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Abstract

In this paper, we propose a new unsupervised feature

learning framework, namely Deep Sparse Coding (DeepSC),

that extends sparse coding to a multi-layer architecture

for visual object recognition tasks. The main innovation

of the framework is that it connects the sparse-encoders

from different layers by a sparse-to-dense module. The

sparse-to-dense module is a composition of a local spatial

pooling step and a low-dimensional embedding process,

which takes advantage of the spatial smoothness information

in the image. As a result, the new method is able to

learn multiple layers of sparse representations of the image

which capture features at a variety of abstraction levels

and simultaneously preserve the spatial smoothness between

the neighboring image patches. Combining the feature

representations from multiple layers, DeepSC achieves the

state-of-the-art performance on multiple object recognition

tasks.

1 Introduction

Visual object recognition is a major topic in computer
vision and machine learning. In the past decade, people
have realized that the central problem of object recog-
nition is to learn meaningful representations (features)
of the image/videos. A large amount of focus has been
put on constructing effective learning architecture that
combines modern machine learning methods and in the
meantime considers the characteristics of image data
and vision problems.

One thread of the state-of-the-art systems for vi-
sual object recognition is the bag-of-visual-words (BoV)
framework. The classic BoV framework utilizes a
pipeline of multiple stages, i.e., “local descriptor extrac-
tion”, “coding”, “spatial pooling” [20] and “Support
Vector Machine” (SVM) classifier, and has achieved
excellent performance on multiple benchmarked image
classification datasets [6]. In this pipeline, feature learn-
ing is performed by the unsupervised “coding” stage,
and the image labels are only used in the final step of
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BoV pipeline to train the classifier. Recent literature
has been focused on refining the unsupervised “coding”
step, which encodes the (hand-crafted) feature descrip-
tor of local image patches by a set of visual codewords.
Sparse coding (SC) [25], one of the most successful sig-
nal processing paradigms, was proposed as the “coding”
step in BoV framework by [27] to replace vector quan-
tization. By utilizing just a linear SPM kernel based on
the sparse codes, their approach reduced the training
and testing complexities of SVM, and has achieved the
state-of-the-art performance on several benchmarks.

Another thread of research consist of a number of
deep learning methods that aim at extracting feature hi-
erarchies from data. Convolutional Neural Network [21]
and Deep Belief networks [16] are the early works in this
area. Most of the architecture in deep learning(see [2])
is constructed by a stack of feature extractors, such as
Restricted Boltzman Machine(RBM) and auto-encoder.
Each layer in the architecture encodes features at dif-
ferent level of abstraction, defined as a composition of
lower-level features. More recently, deep learning based
systems have won a number of high-profile competitions,
e.g. [19] and have gained great popularity.

In this work, we combine the power of deep learning
architecture and the sparse coding BoV pipeline to con-
struct a new unsupervised feature learning architecture
for learning image representations.

• Compared to the single-layer sparse coding frame-
work, our method can extract feature hierarchies
at the different levels of abstraction. The sparse
codes at the same layer keeps the spatial smooth-
ness across image patches and different SC hier-
archies also capture different spatial scopes of the
representation abstraction. As a result, the method
has richer representation power and hence has bet-
ter performance on object recognition tasks.

• Compared to deep learning methods, our method
benefits from effective hand-crafted features, such
as SIFT features, as the input. Each module of
our architecture has sound explanation and can
be formulated as explicit optimization problems
with promising computational performance. The
method shows superior performance over the state-
of-the-art methods in multiple experiments.



2 Background

In this section, we review the technical background of
the new framework. In Subsection 2.1, we go over the
pipeline of using bag-of-visual-words for object recog-
nition. In Subsection 2.2, we revisit dimensionality re-
duction methods and concentrate on a low-dimensional
embedding method called DRLIM.

2.1 Bag-of-visual-words pipeline for object
recognition We now review the bag-of-visual-words
pipeline consisting of hand-crafted descriptor comput-
ing, bag-of-visual-words representation learning, spatial
pyramid pooling and finally a classifier.

