabilistic models over observation sequences and label sequences
 - Apply SLF as a wrapper on CRF++ toolkit



Experimental Setting

- Four Benchmark Data Sets
 - CoNLL03 German Named Entity Recognition (NER)
 - CoNLL03 English Name Entity Recognition (NER)
 - English Part-of-Speech (POS) benchmark data [Toutanova 03]
 - Gene Mention (GM) benchmark data [BioCreative II]

Token Size	Training (Labeled)	Unlabeled
German NER	206,931	~60M
English NER	203,621	~200M
English POS	1,029,858	~300M
Bio GM	345,996	~900M

- Evaluation Measurements
 - Entity-level F1: 2 (precision * recall) / (precision + recall)
 - Word-level error rate for POS task

17 Performance Comparison (German NER)

- □ IOBES style of class tag / 5 words sliding window
- All features case
 - (word, capitalization flag, prefix and suffix (length up to 4), part-of-speech tags, text chunk, string patterns)
- Best CoNLL03 team: test F1 74.17
- Baseline classifier: NN

Setting	Test F1	+ Basic SLF
word only	45.89	51.10
word only + Viterbi	50.61	53.46
all features + LM	72.44	73.32
all features + LM + Viterbi	74.33	75.72

18 Performance Comparison (English NER)

- IOBES style of class tag / 7 words sliding window
- All features case
 - (word, cap, dictionary)
- Best CoNLL03 team: test F1 88.76
- Baseline classifier: NN

Setting	Test F1	+ Basic SLF
word + cap	77.82	79.38
word + cap + Viterbi	80.53	81.51
word + cap + dict + LM	86.49	86.88
word + cap + dict + LM + Viterbi	88.40	88.69

19 Performance Comparison (English POS)

- IOBES style of class tag / 5 words sliding window
- All features case
 - (word, cap, stem-end)
- Best result (we know): test error rate 2.76%
 - WER: token-level error rate
- Baseline classifier: NN

Setting	WER	+ Basic SLF	+ Attribute SLF
word	4.99	4.06	-
word + LM	3.93	3.89	-
word + cap + stem	3.28	2.99	2.86
word + cap + stem + LM	2.79	2.75	2.73

Performance Comparison (Bio GM)

- Look for gene or protein name in bio-literature (two classes: gene or not)
- All features case
 - (word, cap, prefix and suffix (length up to 4). String pattern)
- Best BioCreativell team: test F1 87.21
 - Many other complex features + Bio-directional CRF training
- Baseline classifier: CRF++

Setting	Test F1	+ Clustered SLF
word + cap	82.02	84.01 (on Basic SLF)
word + cap	82.02	85.24 (on Boundary SLF)
word + cap + pref + suf + str	86.34	87.16 (on Boundary SLF)

21 Performance Comparison to Self-Training

- ☐ Self training with random selection scheme:
 - Given L training examples, choose L/R (R is a parameter to choose) unlabeled examples to add in next round's training
- Self-Training on German NER

Setting	Baseline	R=1	R=10	R=100
Words only + viterbi	50.61	47.07	47.92	47.9
All +LM+Viterbi	74.33	73.42	74.41	73.9

☐ Self-Training on English NER

Setting	Baseline	R=1	R=20	R=100
Words only + Viterbi	80.53	79.51	81.01	80.85
Word +Cap+dict + LM+Viterbi	88.40	87.64	88.07	88.17

SLF has better behavior than self-training (with a random selection strategy)

Conclusions

- ☐ Semi-supervised SLF is promising for sequence labeling tasks in NLP
- ☐ Easily extendable for other cases, such as predicted class distributions (or related) for each n-gram
- Easily extendable for other domains, such as sentimental analysis (word's class distribution as the distribution of labels of *documents* containing this word)
 - "cash back" to class "shopping"