Deep Learning for Character-based Information Extraction

Yanjun Qi (University of Virginia, USA)
Sujatha Das G (Penn. State University, USA)
Ronan Collobert (IDIAP)
Jason Weston (Google Research NY)

Task: Target Applications

- Target task: automatically extract information about prespecified types of events from a linear sequence of unit tokens
 - character-based,
 - no word boundaries,
 - no capitalization cues

- For examples,
 - Chinese language NLP: Chinese-character based
 - Protein sequence tagging: Amino-acid based

Task: Case Study (1):

Natural Language Processing on Chinese sequences

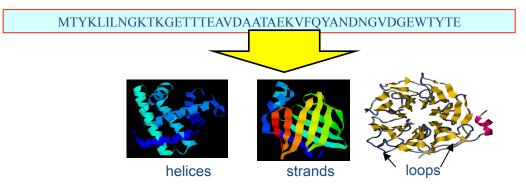
Characters	克	林	顿	总	统	前	往	中	东
WS	В	Ι	E	В	\mathbf{E}	В	E	В	E
POS	B-NR	I-NR	E- NR	B-NN	E-NN	B-VV	E- VV	B-NR	E-NR
NER	B-PER	I-PER	E-PER	O	O	O	O	B-LOC	E-LOC

Word Segmentation (WS): Basic task, separate contiguous characters into words
Part of Speech (POS) tagging: Determine part of speech of each word in the text
Name Entity Recognition (NER): determine person, organization and location names in text

Task: Case Study (2):

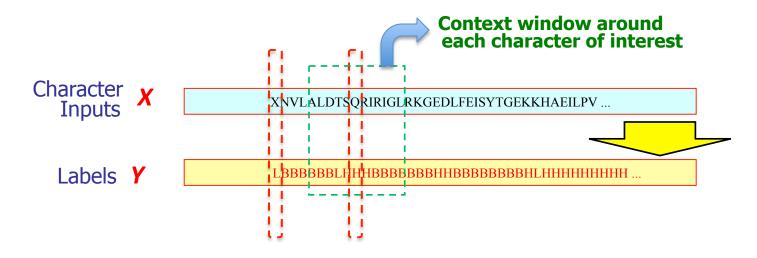
Protein Sequence → Structural Segments

■ <u>Input X:</u>Primary sequence



Output Y: e.g. Secondary structure (SS)

Task: Context-Window based Per-Character Tagging



Method: Deep Learning to Rescue

Feature Engineering

- ✓ Most time-consuming in development cycle
- ✓ Often hand-craft and task dependent in practice

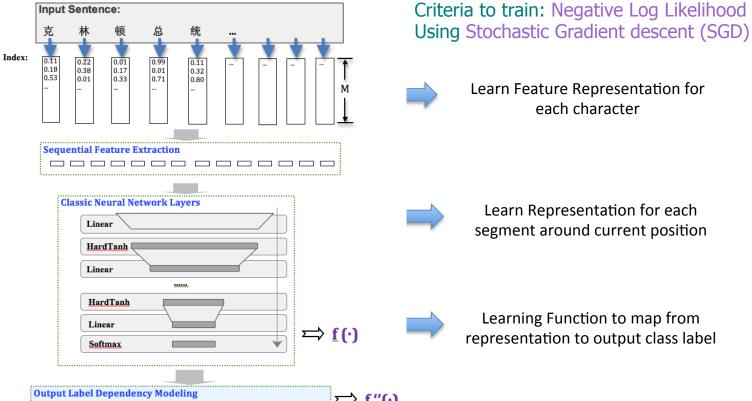
Feature Learning

- ✓ Easily adaptable to new similar tasks
- ✓ Layerwise feature representation learning

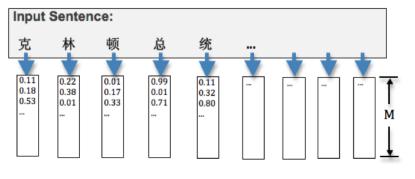
Previous approaches:

Use task-specific/handcrafted features with a shallow learning structure

Now: Task-independent "deep" structure using simple features input to deep neural network (NN) architecture



Method: Character to Vector Representations Learning



- ✓ The first layer in our deep structure;
- ✓ Idea: Characters are embed in a vector space
- ✓ Embedding are trained

How to train this embedding layer:

- √ (1). Supervised: Trained as a normal NN layer, using SGD, based on target task's training pairs
- √ (2). Initialized with unsupervised "language model" (lm) pre-training: to captures similarities among characters based on their contexts in the unsupervised sequences, e.g. Chinese Wiki, swissprot protein sequence DB

Method: Modeling spatial dependency among characters

$$y_2 - y_2 - y_1 - y_1 - y_2 - y_2 - y_3 - y_3 - y_3 - y_2 - y_2$$

- A Viterbi algorithm to capture spatial dependencies between y_i
 - i.e. optimize the whole sentence-level log-likelihood
 - i.e. encourage valid paths of output tags
 - = Output tag transition scores + deep network scores

$$\sum_{t=1}^{T} \left([A]_{[i]_{t-1},[i]_t} + [f_{\theta}]_{[i]_t,t} \right)_{\theta}$$

Experiments: Data Sets

Table 1: Summary of datasets used in experiment

Dataset/Task	#Chars	#UniqueChars	#Sent
POS(CTB)	1,288,840	4,447	28,295
WS(CTB)	1,287,159	4,696	28,295
NER(CITYU)	1,816,417	4,678	43,734
SS (CB513)	83,707	25	497

Table 3: Summary of Output Labels

		<u> </u>
Task	#Labels	Example Tags
NER	14	B-LOC, I-LOC, S-ORG
POS	107	S-NR, B-NN, E-VV, B-DT
WS	5	B, I, E,S
CB513	4	H, B, C

Experiments: Performance Comparison

Configuration / Task	WS-	POS-	NER-	SS-
	Chinese	Chinese	Chinese	Protein*
1. c1	94.73	86.74	80.61	74.5
2. c1+lm	95.57	86.93	81.79	74.8
3. c1+vit	95.38	88.41	85.81	77.6
4. c1+lm+vit	96.07	88.81	86.99	77.8
5. c1+lm+c2	95.98	88.48	83.51	~
6. c1+lm+c2+vit	96.62	89.39	87.24	~
7. $c1+lm+c2+vit+ws$	~	93.27	88.88	80.3*
Previous Best	95.9 [10]	91.9 [10]	89.00 [6]	80.0 [5]
Previous Second Best	95.1 [10]	91.3 [10]	88.61 [6]	~

c1: character unigrams, c2: character bigrams, lm: embedding obtained with deep language model, vit: Viterbi algorithm

Summary:

Why is our method preferable?

- No particular task-specific feature engineering.
- Robust and flexible
- Easily adaptable to other character-based tagging tasks, e.g. Japanese NER

References

- [0] http://www.cs.cmu.edu/~qyj/zhSenna/
- [1] R. Collobert et al, Natural language processing (almost) from scratch, JMLR 12
- [2] Qi et al, A unified multitask architecture for predicting local protein properties. PLoS ONE 12
- [3] Levow, G.A.: The third international chinese language processing bakeoff, SIGHAN 2006
- [4] Y. LeCun et al. 1998. Efficient BackProp.