The first step of the pipeline is to exact a set of
overlapped image patches from each image with fixed
patch size, while the spacing between the centers of
two adjacent image patches is also fixed. Then a D-
dimensional hand-crafted feature descriptor (e.g. 128-
dimensional SIFT descriptor) is computed from each
image patch. Now let X(i) denote the set of Mi feature
descriptors, which are converted from Mi overlapped
image patches extracted from the i-th image (e.g. size
300× 300), i.e.,

X(i) = [x
(i)
1 , · · · , x(i)Mi

] ∈ RD×Mi ,

where x
(i)
j is the feature descriptor of the j-th patch in

the i-th image.
Let X = [X(1), X(2) · · · , X(N)] ∈ RD×M , where

M = M1 +M2 + · · ·+MN , denote the set of all feature
descriptors from all N training images. The second step
of the pipeline consists of a dictionary learning process
and a bag-of-visual-words representation learning pro-
cess. In the case of using sparse coding to learn the bag-
of-visual-words representation, the two processes can be
unified as the following problem.

min
V,Y
‖X − V Y ‖2F + α‖Y ‖1,1(2.1)

=

M∑
m=1

‖xm − V ym‖22 + α‖ym‖1

s.t.‖vk‖ ≤ 1, ∀k = 1, · · · ,K,

where V = [v1, · · · , vK ] ∈ RD×K denote the dictionary
of visual-words, and columns of Y = [y1, · · · , yM ] ∈
RK×M are the learned sparse codes, and α is the
parameter that controls sparsity of the code. We
should note, however, other sparse encoding methods
such as vector quantization and LLC could be used
to learn the sparse representations (see [8] for review
and comparisons). Moreover, the dictionary learning
process of finding V in (2.1) is often conducted in an
online style [23] and then the feature descriptors of

the i-th image stored X(i) is encoded as the bag-of-

visual-words representation Y (i) = [y
(i)
1 , · · · , y(i)Mi

] in K-
dimensional space (K >> D). Intuitively speaking, the
components of the bag-of-visual-words representation
are less correlated compared to the components of dense
descriptors. Therefore, compared to the dense feature
descriptors, the high-dimensional sparse representations
are more favorable for the classification tasks.

In the third stage of the pipeline, the sparse bag-of-
visual-words representations associated with the image
patches from each image are pooled over some hierar-
chical image neighborhoods to obtain a single feature
vector for the image. To achieve this, each image is di-
vided into three levels of pooling regions as suggested
by the spatial pyramid matching (SPM) technique [20].
The first level of pooling region is the whole image. The
second level is consist of 4 pooling regions which are 4
quadrants of the whole image. The third level consist of
16 pool regions which are quadrants of the second level
pooling regions. In this way, we obtain 21 overlapped
pooling regions. Then for each pooling region, a max-
pooling operator is applied to all the sparse codes whose
associating image patch center locates in this pooling re-
gion, and we obtain a single feature vector for each pool-
ing region. The max-pooling operator maps any number
of vectors that have the same dimensionality to a single
vector, whose components are the maximum value of
the corresponding components in the mapped vectors.
Formally, given the descriptors y1, · · · , yn ∈ RK that
are in the same pooling region, we calculate
(2.2)
y = opmax(y1, · · · , yn) := max{y1, · · · , yn} ∈ RK ,

where max is operated component-wisely. Finally,
the pooled bag-of-visual-words representations from 21
pooling regions are concatenated to obtain a single
feature vector, which is regarded as the representation
for the image and linear SVM is then used for training
and testing on top of this representation. Since the
labels of the training images are not used until the
final training of SVM, the whole pipeline of learning
the image representation is regarded as an unsupervised
method. For the rest of this paper, we focus on the
version of the pipeline where the feature (bag-of-visual-
words representation) learning part is performed by a
sparse coding (2.1) step.

2.2 Dimensionality reduction by learning an in-
variant mapping Dimensionality reduction is a very
common technique in machine learning, which embeds
high-dimensional data instances into a low-dimensional
space. Popular dimensionality reduction methods in-
clude encoders such as NMF, linear transformations



Figure 1: The bag-of-visual-words pipeline.

such as PCA and many other manifold learning tech-
niques. Most of the dimensionality reduction meth-
ods are unsupervised methods which learn the trans-
formation to preserve the relationship in the original
space/manifold. In this paper, however, we are in-
terested in preserving the spatial smoothness of image
patches when learning a low-dimensional embedding.
More specifically, if two image patches are largely over-
lapped, we have the prior knowledge that they are likely
to capture the same object even though their representa-
tions could be far apart in the original space. Therefore
a dimensionality reduction method that is able to make
use of the prior knowledge is of our main interest. We
now review a method called dimensionality reduction by
learning an invariant mapping (DRLIM, see [15]), which
is the base model for our new method in Subsection 3.3.

Different from traditional unsupervised dimension-
ality reduction methods, DRLIM relies not only on a set
of training instances y1, y2, · · · , yn ∈ RK , but also on a
set of binary labels {lij : (i, j) ∈ I}, where I is the set of
index pairs such that (i, j) ∈ I if the label for the corre-
sponding instance pair (yi, yj) is available. The binary
label lij = 0 if the pair of training instances yi and yj are
similar instances, and lij = 1 if yi and yj are known to
be dissimilar. Notice that the similarity indicated by lij
is usually from extra resource instead of the knowledge
that can be learned from data instances y1, y2, · · · , yn
directly. DRLIM learns a parametric mapping

A : y ∈ RK 7→ z ∈ RD,

such that the embeddings of similar instances attract
each other in the low-dimensional space while the em-
beddings of dissimilar instances push each other away
in the low-dimensional space. In this spirit, the exact
loss function of DRLIM is as follows:

L(A) =
∑

(i,j)∈I

(1− lij)
1

2
‖A(yi)−A(yj)‖2(2.3)

+ lij
1

2
max(0, β − ‖A(yi)−A(yj)‖)2,

where β > 0 is the parameter for the contrastive loss
term which decides the extent to which we want to
push the dissimilar pairs apart. Since the parametric
mapping A is assumed to be decided by some parameter.
DRLIM learns the mapping A by minimizing the loss
function in (2.3) with respect to the parameters of

Figure 2: A three-layer deep sparse coding framework.
Each of the three layers contains three modules. The
first module converts the input (image patches at the
first layer and sparse codes at other layers) to dense
codes. The second module is a sparse encoder convert-
ing the dense codes to sparse codes. The sparse codes
are then sent to the next layer, and simultaneously to
a spatial pyramid pooling module. The outputs of the
spatial pyramid pooling modules can be used for further
tasks such as classification.

A mapping. The mapping A can be either linear or
nonlinear. For example, we can assume A is a two-layer
fully connected neural network and then minimize the
loss function (2.3) with respect to the weight. Finally,
for any new data instance ynew, its low-dimensional
embedding is represented by A(ynew) without knowing
its relationship to the training instances.

3 Deep sparse learning framework

3.1 Overview Recent progress in deep learning [2]
has shown that the multi-layer architecture of deep
learning system, such as that of deep belief networks,
is helpful for learning feature hierarchies from data,
where different layers of feature extractors are able to
learn feature representations of different scopes. This
results in more effective representations of data and
benefits a lot of further tasks. The rich representation
power of deep learning methods motivate us to combine
deep learning with the bag-of-visual-words pipeline to
achieve better performance on object recognition tasks.



In this section, we introduce a new learning framework,
named as deep sparse coding (DeepSC), which is built
of multiple layers of sparse coding.

Before we introduce the details of the DeepSC
framework, we first identify two difficulties in designing
such a multi-layer sparse coding architecture.

• First of all, to build the feature hierarchies from
bottom-level features, it is important to take ad-
vantage of the spatial information of image patches
such that a higher-level feature is a composition of
lower-level features. However, this issue is hardly
addressed by simply stacking sparse encoders.

• Second, it is well-known (see [26, 13]) that sparse
coding is not “smooth”, which means a small
variation in the original space might lead to a
huge difference in the code space. For instance,
if two overlapped image patches have similar SIFT
descriptors, their associated sparse codes can be
very different. If another sparse encoder were
applied to the two sparse codes, they would lost the
affinity which was available in the SIFT descriptor
stage. Therefore, stacking sparse encoders would
only make the dimensionality of the feature higher
and higher without gaining new informations.

Based on the two observations above, we propose
the deep sparse coding (DeepSC) framework as follows.
The first layer of DeepSC framework is exactly the
same as the bag-of-visual-words pipeline introduced in
Subsection 2.1. Then in each of the following layer of
the framework, there is a sparse-to-dense module which
converts the sparse codes obtained from the last layer to
dense codes, which is then followed by a sparse coding
module. The output sparse code of the sparse coding
module is the input of the next layer. Furthermore, the
spatial pyramid pooling step is conducted at every layer
such that the sparse codes of current layer are converted
to a single feature vector for that layer. Finally, the
feature vectors from all layers are concatenated as the
input to the classifier. We summarize the DeepSC
framework in Figure 2. It is important to emphasis
that the whole framework is unsupervised until the final
classifier.

The sparse-to-dense module is the key innovation
of the DeepSC framework, where a “pooling function”
is proposed to tackle the aforementioned two concerns.
The pooling function is the composition of a local spatial
pooling step and a low-dimensional embedding step,
which are introduced in Subsection 3.2 and Subsection
3.3 respectively. On one hand, the local spatial pooling
step ensures the higher-level features are learned from a
collection of nearby lower-level features and hence cover
larger scopes. On the other hand, the low-dimensional

Figure 3: The blue points form the first level sampling
grid. The green points form the second level sampling
grid. The red points for the third level sampling grid.
The local spatial pooling step is performed on the local
4× 4 grid.

embedding process is designed to take into account
the spatial affinities between neighboring image patches
such that the spatial smoothness information is not
lost during the dimension reduction process. As the
combination of the two steps, the pooling function fills
the gaps between the sparse coding modules, such that
the power of sparse coding and spatial pyramid pooling
can be fully expressed in a multi-layer fashion.

3.2 Learning the pooling function In this subsec-
tion, we introduce the details of designing the local spa-
tial pooling step, which performs as the first part of
the pooling function. First of all, we define the pool-
ing function as a map from a set of sparse codes on a
sampling grid to a set of dense codes on a new sam-
pling grid. Assume that G is the sampling grid that
includes M sampling points on an image, where any
two adjacent sampling points have fixed spacing (num-
ber of pixels) between them. As described in Subsection
2.1, each sampling point corresponds to the center of an
image patch. Let Y = [y1, · · · , yM ] ∈ RK×M be the
sparse codes on the sampling grid G, where each yi is
associated with a sampling point on G according to its
associated image patch. Mathematically, the pooling
function is defined as the map:

f : (Y,G) 7→ (Z,G′),

where G′ is the new sampling grid with M ′ sampling
points and Z = [z1, · · · , zM ′ ] ∈ RD×M ′

stores the D-
dimensional dense codes (D < K 1) associated with the
sampling points on the new sampling grid G′.

As the feature representations learned in the new
layer are expected to cover larger scopes than those

1For simplicity, we let D be the same as the dimensionality of
SIFT features.



in the previous layer, we enforce each of the sampling
points on the new grid G′ to cover a larger area in the
image. To achieve this, we take the center of 4 × 4
neighboring sampling points in G and let it be the new
sampling points in G′. By taking the center of every
other 4 × 4 neighboring sampling points, the spacing
between neighboring sampling points in G′ is twice of
that in G. As a result, we map G to a coarser grid G′

such that M ′ ≈M/4 (see Figure 3).
Once the new sampling grid G′ is determined, we

finish the local spatial pooling step by applying the
max-pooling operator (defined in (2.2)) to the subsets
of M sparse codes {y1, · · · , yM} and obtain M ′ pooled
sparse codes associated with the new sampling grid G′.
More specifically, let ȳi denote the pooled sparse codes
associated with the i-th sampling point in G′, where
i ∈ {1, · · · ,M ′}. We have

(3.4) ȳi := opmax(yi1 , yi2 , · · · , yi16),

where {i1, i2, · · · , i16} are the indices of the 16 sampling
points in G that are closest to the i-th sampling point
in G′.

3.3 Dimensionality reduction with spatial in-
formation In this subsection, we introduce the details
of combining the DRLIM method [15] with the spatial
information of image patches to learn a low-dimensional
embedding A such that

(3.5) zi := A(ȳi).

As the feature vector is transformed by A to lower-
dimensional space, part of its information is discarded
while some is preserved. As introduced in Subsection
2.2, DRLIM is trained on a collection of data instance
pairs (ȳi, ȳj), each of which is associated with a binary
label indicating their relationship. Therefore, it pro-
vides the option to incorporate prior knowledge in the
dimensionality reduction process by determining the bi-
nary labels of training pairs based on the prior knowl-
edge.

In the case of object recognition, the prior knowl-
edge that we want to impose on the system is that if an
image patch is shifted by a few pixels, it still contains
the same object. Therefore, we constructed the collec-
tion of training pairs for DRLIM as follows. We extract
training pairs such that there always exist overlapped
pixels between the two corresponding patches. Let ȳi
and ȳj be the pooled sparse codes corresponding to two
image patches that have overlapped pixels and dij be
the distance (in terms of pixels) between them, which is
calculated based on the coordinate of the image patch

centers. Given a thresholding σ, we set

(3.6) lij =

{
0 dij < σ
1 dij > σ

Generated this way, lij = 0 indicates the two image
patches are mostly overlapped, while lij = 1 indicates
that the two image patch are only partially overlapped.
This process of generating training pairs ensures that
the training of the transformation A is focused on the
most difficult pairs. Experiments shows that if we
instead take the pooled sparse codes of far-apart image
patches as the negative pairs (lij = 1), DRLIM suffers
downgrading in performance. The sensitivity of the
system to the thresholding parameter σ is demonstrated
in Table 7.

Let the linear transformation A be defined by the
transformation matrix W ∈ RD×K such that

A(ȳi) = Wȳi.

Then, the loss function with respect to the pair (ȳi, ȳj)
is

Lij(W ) = (1− lij)
1

2
‖Wȳi −Wȳj‖2(3.7)

+ lijmax(0, β − ‖Wȳi −Wȳj‖)2.
Let I be the set of index pairs for training pairs

collected from all training images, W is then obtained
by minimizing the loss with respect to all training pairs,
i.e., solving

min
W

∑
(i,j)∈I

Lij

s.t. ‖wk‖ ≤ 1, ∀k = 1, · · · ,K.
To accelerate the training of DRLIM, we apply

stochastic gradient descent method with mini-batch,
which is described as follows. At each iteration, we
randomly pick a subset Im ⊂ I of size m, and then
update using the following stochastic gradient descent
step:

(3.8) W ←W − γ

m

∑
(i,j)∈Im

dLij(W )

dW
,

where γ is the step size and the gradient
dLij(W )

dW is
defined as

dLij(W )

dW
= I(lij = 0)Dij(ȳi − ȳj)>

− I(lij = 1, 0 < Dij < β)
β − ‖Dij‖
‖Dij‖

Dij(ȳi − ȳj)>,

where I(·) is the binary indicator function and

Dij := Wȳi −Wȳj .

After the gradient step, each column of W is then
projected to the unit L2 ball.



4 Related Work

One of the drawbacks of single-layer sparse coding BoV
system is that it encodes local patches independently,
ignoring the spatial neighborhoods structure of the
image. Our DeepSC framework uses DRLIM to remedy
this issue through enforcing spatial smoothness. A
closely related work “Hierarchical Sparse Coding” from
[28], presented a two-layer sparse coding scheme, where
the first layer encodes the local patches of an image,
and the second layer of sparse coding gets the pooling
of the first layer codes and models the higher-order
dependency of patches in the same local region. Their
system achieved 74.0% on Caltech-101 dataset using the
first-layer SC dictionary size as 8 and the second-layer
SC dictionary as 2048 dictionary size. It is very difficult
to extend this two-layer framework to more layers, due
to the high dimensionality of sparse codes (the more
layers, the higher dimension of dictionary the deeper-
layer SC needs). Different from this work, our DeepSC
makes use of the low-dimensional projection DRLIM to
connect multiple layers of SC together, which enables
SC to be applicable on deeper layers.

In the recent decade, most of the literature on multi-
stage object recognition system can be seen as variants
of the BoV pipeline. For example, HoG features[9] or
even the original image patches[8] can be used as the
first level image descriptors to replace SIFT features[22].
While most of the previous works use SIFT features of
image patches, TFM [18] proposed new locally-invariant
feature descriptors that are learned from raw images
automatically in an unsupervised fashion. The new de-
scriptors give comparable performance to SIFT on Cal-
tech 101 and better performance than SIFT on MNIST
and Tiny Images. The proposed DeepSC utilizes SIFT
feature descriptors to describe local image patches.
Thanks to the flexible and extendable multiple-layer
structure, it should be very easy to extend DeepSC us-
ing the raw pixels descriptors as inputs.

The pooling step performed by Spatial pyramid
matching (SPM) [20, 27] is regarded a huge extension
over bag-of-visual-words method by considering the spa-
tial order of local descriptors and significantly improve
the performance over the bag-of-visual-words represen-
tation on many databases. Some recent works [17, 12]
focus on improving the pooling step by designing the
pooling regions more adaptively [17] or by learning a
pooling operator instead of using the max-pooling oper-
ator. In our DeepSC framework, spatial pyramid pool-
ing with 21 pooling regions and max-pooling operator
plays an important role as the third module in every
layer. However, we want to point out that the results
in our experiment are possible to be further improved if
the above alternative techniques are applied.

The recent literature focuses more on refining the
“coding” steps in the BoV pipeline. The k-means
based algorithm [20] has been shown to be outperformed
by sparse-coding [27], which is then outperformed by
locality-constrained linear coding (LLC) [26], Laplacian
sparse coding [13] and smooth sparse coding [1]. The
later three works address the “non-smoothness” prob-
lem of sparse coding at the stage of coding. Instead,
the DeepSC framework addresses this problem in the
stage of dimension reduction. Moreover, compared to
DeepSC, the three works mentioned above didn’t con-
sider the extension to multi-layer framework so that
they are not able to learn feature hierarchies. In the
future work, it will be interesting to see if the DeepSC
framework can be combined with these recently pro-
posed sparse encoders to achieve better performance.

In addition to the improved coding methods, other
works successfully approached the object recognition
task using multiple patch sizes. Applying KSVD and
batch orthogonal matching pursuit (OMP) as the build-
ing blocks recursively at varying layers and scales, the
Multipath Hierarchical Matching Pursuit (M-HMP) [3]
learns features through multiple paths where differ-
ent patch size is used in different path. [7] demon-
strated that combining several deep convolutional neu-
ral networks (DNN) columns into a Multi-column DNN
(MCDNN) can achieve near-human performance on
MNIST handwriting benchmark, and outperform hu-
mans on GTSRB traffic sign dataset. It is worth notic-
ing that DeepSC is different from these two works be-
cause the input image patches have only one fixed size.
We speculate, however, that the idea of multi-path also
works with the DeepSC framework.

5 Experiments

In this section, we evaluate the performance of DeepSC
framework for image classification on three data sets:
Caltech-101 [10] , Caltech-256 [14] and 15-Scene.

• Caltech-101: this data set [10] contains 9144 images
belonging to 101 classes, with about 40 to 800
images per class. Most images of Caltech-101 are
with medium resolution, i.e., about 300× 300.

• Caltech-256: this data set [14] contains 29, 780
images from 256 categories. The collection has
higher intra-class variability and object location
variability than Caltech-101. The images are of
similar size to Caltech-101.

• 15-Scene: this data set, compiled by several re-
searchers [11, 20, 24], contains a total of 4485 im-
ages falling into 15 categories, with the number of
images per category ranging from 200 to 400. The



categories include living room, bedroom, kitchen,
highway, mountain, street and et al.

For each data set, the average per-class recognition
accuracy is reported. Each reported number is the
average of 10 repeated evaluations with random selected
training and testing images. For each image, following
[4], we sample 16 × 16 image patches with 4-pixel
spacing and use 128 dimensional SIFT feature as the
basic dense feature descriptors. The final step of
classification is performed using one-vs-all SVM through
LibSVM toolkit [5]. The parameters of DRLIM and
the parameter to control sparsity in the sparse coding
are selected layer by layer through cross-validation.
In the following, we present a comprehensive set of
experimental results, and discuss the influence of each of
the parameters independently. In the rest of this paper,
DeepSC-2 indicates two-layer DeepSC system; DeepSC-
3 represents three-layer DeepSC system, and SPM-SC
means the one layer baseline, i.e. the BoV pipeline with
sparse coding plus spatial pyramid pooling.

5.1 Effects of Number of DeepSC Layers As
shown in Figure 2, the DeepSC framework utilizes
multiple-layers of feature abstraction to get a better rep-
resentation for images. Here we first check the effect of
varying the number of layers utilized in our framework.
Table 1 shows the average per-class recognition accuracy
on three data sets when all using 1024 as dictionary size.
The number of training images per class for the three
data sets is set as 30 for Caltech-101, 60 for Caltech-
256, and 100 for 15-Scene respectively. The second row
shows the results when we have only one layer of the
sparse coding, while the third row and the fourth row
describe the results when we have two layers in DeepSC
or three layers in DeepSC. Clearly the multi-layer struc-
tured DeepSC framework has superior performance on
all three data sets compared to the single-layer SPM-SC
system. Moreover, the classification accuracy improves
as the number of layers increases.

5.2 Effects of SC Dictionary Size We examine
how performance of the proposed DeepSC framework
changes when varying the dictionary size of the sparse
coding. On each of the three data sets, we consider
three settings where the dimension of the sparse codes
K is 1024, 2048 and 4096. The number of training
images per class for these experiments is set as 30
for Caltech-101, 60 for Caltech-256, and 100 for 15-
Scene respectively. We report the results for the three
data sets in Table 2, Table 3 and Table 4 respectively.
Clearly, when increasing the dictionary size of sparse
coding K from 1024 to 4096, the accuracy of the
system improves for all three data sets. We can observe

Caltech-101 Caltech-256 15-Scene

SPM-SC 75.66±0.59 43.04±0.34 80.83±0.59
DeepSC-2 77.41±1.06 46.02±0.57 82.57±0.72
DeepSC-3 78.24±0.76 47.00±0.45 82.71±0.68

Table 1: Average per-class recognition accuracy (shown
as percentage) on three data sets using 1024 as dic-
tionary size. The number of training images per
class for the three data sets are 30 for Caltech-101,
60 for Caltech-256, and 100 for 15-Scene respectively.
DeepSC-2/3: two/three layers of deep sparse coding.
SPM-SC: the normal BoV pipeline with one layer of
sparse coding plus spatial pyramid pooling.

that the performance of DeepSC is always improved
with more layers, while in the case of K = 4096
the performance boost in term of accuracy is not so
significant. This probably is due to that the parameter
space in this case is already very large for the limited
training data size. Another observation we made from
Table 2, Table 3 and Table 4 is that DeepSC-2 (K=1024)
always performs better than SPM-SC (K=2048), and
DeepSC-2 (K=2048) always performs better than SPM-
SC (K=4096). These two comparisons demonstrate
that simply increasing the dimension of sparse codes
doesn’t give the same performance boost as increasing
the number of layers, and therefore DeepSC framework
indeed benefits from the feature hierarchies learned from
the image.

Caltech-101 K=1024 K=2048 K=4096

SPM-SC 75.66±0.59 76.34±0.58 77.21±0.7
DeepSC-2 77.41±1.06 78.27±0.6 78.3±0.9
DeepSC-3 78.24±0.76 78.43±0.72 78.41±0.74

Table 2: Effect of dictionary size used in sparse coding
on recognition accuracy (shown as percentage). data
set: Caltech-101; number of training images per class:
30

Caltech-256 K=1024 K=2048 K=4096

SPM-SC 43.04±0.34 45.66±0.53 47.8±0.63
DeepSC-2 46.02±0.57 48.04±0.44 49.29±0.50
DeepSC-3 47.0±0.45 48.85±0.42 49.91±0.39

Table 3: Effect of dictionary size used in sparse coding
on recognition accuracy (shown as percentage). data
set: Caltech-256; number of training images per class:
60



15-Scene K = 1024 K = 2048 K = 4096

SPM-SC 80.83±0.59 82.11±0.61 82.88±0.82
DeepSC-2 82.57±0.72 83.58±0.71 83.76±0.72
DeepSC-3 82.71±0.68 83.58±0.61 83.8±0.73

Table 4: Effect of varying sparse coding dictionary size
on recognition accuracy (shown as percentage). data
set: 15-Scene; number of training images per class: 100

5.3 Effects of Varying Training Set Size Fur-
thermore, we check the performance change when vary-
ing the number of training images per class on two Cal-
tech data sets. Here we fix the dimension of the sparse
codes K as 2048. On Caltech-101, we compare two
cases: randomly select 15 or 30 images per category
respectively as training images and test on the rest. On
Caltech-256, we randomly select 60, 30 and 15 images
per category respectively as training images and test
on the rest. Table 5 and Table 6 show that with the
smaller set of training images, DeepSC framework still
continues to improve the accuracy with more layers.

Caltech-101 30 15

SPM-SC 76.34±0.58 69.94±0.61
DeepSC-2 78.27±0.6 71.53±0.53
DeepSC-3 78.43±0.72 71.86±0.55

Table 5: Effect of varying training set size on averaged
recognition accuracy. data set: Caltech-101; Dictionary
Size: 2048

Caltech-256 60 30 15

SPM-SC 45.66±0.53 39.86±0.24 33.44±0.15
DeepSC-2 48.04±0.44 41.86±0.28 35.10±0.19
DeepSC-3 48.80±0.42 42.33±0.29 35.28±0.27

Table 6: Effect of varying training set size on averaged
recognition accuracy. data set: Caltech-256; Dictionary
Size: 2048

5.4 Effects of varying parameters of DRLIM
In table 7, we report the performance variations when
tuning the parameters for DRLIM. The parameter σ
is the threshold for selecting positive and negative
training pairs (see (3.6)) and the parameter β in the
hinge loss (see (3.7)) of DRLIM model is for controlling
penalization for negative pairs. We can see that it is
important to choose the proper thresholding parameter
σ such that the transformation learned by DRLIM
can differentiate mostly overlapped image pairs and
partially overlapped image pairs.

σ \ β 1 2 3 4 5 6
8 76.5 77.41 77.07 76.71 76.24 75.81
16 74.93 76.55 76.87 76.97 76.43 75.83
24 73.95 75.43 76.18 76.42 76.53 76.45

Table 7: The effect of tuning DRLIM parameters on
recognition accuracy for DeepSC-2. data set: Caltech-
101; dictionary size: 1024; the number of training
images per class: 30.

Caltech-101 Caltech-256 15-Scene

ScSPM 73.2±0.54 40.14±0.91 80.28±0.93
SSC 77.54±2.59 − 84.53±2.57

DeepSC-3 78.24±0.76 47.04±0.45 82.71±0.68

Table 8: Comparison of results with other image recog-
nition algorithms: ScSPM[27], LLC[26], and SSC[1].
Dictionary size K = 1024. Number of training images
are 30, 60, and 100 for Caltech-101, Caltech-256 and
15-Scene respectively.

5.5 Comparison with other methods We then
compare our results with other algorithms in Table 8.
The most direct baselines 2 for DeepSC to compare are
the sparse coding plus SPM framework (ScSPM) [27],
LLC[26], and SSC[1]. Table 8 shows the comparison
of our DeepSC versus the ScSPM and SSC. We can
see that our results are comparable to SSC, with a bit
lower accuracy on the 15-Scene data (the std of SSC is
much higher than ours). For the LLC method proposed
from [26], it reported to achieve 73.44% for Caltech-
101 when using K = 2048 and 47.68% when using
K = 4096. Our DeepSC-3 has achieved 78.43% for
Caltech-101 when using K = 2048 and 49.91% when
using K = 4096. Overall our system achieves the state-
of-the-art performance on all the three data sets.

6 Conclusion

Feature learning has been the core problem of many
machine learning problems such that object recognition,
natural language processing and speech recognition. In
this paper, we propose a new method, namely Deep
Sparse Coding (DeepSC), that extends sparse coding
to a deep feature learning framework. The multi-layer
framework connects the sparse-encoders from different
levels by a pooling function, which consists of a local
spatial pooling step and a dimensionality reduction step.
This new method is able to learn sparse representations
of the images at different levels of abstraction and of

2We are also aware of that some works achieve very high

accuracy based on adaptive pooling step [12] or multiple-path
system that utilizes image patches of multiple sizes [3].



different spatial scopes. We test DeepSC on multiple
visual object recognition data sets and achieves the
state-of-the-art performance. In the future, we plan to
improve DeepSP by extending the classic sparse coding
step we used currently to the newly proposed Smooth
Sparse Coding [1], which considers spatial smoothness
in the “coding step”. It is also promising to extend the
current framework on more types of data, e.g. audio.
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